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Abstract
In this work, we consider how preference models
in interactive recommendation systems determine
the availability of content and users’ opportunities
for discovery. We propose an evaluation proce-
dure based on stochastic reachability to quantify
the maximum probability of recommending a tar-
get piece of content to an user for a set of al-
lowable strategic modifications. This framework
allows us to compute an upper bound on the like-
lihood of recommendation with minimal assump-
tions about user behavior. Stochastic reachability
can be used to detect biases in the availability of
content and diagnose limitations in the opportuni-
ties for discovery granted to users. We show that
this metric can be computed efficiently as a con-
vex program for a variety of practical settings, and
further argue that reachability is not inherently at
odds with accuracy. We demonstrate evaluations
of recommendation algorithms trained on large
datasets of explicit and implicit ratings. Our re-
sults illustrate how preference models, selection
rules, and user interventions impact reachability
and how these effects can be distributed unevenly.

1. Introduction
Through recommendation systems, personalized preference
models mediate access to many types of information on
the internet. Aiming to surface content that will be con-
sumed, enjoyed, and highly rated, these models are primar-
ily designed to accurately predict individuals’ preferences.
However, it is important to look beyond measures of accu-
racy towards notions of access. The focus on improving
recommender model accuracy favors systems in which hu-
man behavior becomes as predictable as possible—effects
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which have been implicated in unintended consequences
like polarization or radicalization.

We focus on questions of access and agency by adopting an
interventional lens, which considers arbitrary and strategic
user actions. We expand upon the notion of reachability
first proposed by Dean et al. (2020), which measures the
ability of an individual to influence a recommender model
to select a certain piece of content. We define a notion
of stochastic reachability which quantifies the maximum
achievable likelihood of a given recommendation in the
presence of strategic interventions. This metric provides an
upper bound on the ability of individuals to discover specific
content, thus isolating unavoidable biases within preference
models from those due to user behavior.

Our primary contribution is the definition of metrics based
on stochastic reachability which capture the possible out-
comes of a round of system interactions, including the avail-
ability of content and discovery possibilities for individuals.
In Section 3, we show that they can be computed by solv-
ing a convex optimization problem for a class of relevant
recommenders. In Section 4, we draw connections between
the stochastic and deterministic settings. This perspective
allows us to describe the relationship between agency and
stochasticity and further to argue that there is not an inherent
trade-off between reachability and model accuracy. Finally,
we present an audit of recommendation systems using a
variety of datasets and preference models. We explore how
design decisions influence reachability and the extent to
which biases in the training datasets are propagated.

1.1. Related Work

The recommender systems literature has long proposed a
variety of other metrics for evaluation, including notions
of novelty, serendipity, diversity, and coverage (Herlocker
et al., 2004; Castells et al., 2011). There is a long history
of measuring and mitigating bias in recommendation sys-
tems (Chen et al., 2020). Empirical investigations have
found evidence of popularity and demographic bias in do-
mains including movies, music, books, and hotels (Abdol-
lahpouri et al., 2019; Ekstrand et al., 2018a;b; Jannach et al.,
2015). Alternative metrics are useful both for diagnosing
biases and as objectives for post-hoc mitigating techniques
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Figure 1. Conceptual framings of recommendation systems con-
sider user behaviors to varying degrees. In this work we focus on
evaluating interventional properties.

such as calibration (Steck, 2018) and re-ranking (Singh &
Joachims, 2018). A inherent limitation of these approaches
is that they focus on observational bias induced by pref-
erence models, i.e. examining the result of a single round
of recommendations without considering individuals’ be-
haviors. While certainly useful, they fall short of providing
further understanding into the interactive nature of recom-
mendation systems.

The behavior of recommendation systems over time and
in closed-loop is still an open area of study. It is diffi-
cult to definitively link observational evidence of radicaliza-
tion (Ribeiro et al., 2020; Faddoul et al., 2020) to proprietary
recommendation algorithms. Empirical studies of human
behavior find mixed results on the relationship between rec-
ommendation and content diversity (Nguyen et al., 2014;
Flaxman et al., 2016). Simulation studies (Chaney et al.,
2018; Yao et al., 2021; Krauth et al., 2020) and theoretical
investigations (Dandekar et al., 2013) shed light on phenom-
ena in simplified settings, showing how homogenization,
popularity bias, performance, and polarization depend on
assumed user behavior models. Even ensuring accuracy in
sequential dynamic settings requires contending with closed-
loop behaviors. Recommendation algorithms must mitigate
biased sampling in order to learn underlying user preference
models, using causal inference based techniques (Schnabel
et al., 2016; Yang et al., 2018) or by balancing exploita-
tion and exploration (Kawale et al., 2015; Mary et al., 2015).
Reinforcement Learning algorithms contend with these chal-
lenges while considering a longer time horizon (Chen et al.,
2019; Ie et al., 2019), implicitly using data to exploit user
behavior.

Our work eschews behavior models in favor of an interven-
tional framing which considers a variety of possible user
actions. Giving users control over their recommendations
has been found to have positive effects, while reducing
agency has negative effects (Harper et al., 2015; Lukoff
et al., 2021). The formal perspective we take on agency
and access in recommender systems was first introduced
by Dean et al. (2020), and is closely related to a body on
work on recourse in consequential decision making (Ustun
et al., 2019; Karimi et al., 2020). We build on this work to
consider stochastic recommendation policies.

2. Metrics Based on Reachability
2.1. Stochastic Recommender Setting

We consider systems composed of n individuals as well as a
collection of m pieces of content. For consistency with the
recommender systems literature, we refer to individuals as
users, pieces of content as items, and expressed preferences
as ratings. We will denote a rating by user u of item i as
rui ∈ R, whereR ⊆ R denotes the space of values which
ratings can take. For example, ratings corresponding to the
percentage of a video watched would haveR = [0, 1] while
discrete star ratings would have R = {1, 2, 3, 4, 5}. The
number of observed ratings will generally be much smaller
than the total number of possible ratings, and we denote
by Ωu ⊆ {1, . . . ,m} the set of items seen by the user u.
The goal of a recommendation system is to understand the
preferences of users and recommend relevant content.

In this work, we focus on the common setting in which
recommenders are the composition of a scoring function
φ with selection rule π (Figure 2). The scoring function
models the preferences of users. It is constructed based on
historical data (e.g. observed ratings, user/item features)
and returns a score for each user and item pair. For a given
user u and item i, we denote sui ∈ R to be the associated
score, and for user u we will denote by su ∈ Rm the vector
of scores for all items. A common example of a scoring
function is a machine learning model which predicts future
ratings based on historical data.

We will focus on the way that scores are updated after a
round of user interaction. For example, if a user consumes
and rates several new items, the recommender system should
update the scores in response. Therefore, we parameterize
the score function by an update rule, so that the new score
vector is s+

u = φu(a), where a ∈ Au represents actions
taken by user u and Au represents the set of all possible
actions. Thus φu encodes the historical data, the preference
model class, and the update algorithm. The action spaceAu
represents possibilities for system interaction, encoding for
example limitations due to user interface design. We define
the form of the score update function and discuss the action
space in more detail in Section 3.

The selection rule π is a policy which, for given user u and
scores su, selects one or more items from a set of specified
target items Ωtu ⊆ {1, . . . ,m} as the next recommendation.
The simplest selection rule is a top-1 policy, which is a de-
terministic rule that selects the item with the highest score
for each user. A simple stochastic rule is the ε-greedy policy
which with probability 1 − ε selects the top scoring item
and with probability ε chooses uniformly from the remain-
ing items. Many additional approaches to recommendation
can be viewed as the composition of a score function with
a selection policy. This setting also encompasses implicit
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Figure 2. We audit recommender systems under a user action model (A), learned preference model (B), and stochastic selection rule (C).

feedback scenarios, where clicks or other behaviors are
defined as or aggregated into “ratings.” Many recommen-
dation algorithms, even those not specifically motivated by
regression, include an intermediate score prediction step,
e.g. point-wise approaches to ranking. Further assump-
tions in Section 3 will not capture the full complexity of
other techniques such as pairwise ranking and slate-based
recommendations. We leave such extensions to future work.

In this work, we are primarily interested in stochastic poli-
cies which select items according to a probability distri-
bution on the scores su parametrized by a exploration pa-
rameter. Policies of this form are often used to balance
exploration and exploration in online or sequential learning
settings. A stochastic selection rule recommends an item i
according to P (π(su,Ω

t
u) = i), which is 0 for all non-target

items i /∈ Ωtu. For example, to select among items that have
not yet been seen by the user, the target items are set as
Ωtu = Ωc

u (recalling that Ωu denotes the set of items seen
by the user u). Deterministic policies are a special case of
stochastic policies, with a degenerate distribution.

Stochastic policies have been proposed in the recommender
system literature to improve diversity (Christoffel et al.,
2015) or efficiently explore in a sequential setting (Kawale
et al., 2015). By balancing exploitation of items with high
predicted ratings against explorations of items with lower
predictions, preferences can be estimated so that future
predicted ratings are more accurate. However, our work
decidedly does not take a perspective based on accuracy.
Rather than supposing that users’ reactions are predictable,
we consider a perspective centered on agency and access.

2.2. Reachability

First defined in the context of recommendations by Dean
et al. (2020), an item i is deterministically reachable by a
user u if there is some allowable modification to the user’s
ratings ru that causes item to be recommended. Allowable
modifications can include history edits, such as removing or
changing ratings of previously rated items. They can also
include future looking modifications which assign ratings
to a subset of unseen items.

In the setting where recommendations are made stochas-
tically, we define an item i to be ρ reachable by a user u
if there is some allowable action a such that the updated
probability that item i is recommended after applying action
a ; P(π(φu(a),Ωtu) = i) is larger than ρ. The maximum ρ
reachability for a user-item pair is defined as the solution to
the following optimization problem:

ρ?(u, i) = max
a∈Au

P (π(φu(a),Ωtu) = i). (1)

We will also refer to ρ?(u, i) as “max reachability.”

For example, in the case of ε-greedy policy, ρ?(u, i) = 1−ε
if item i is deterministically reachable by user u, and is
ε/(|Ωtu| − 1) otherwise.

By measuring the maximum achievable probability of rec-
ommending an item to a user, we are characterizing a gran-
ular metric of access within the recommender system. It
can also be viewed as an upper bound on the likelihood of
recommendation with minimal assumptions about user be-
havior. It may be illuminating to contrast this measure with a
notion of expected reachability. Computing expected reach-
ability would require specifying the distribution over user
actions, which would amount to modelling human behavior.
In contrast, max reachability requires specifying only the
constraints arising from system design choices to define Au
(e.g. the user interface). By computing max reachability, we
focus our analysis on the design of the recommender system,
and avoid conclusions which are dependent on behavioral
modelling choices.

Two related notions of user agency with respect to a target
item i are lift and rank gain. The lift measures the ratio
between the maximum achievable probability of recommen-
dation and the baseline:

λ?(u, i) =
ρ?(u, i)

ρ0(u, i)
(2)

where the baseline ρ0(u, i) is defined to capture the default
probability of recommendation in the absence of strategic
behavior, e.g. P (π (su,Ω

t
u) = i).

The rank gain for an item i is the difference in the ranked
position of the item within the original list of scores su and
its rank within the updated list of scores s+

u .
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Lift and rank gain are related concepts, but ranked position
is combinatorial in nature and thus difficult to optimize for
directly. They both measure agency because they compare
the default behavior of a system to its behavior under a
strategic intervention by the user. Given that recommenders
are designed with personalization in mind, we view the
ability of users to influence the model in a positive light.
This is in contrast to much recent work in robust machine
literature where strategic manipulation is undesirable.

2.3. Diagnosing System Limitations

The analysis of stochastic reachability can be used to audit
recommender systems and diagnose systemic biases from
an interventional perspective (Figure 1). Unlike studies of
observational bias, these analyses take into account system
interactivity. Unlike studies of closed-loop bias, there is no
dependence on a behavior model. Because max reachability
considers the best case over possible actions, it isolates
structural biases from those caused in part by user behavior.

Max reachability is a metric defined for each user-item
pair, and disparities across users and items can be detected
through aggregations. Aggregating over target items gives
insight into a user’s ability to discover content, thus detect-
ing users who have been “pigeonholed” by the algorithm.
Aggregations over users can be used to compare how the
system makes items available for recommendation.

We define the following user- and item-based aggregations:

Du =
∑
i∈Ωtu

1{ρui > ρt}
|Ωtu|

, Ai =

∑
u ρui1{i ∈ Ωtu}∑
u 1{i ∈ Ωtu} (3)

The discovery Du is the proportion of target items that have
a high chance of being recommended, as determined by the
threshold ρt. A natural threshold is the better-than-uniform
threshold, ρt = 1/|Ωtu|, recalling that Ωtu is the set of tar-
get items. When ρui = ρ0(u, i), baseline discovery counts
the number of items that will be recommended with better-
than-uniform probability and is determined by the spread
of the recommendation distribution. When ρui = ρ?(u, i),
discovery counts the number of items that a user could be
recommended with better-than-uniform probability in the
best case. Low best-case discovery means that the recom-
mender system inherently limits user access to content.

The item availability Ai is the average likelihood of rec-
ommendation over all users who have item i as a target. It
can be thought of as the chance that a uniformly selected
user will be recommended item i. When ρui = ρ0(u, i), the
baseline availability measures the prevalence of the item in
the recommendations. When ρui = ρ?(u, i), availability
measures the prevalence of an item in the best case. Low
best-case availability means that the recommender system
inherently limits the distribution of a given item.

Observed scores Predicted scores

History edits Future edits

Goal item

User action

Figure 3. User action space: The shade represents the magnitude of
historical (purple) or predicted (green) rating. The action items are
marked with diagonal lines; they can be strategically modified to
maximize the recommendation probability of the goal item (star).
The value of the user action is shaded in blue.

3. Computing Reachability
3.1. Affine Recommendation

In this section, we consider a restricted class of recom-
mender systems for which the max reachability problem can
be efficiently solved via convex optimization.

User action model We suppose that users interact with
the system through expressed preferences, and thus actions
are updates to the vector ru ∈ Rm, a sparse vector of
observed ratings. For each user, the action model is based
on distinguishing between action and immutable items.

Let ΩAu denote the set of action items for which the ratings
can be strategically modified by the user u. Then the action
set Au = R|ΩA

u | corresponds to changing or setting the
value of these ratings. Figure 3 provides an illustration. The
action set should be defined to correspond to the interface
through which a user interacts with the recommender sys-
tem. For example, it could correspond to a display panel of
“previously viewed” or “up next” items.

The updated rating vector r+
u ∈ Rm is equal to ru at the

indices corresponding to immutable items and equal to the
action a at the action items. Note the partition into action
and immutable is distinct from earlier partition of items into
observed and unobserved; action items can be both seen
(history edits) and unseen (future reactions), as illustrated
in Figure 2 (A). For the reachability problem, we will con-
sider a set of target items Ωtu that does not intersect with
the action items ΩAu . Depending on the specifics of the
recommendation setting, we may also require that it does
not intersect with the previously rated items Ωu.

We remark that additional user or item features used for scor-
ing and thus recommendations could be incorporated into
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this framework as either mutable or immutable features. The
only computational difficulty arises when mutable features
are discrete or categorical.

Recommender model The recommender model is com-
posed of a scoring function φ and a selection function π,
which we now specify. We consider affine score update
functions where for each user, scores are determined by an
affine function of the action: s+

u = φu(a) = Bua + cu
where Bu ∈ Rm×|ΩA

u | and cu ∈ Rm are model parameters
determined in part by historical data. Such a scoring model
arises from a variety of preference models, as shown in the
examples in Section 3.3.

We now turn to the selection component of the recommender,
which translates the score su into a probability distribution
over target items. The stochastic policy we consider is:

Definition 1. Soft-max selection
For i ∈ Ωtu, the probability of item selection is given by

P (πβ(su,Ω
t
u) = i) =

eβsui∑
j∈Ωtu

eβsuj
.

This form of stochastic policy samples an item according
to a Boltzmann distribution defined by the predicted scores
(Figure 2C). Distributions of this form are common in ma-
chine learning applications, and are known as Boltzmann
sampling in reinforcement learning or online learning set-
tings (Wei et al., 2017; Cesa-Bianchi et al., 2017).

3.2. Convex Optimization

We now show that under affine score update models and soft-
max selection rules, the maximum stochastic reachability
problem can be solved by an equivalent convex problem.
First notice that for a soft-max selection rule with parameter
β, we have that

log
(
P (πβ(su,Ω

t
u) = i)

)
= βsui − LSE

j∈Ωtu

(βsuj)

where LSE is the log-sum-exp function.

Maximizing stochastic reachability is equivalent to mini-
mizing its negative log-likelihood. Letting bui denote the
ith row of the action matrix Bu and substituting the form of
the score update rule, we have the equivalent optimization
problem:

min
a∈Au

LSE
j∈Ωtu

(
β(b>uja + cuj)

)
− β(b>uia + cui) (4)

If the optimal value to (4) is γ?(u, i), then the optimal value
for (1) is given by ρ?(u, i) = e−γ

?(u,i).

The objective in (4) is convex because log-sum-exp is a con-
vex function, affine functions are convex, and the composi-
tion of a convex and an affine function is convex. Therefore,

whenever the action space Au is convex, so is the optimiza-
tion problem. The size of the decision variable scales with
the dimension of the action, while the objective function
relies on a matrix-vector product of size |Ωtu| × |Au|. Being
able to solve the maximum reachability problem quickly is
of interest, since auditing an entire system requires comput-
ing ρ? for many user and item pairs.

3.3. Examples

In this section we review examples of common preference
models and show how the score updates have an affine form.

Example 1. Matrix factorization models compute scores as
rating predictions so that S = PQ>, where P ∈ Rn×d and
Q ∈ Rm×d are respectively user and item factors for some
latent dimension d. They are learned via the optimization

min
P,Q

∑
u

∑
i∈Ωu

‖p>u qi − rui‖22 .

Under a stochastic gradient descent minimization scheme
with step size α, the one-step update rule for a user factor is

p+
u = pu − α

∑
i∈ΩA

u

(qiq
>
i pu − qirui) ,

Notice that this expression is affine in the action items.
Therefore, we have an affine score function:

φu(a) = Qp+
u = Q

(
pu − αQ>AQApu − αQ>Aa

)
where we define QA = QΩA

u
∈ R|ΩA

u |×d. Therefore,

Bu = −αQQ>A, cu = Q
(
pu − αQ>AQApu

)
.

Example 2. Neighborhood models compute scores as rating
predictions by a weighted average, with:

sui =

∑
j∈Ni wijruj∑
j∈Ni |wij |

where wij are weights representing similarities between
items and Ni is a set of indices of previously rated items in
the neighborhood of item i. Regardless of the details of how
these parameters are computed, the predicted scores are a
linear function of observed scores: su = Wru.

Therefore, the score updates take the form

φu(a) = Wr+
u = Wru︸ ︷︷ ︸

cu

+WEΩA
u︸ ︷︷ ︸

Bu

a

where EΩA
u

selects rows of W corresponding to action
items.

In both examples, the action matrices can be decomposed
into two terms. The first is a term that depends only on



Quantifying Availability and Discovery in Recommender Systems via Stochastic Reachability

the preference model (e.g. item factors Q or weights W ),
while the second is dependent on the user action model (e.g.
action item factors QA or action selector EΩA

u
).

For simplicity of presentation, the examples above leave
out model bias terms, which are common in practice. Incor-
porating these model biases changes only the definition of
the affine term in the score update expression. We include
the full action model derivation with biases in Appendix A,
along with additional examples.

4. Geometry of Reachability
In this section, we explore the connection between stochastic
and deterministic reachability to illustrate how both random-
ness and agency contribute to discovery as defined by the
max reachability metric. We then argue by example that
it is possible to design preference models that guarantee
deterministic reachability, and that doing so does not induce
accuracy trade-offs.

4.1. Connection to Deterministic Recommendation

We now explore how the softmax style selection rule is
a relaxation of top-1 recommendation. For larger values
of β, the selection rule distribution becomes closer to the
deterministic top-1 rule. This also means that the stochastic
reachability problem can be viewed as a relaxation of the
top-1 reachability problem.

In stochastic settings it is relevant to inquire the extent to
which randomness impacts discovery and availability. In
the deterministic setting, the reachability of an item to a
user is closely tied to agency—the ability of a user to influ-
ence their outcomes. The addition of randomness induces
exploration, but not in a way that is controllable by users. In
the following result, we show how this trade-off manifests
in the max reachability metric itself. The proof, as well as
proofs of results to follow, are in Appendix B.

Proposition 1. Consider the stochastic reachability prob-
lem for a β-softmax selection rule as β → ∞. Then if an
item i is top-1 reachable by user u, ρ?(u, i) → 1. In the
opposite case that item i is not top-1 reachable, we have
that ρ?(u, i)→ 0.

This connection yields insight into the relationship between
max reachability, randomness, and agency in stochastic
recommender systems. For items which are top-1 reachable,
larger values of β result in larger ρ?, and in fact the largest
possible max reachability is attained as β →∞, i.e. there
is no randomness. On the other hand, if β is too large,
then items which are not top-1 reachable will have small
ρ?. There is some optimal finite β ≥ 0 that maximizes ρ?

for top-1 unreachable items. Therefore, we see a delicate
balance when it comes to ensuring access with randomness.

Viewed in another light, this result says that for a fixed
β � 1, deterministic top-1 reachability ensures that ρ? will
be close to 1. We explore this perspective in the next section.

4.2. Reachability Without Sacrificing Accuracy

Specializing to affine score update models, we now highlight
how parameters of the preference and action models play
a role in determining max reachability. Building on the
connection to deterministic reachability, we make use of
results about model and action space geometry from Dean
et al. (2020).

Proposition 2. If bui is a vertex on the convex hull of
{buj}j∈Ωtu

and actions are real-valued, then ρ?ui → 1 as
β →∞.

This result highlights how the geometry of the score model
determines when it is preferable for the system to have
minimal exploration, from the perspective of reachability.

We now consider whether relevant geometric properties
of the model are predetermined by the goal of accurate
prediction. Is there a tension between ensuring reachability
and accuracy? We answer in the negative by presenting a
construction for the case of matrix factorization models. Our
result shows that the item and user factors (P and Q) can be
slightly altered such that all items become top-1 reachable
at no loss of predictive accuracy. The construction expands
the latent dimension of the user and item factors by one and
relies on sufficiently rich action items; we make this notion
of richness precise in Appendix B.

Proposition 3. Consider the MF model with user factors
P ∈ Rn×d and item factors Q ∈ Rm×d. Further consider
any user u with a sufficiently rich set of at least d+ 1 action
items and real-valued actions. Then there exist P̃ ∈ Rn×d+1

and Q̃ ∈ Rm×d+1 such that PQ> = P̃ Q̃> and under this
model, ρ?(u, i)→ 1 as β →∞ for all target items i ∈ Ωtu.

The existence of such a construction demonstrates that there
is not an unavoidable trade-off between accuracy and reach-
ability in recommender systems.

5. Audit Demonstration
5.1. Experimental Setup

Datasets We evaluate1 max ρ reachability in settings based
on three popular recommendation datasets: MovieLens 1M
(ML-1M) (Harper & Konstan, 2015), LastFM 360K (Celma,
2010) and MIcrosoft News Dataset (MIND) (Wu et al.,
2020). ML-1M is a dataset of 1 through 5 explicit ratings
of movies, containing over one million recorded ratings; we
do not perform any additional pre-processing. LastFM is

1Reproduction code available at github.com/
modestyachts/stochastic-rec-reachability

github.com/modestyachts/stochastic-rec-reachability
github.com/modestyachts/stochastic-rec-reachability
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Figure 4. Left: Histogram of log max reachability values for
β = [1, 2, 4]. Black dotted line denotes ρ? for uniformly ran-
dom recommender. Center: Histogram of ρ? > 0.05 (red dotted
line). Right: Histogram of log-lifts. Reachability evaluated on
ML-1M for K = 5 Random Future action space and a LibFM
model.

an implicit rating dataset containing the number of times a
user has listened to songs of an artist. We used the version
of the LastFM dataset preprocessed by Shakespeare et al.
(2020). For computational tractability, we select a random
subset of 10% of users and 10% artists and define ratings as
rui = log(#listens(u, i) + 1) to ensure that rating matrices
are well conditioned. MIND is an implicit rating dataset
containing clicks and impressions data. We use a subset of
50K users and 40K news articles spanning 17 categories
and 247 subcategories. We transform news level click data
into subcategory level aggregation and define the rating
associated with a user-subcategory pair as a function of the
number of times that the user clicked on news from that
subcategory: rui = log(#clicks(u, i) + 1). Appendix C.1
contains further details.

Preference models We consider two preference models:
one based on matrix factorization (MF) as well as a neighbor-
hood based model (KNN). We use the LibFM SGD imple-
mentation (Rendle, 2012) for the MF model and use the item-
based k-nearest neighbors model implemented by Krauth
et al. (2020). For each dataset and recommender model we
perform hyper-parameter tuning using a 10%-90% test-train
split. We report test performance in Table 1. See Appendix
C.2 for details about tuning. Prior to performing the audit,
we retrain the recommender models with the full dataset.

Reachability experiments To compute reachability, it is
further necessary to specify additional elements of the rec-
ommendation pipeline: the user action model, the set of
target items, and the soft-max selection parameter.

We consider three types of user action spaces: History Edits,
Future Edits, and Next K in which users can strategically
modify the ratings associated to K randomly chosen items
from their history, K randomly chosen unobserved items,
or the top-K items according to the baseline scores of the
preference model. For each of the action spaces we consider
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Figure 5. Log scale scatterplot of ρ? values against baseline ρ for
K ∈ [5, 10, 20]. Colors indicate action space sizeK. We compare
low (left) and high (right) stochasticity. Reachability evaluated on
ML-1M for Random Future action space and a LibFM model.

a range of K values. We further constrain actions to lie in
an interval corresponding to the rating range, using [1, 5] for
movies and [0, 10] for music and news.

In the case of movies (ML-1M) we consider target items to
be all items that are neither seen nor action items. In the case
of music and news recommendations (LastFM & MIND),
the target items are all the items with the exception of action
items. This reflects an assumption that music created by a
given artist or news within a particular subcategory can be
consumed repeatedly, while movies are viewed once.

For each dataset and recommendation pipeline, we compute
max reachability for soft-max selection rules parametrized
by a range of β values. Due to the computational burden
of large dense matrices, we compute metrics for a subset of
users and target items sampled uniformly at random. For
details about runtime, see Appendix C.3.

5.2. Impact of Recommender Pipeline

We begin by examining the role of recommender pipeline
components: stochasticity of item selection, user action
models, and choice of preference model. All presented
experiments in this section use the ML-1M dataset.

These experiments show that more stochastic recommenda-
tions correspond to higher average max reachability values,
whereas more deterministic recommenders have a more
disparate impact, with a small number of items achieving
higher ρ?. We also see that the impact of the user action
space differs depending on the preference model. For neigh-
borhood based preference models, strategic manipulations
to the history are most effective at maximizing reachabil-
ity, whereas manipulations of the items most likely to be
recommended next are ineffective.

Role of stochasticity We investigate the role of the β pa-
rameter in the item selection policy. Figure 4 illustrates the
relationship between the stochasticity of the selection policy
and max reachability. There are significantly more target
items with better than random reachability for low values of
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Figure 6. The distribution of average lifts (a notion of agency) over
users. Colors indicate different user action spaces for LibFM (left)
and KNN (right) on ML-1M.

β. However, higher values of β yield more items with high
reachability potential (> 5% likelihood of recommenda-
tion). These items are typically items that are top-1 or close
to top-1 reachable. While lower β values provide better
reachability on average and higher β values provide better
reachability at the “top”, higher β uniformly out-performs
lower β values in terms of the lift metric. This suggests that
larger β corresponds to more user agency, since the relative
effect of strategic behavior is larger. However, note that for
very large values of β, high lift values are not so much the
effect of improved reachability as they are due to very low
baseline recommendation probabilities.

Role of user action model We now consider different ac-
tion space sizes. In Figure 5 we plot max reachability for
target items of a particular user over varying levels of selec-
tion rule stochasticity and varying action space sizes. Larger
action spaces correspond to improved item reachability for
all values of β. However, increases in the number of action
items have a more pronounced effect for larger β values.

While increasing the size of the action space uniformly im-
proves reachability, the same cannot be said about the type
of action space. For each user, we compute the average lift
over target items as a metric for user agency in a recom-
mender (Figure 6). For LibFM, the choice of action space
does not strongly impact the average user lift, though Next
K displays more variance across users than the other two.
However, for Item KNN, there is a stark difference between
Next K and and random action spaces.

Role of preference model As Figure 6 illustrates, a system
using LibFM provides more agency on average than one
using KNN. We now consider how this relates to properties
of the preference models. First, consider the fact that for
LibFM, there is higher variance among user-level average
lifts observed for Next K action space compared with ran-
dom action spaces. This can be understood as resulting from
the user-specific nature of Next K recommended items. On
the other hand, random action spaces are user independent,
so it is not surprising that there is less variation across users.

In a neighborhood-based model users have leverage to in-
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Figure 7. Comparison of baseline and best case availability of con-
tent, across four popularity categories for LibFM (left) and KNN
(right) preference models. Reachability evaluated on ML-1M for
Next 10 action space with β = 2.

crease the ρ reachability only for target items in the neigh-
borhood of action items. In the case of KNN, the next items
up for recommendation are in close geometrical proximity
to each other. This limits the opportunity for discovery of
more distant items for Next K action space. On the other
hand, the action items are more uniformly over space of
item ratings in random action models, thus contributing to
much higher opportunities for discovery. Additionally, we
see that History Edits displays higher average lift values
than Future Edits. We posit that this is due to the fact that
editing K items from the history leads to a larger ratio of
strategic to non-strategic items.

5.3. Bias in Movie, Music, and News Recommendation

We futher compare aggregated stochastic reachability
against properties of user and items to investigate bias. We
aggregate baseline and max reachability to compute user-
level metrics of discovery and item-level metrics of avail-
ability. The audit demonstrates popularity bias for items
with respect to baseline availability. This bias persists in the
best case for neighborhood based recommenders and is thus
unavoidable, whereas it could be mitigated for MF recom-
menders. User discovery aggregation reveals inconclusive
results with weak correlations between the length of users’
experience and their ability to access content.

Popularity bias In Figure 7, we plot the baseline and best
case item availability (as in (3)) to investigate popularity
bias. We consider popularity defined by the average rating
of an item in a dataset. Another possible definition of popu-
larity is rating frequency, but for this definition we did not
observe any discernable bias. For both LibFM and KNN
models, the baseline availability displays a correlation with
item popularity, with Spearman’s rank-order correlations of
rs = 0.87 and rs = 0.95. This suggests that as recommen-
dations are made and consumed, more popular items will be
recommended at disproportionate rates.

Furthermore, the best case availability for KNN displays a
similar trend (rs = 0.94), indicating that the propagation of
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Figure 8. Comparison of baseline and best case availability of con-
tent for four popularity categories for LastFM (left) and MIND
(right) with Next 10 actions, LibFM model, and β = 2.

popularity bias can occur independent of user behavior. This
does not hold for LibFM, where the best case availability
is less clearly correlated with popularity (rs = 0.57). The
lack of correlation for best case availability holds in the ad-
ditional settings of music artist and news recommendation
with the LibFM model (Figure 8). Our audit does not re-
veal an unavoidable systemic bias for LibFM recommender,
meaning that any biases observed in deployment are due in
part to user behaviour. In contrast, we see a systematic bias
for the KNN recommender, meaning that regardless of user
actions, the popularity bias will propagate.

Experience bias To consider the opportunities for discov-
ery provided to users, we perform user level aggregations of
max reachability values as in (3). We investigate experience
bias by considering how the discovery metric changes as
a function of the number of different items a user has con-
sumed so far, i.e. their experience. Figure 9 illustrates that
experience is weakly correlated with baseline discovery for
movie recommendation (rs = 0.48), but not so much for
news recommendation (rs = 0.05). The best case discovery
is much higher, meaning that users have the opportunity
to discover many of their target items. However, the weak
correlation with experience remains for best case discovery
of movies (rs = 0.53).

6. Discussion
In this paper, we generalize reachability as first defined
by (Dean et al., 2020) to incorporate stochastic recommenda-
tion policies. We show that for linear preference models and
soft-max item selection rules, max reachability can be com-
puted via a convex program for a range of user action models.
Due to this computational efficiency, reachability analysis
can be used to audit recommendation algorithms. Our ex-
periments illustrate the impact of system design choices
and historical data on the availability of content and users’
opportunities for discovery, highlighting instances in which
popularity bias is inevitable regardless of user behavior.

The reachability metric provides an upper bound for dis-
covery and availability within a recommendation system.
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Figure 9. Comparison of baseline and best case fraction of items
with better than random ρ?, grouped across four levels of user
history length. Reachability evaluated on ML-1M (left) and MIND
(right) for Next 10 action space, β = 2, and LibFM model.

While it has the benefit of making minimal assumptions
about user behavior, the drawback is that it allows for per-
fectly strategic behaviors that would require users to have
full knowledge of the internal structure of the model. The
results of a reachability audit may not be reflective of proba-
ble user experience, and thus reachability acts as a necessary
but not sufficient condition. Nonetheless, reachability audit
can lead to actionable insights by identifying inherent limits
in system design. They allow system designers to assess
potential biases before releasing algorithmic updates into
production. Moreover, as reachability depends on the choice
of action space, such system-level insights might motivate
user interface design: for example, a sidebar encouraging
users to re-rate K items from their history.

We point to a few directions of interest for future work.
Our result on the lack of trade-off between accuracy and
reachability is encouraging. Minimum one-step reachability
conditions could be efficiently incorporated into learning al-
gorithms for preference models. It would also be interesting
to extend reachability analysis to multiple interactions and
longer time horizons.

Lastly, we highlight that the reachability lens presents a
contrasting view to the popular line of work on robustness
in machine learning. When human behaviors are the subject
of classification and prediction, building “robustness” into
a system may be at odds with ensuring agency. Because
the goal of recommendation is personalization more than
generalization, it would be appropriate to consider robust
access over robust accuracy. This calls for questioning the
current normative stance and critically examining system
desiderata in light of usage context.
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