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Abstract
PCA WITH OUTLIERS is the fundamental prob-
lem of identifying an underlying low-dimensional
subspace in a data set corrupted with outliers. A
large body of work is devoted to the information-
theoretic aspects of this problem. However, from
the computational perspective, its complexity is
still not well-understood. We study this problem
from the perspective of parameterized complex-
ity by investigating how parameters like the di-
mension of the data, the subspace dimension, the
number of outliers and their structure, and ap-
proximation error, influence the computational
complexity of the problem. Our algorithmic meth-
ods are based on techniques of randomized linear
algebra and algebraic geometry.

1. Introduction
Problem statement. We study a fundamental problem in
unsupervised machine learning called PCA WITH OUT-
LIERS: given a set of n points in Rd with (unknown)
k outliers, the problem is to identify the outliers so that
the remaining set of points fits best into an unknown r-
dimensional subspace. Without outliers, this is the classical
principal component analysis (PCA), one of the most pop-
ular approaches of reducing the dimensionality of the data
(Pearson, 1901; Hotelling, 1933; Eckart & Young, 1936).
PCA is often formulated as the problem of finding the best
low-rank approximation for a data matrix A by solving

minimize ‖A− L‖2F
subject to rank(L) ≤ r.

Here ||A||2F =
∑
i,j a

2
ij is the squared Frobenius norm of

the matrix A. By the Eckart-Young theorem, see (Eckart &
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Young, 1936), PCA is efficiently solvable via Singular Value
Decomposition (SVD). PCA is used as a preprocessing
step in a great variety of modern applications including
face recognition, data classification, and analysis of social
networks.

However, PCA is very sensitive to outliers, and the presence
of even a small number of outliers can lead to misleading
conclusions, see (Croux & Haesbroeck, 2000). Outliers
detection and PCA with robustness to outliers are the fun-
damental topics in Machine Learning and Robust Statistics.
Chapter 3.3 of (Vidal et al., 2016) is a nice introduction to
basic approaches to this problem. The handbook of (Bouw-
mans et al., 2016) on Robust Low-Rank decomposition
provides a thorough overview of different variants and appli-
cations of robust PCA. PCA with outliers is strongly related
to another well-studied problem, namely ROBUST SUB-
SPACE RECOVERY. Here the task is to identify a subspace
that contains a large portion of data points. See the survey
of (Lerman & Maunu, 2018) for an overview of ROBUST
SUBSPACE RECOVERY.

In this paper, we study the mathematical model for PCA
with outliers proposed in (Wright et al., 2009; Xu et al.,
2010; Chen et al., 2011; Simonov et al., 2019). We do not
make any assumptions on the distribution of outliers, and
the model covers the worst-case scenarios of adversarial
outliers.

Input: Data matrix A ∈ Rn×d and r, k ∈ N.
Task:

minimize ‖A− L−N‖2F
subject to L,N ∈ Rn×d, rank(L) ≤ r,

and N has at most
k non-zero rows.

PCA WITH OUTLIERS

PCA WITH OUTLIERS has a natural geometric interpreta-
tion. Given n points in Rd, represented by the rows of A, we
seek for a set of k outliers, represented by the non-zero rows
of N, whose removal from A leaves the remaining n − k
inliers as close as possible to an r-dimensional subspace.
The matrix L contains then the orthogonal projections of
the inliers onto this subspace.
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(Simonov et al., 2019) proved a lower bound which (assum-
ing ETH1) rules out any constant-factor approximation of
PCA WITH OUTLIERS in time f(d) ·no(d), for any function
f of d. They also gave an algorithm solving PCA WITH
OUTLIERS in time roughly nO(r·d). This is the point of de-
parture for our work. Running time nO(r·d) of the algorithm
of Simonov et al. is polynomial only when the input dimen-
sion d is a constant. However, in many PCA applications,
the input dimension d is very large, and it is desirable to
have algorithms that run in polynomial time when the target
dimension r, that is, the dimension of the best-fit subspace,
is small. Taking into account the computational lower bound
from (Simonov et al., 2019), the existence of a polynomial-
time algorithm for PCA WITH OUTLIERS is highly unlikely.
However, this lower bound does not rule out existence of
algorithms that run in polynomial time for small values of r.
These are exactly the algorithms we seek in this paper and
our work is driven by the following question: Whether it is
possible to solve PCA WITH OUTLIERS in polynomial time
for small values of r?

We address this question by making use of parameterized
complexity. We refer to the book of (Cygan et al., 2015) for
an introduction. The main idea of parameterized complexity
is to measure the success of the algorithm in terms of both
input size as well as one or several parameters that capture
the structural properties of the instance. According to Tim
Roughgarden (Roughgarden, 2020), the worst-case analysis
takes a ”Murphy’s Law” approach to algorithm analysis.
However, it is never the case that the input size is the only
aspect of the input instance that affects the running time of
an algorithm. For this reason, the running time estimates
from a worst-case analysis are overly pessimistic. Our work
sheds some light on the influence of parameters like the
dimension of the data, the subspace dimension, the number
of outliers and their structure, and approximation error, on
the computational complexity of the problem.

Our results. We provide several algorithms for PCA WITH
OUTLIERS that work in polynomial time for small values of
r. Our first algorithmic result shows that if we allow a small
approximation, then the problem is solvable in polynomial
time when r is a constant.

Theorem 1.1. For every ε > 0, an (1 + ε)-approximate
solution to PCA WITH OUTLIERS can be found in time
nO( r log r

ε2
) · dO(1).

In other words, PCA WITH OUTLIERS admits a randomized
Polynomial Time Approximation Scheme (PTAS) when the
dimension r of the solution subspace is a fixed constant.
According to (Simonov et al., 2019), unless ETH fails, PCA
WITH OUTLIERS does not admit a constant-factor approxi-

1ETH of Impagliazzo, Paturi, and Zane (Impagliazzo et al.,
2001) is that 3-SAT with n-variables is not solvable in time 2o(n).

mation in time f(d) · no(d), for any function f of d. Since
r ≤ d, up to the log r factor in the exponent of n, the
running time of our PTAS is tight.

We also provide algorithms for solving PCA WITH OUT-
LIERS exactly. While the nature of outliers can be elusive,
we make two assumptions on outliers. Both assumptions
try to capture the property that outlier points are further
from the best-fit subspace than inlier points. It appears that
these assumptions can be very useful from the algorithmic
perspective. The intuition behind the first assumption is that
every outlier is further from an optimal solution than any
inlier. The second assumption is stronger, it assumes that the
squared distance from any outlier to the solution subspace
is larger than the sum of all inliers’ squared distances to the
subspace.

Definition 1.1 (α-gap and α-heavy assumptions). For
α > 0, the α-gap assumption about instance (A, r, k) of
PCA WITH OUTLIERS is that there is an optimal solution
(L,N) with the following properties. Let O be the indices
of outliers, that is the indices of non-zero rows of N, and let
I = [n] \O be the indices of inliers. Then for every i ∈ O
and j ∈ I ,

dist2(ai:,V
∗) > (1 + α) · dist2(aj:,V

∗),

where V∗ is the r-dimensional subspace which spans the
rows of L and ai: denotes the i-th row of A. Similarly, the
α-heavy assumption about (A, r, k) is that for every i ∈ O,

dist2(ai:,V
∗) > (1 + α)

∑
j∈I

dist2(aj:,V
∗)

Note that α-gap and α-heavy assumptions capture a very
wide class of instances of PCA WITH OUTLIERS, as they
do not require any particular structure on the outliers, only
that the outliers are farther from the optimal subspace by at
least some small factor compared to the inliers. In particular,
ROBUST SUBSPACE RECOVERY, an extremely well-studied
problem in Robust Statistics (see (Lerman & Maunu, 2018)
for further references), satisfies these assumptions. Let us
remind, that the input to ROBUST SUBSPACE RECOVERY
is an instance (A, r, k) of PCA WITH OUTLIERS, and the
task is to decide whether there exist matrices L and N such
that A = L + N, the rank of L is at most r, and N has at
most k non-zero rows. In ROBUST SUBSPACE RECOVERY
all inliers lie in V∗ and thus satisfy both α-gap and α-heavy
assumptions. Thus both “α-assumptions” create interesting
parameterized classes of problems “between” PCA WITH
OUTLIERS (most pessimistic perspective with the worst
assumptions on the outliers) and ROBUST SUBSPACE RE-
COVERY (an optimistic perspective where all inliers belong
to a subspace and all outliers do not).

As another example, consider the popular model where the
inliers and the outliers are coming from a low-dimensional
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space plus some noise, and the noise of the outliers has
heavy tail behavior. (See, e.g. distributional models in the
line of work on Robust Probabilistic Principal Component
Analysis starting with (Archambeau et al., 2006).) In such a
scenario one can provably show that our assumptions will
hold with good probability in the setting where d is large
compared to r, and that the probability will improve with
increasing d. In a way, the curse of dimensionality thus
favors our assumptions.

For each of the α-assumptions, we provide an exact al-
gorithm solving the corresponding version of PCA WITH
OUTLIERS. The formal statement is given in Theorems 1.2
and 1.3 next.
Theorem 1.2. For constant α, there exists a randomized
algorithm for PCA WITH OUTLIERS that in time

2O(r(log k+log logn)(r+logn+log(1/δ)))(n+ d)O(1)

outputs a correct solution with success probability 1 − δ
under the α-gap assumption.
Theorem 1.3. For constant α, there exists a randomized
algorithm for PCA WITH OUTLIERS that in time

2O(r2(log k+log logn)(log k+log logn+log(1/δ)))(n+ d)O(1)

outputs a correct solution with success probability 1 − δ
under the α-heavy assumption.

Observe that Theorem 1.3 provides a better running time
than Theorem 1.2. In particular, it implies a fixed-parameter
tractable (FPT) algorithm for PCA WITH OUTLIERS when
the parameters are k, r, and the probability δ. That is,
the running time is of the form f(r, k, δ) · poly(n, d) for a
certain function f . However, the assumption of Theorem 1.3
is stronger.

The proofs of both theorems are based on the following strat-
egy: apply randomized dimensionality reduction (sketch-
ing), and then use the methods of algebraic geometry to
compute the exact solution. The difficulty is that in general,
the dimensionality reduction distorts distances between the
points. And at first thought such methods are not useful for
obtaining exact solutions. The main technical contribution
here is the proof that under α-gap and α-heavy assump-
tions, carefully designed sketches still can be used to obtain
exact solutions. We believe that such sketches could find
applications beyond robust PCA problems.

Finally, we prove two results about ROBUST SUBSPACE RE-
COVERY, the “simplest” variant of PCA WITH OUTLIERS.
First, Theorem 1.4 gives an FPT algorithm with parameters
k and r. Comparing with Theorems 1.3 and Theorem 1.2,
the algorithm in Theorem 1.4 is faster for small values of k,
and is deterministic.
Theorem 1.4. ROBUST SUBSPACE RECOVERY is solvable
in time 2O(k(log r+log k))nO(1).

Second, we give the following hardness result. This is a
conditional lower bound subject to the Exponential Time
Hypothesis (ETH).

Theorem 1.5. There is no algorithm solving ROBUST SUB-
SPACE RECOVERY in time f(d) · no(d) for any computable
function f of d, unless ETH fails.

In other words, it is hard even to verify if A could be rep-
resented as the sum of a low-rank matrix and an outlier
matrix, without any error. From here, it easily follows that
under the same assumption there is no algorithm for the
general problem PCA WITH OUTLIERS giving any mul-
tiplicative approximation guarantee in time f(d) · no(d).
This significantly extends the hardness result of (Simonov
et al., 2019) which rules out only a constant-factor approx-
imation. Also, since α-assumptions generalize the case of
ROBUST SUBSPACE RECOVERY, the same hardness im-
mediately holds for PCA WITH OUTLIERS with α-gap or
α-heavy assumption. Observe that the running times in The-
orems 1.2, 1.3 approach the lower bound of Theorem 1.5, in
the following sense. By Theorem 1.5, at least the factor of
O(r log k) is required in the exponent, as, up to ETH, there
is no f(r) · ko(r)-time algorithm, since r ≤ d and k ≤ n.
Due to the page limit, we defer the proofs of Theorem 1.4
and Theorem 1.5 to the supplementary material.

Related work. There is a vast amount of literature about
robust PCA problems, see (Vaswani & Narayanamurthy,
2018; Xu et al., 2010; Bouwmans et al., 2016; Huber, 2004)
for further references. There are two basic approaches to
PCA with outliers in the literature. One is the develop-
ment of information-theoretically optimal robust estimators,
the fundamental issue of the robust statistics pioneered by
Tukey and Huber in the 1960s, see (Huber, 2004; Tukey,
1977). For example, the famous least median of squares
estimator of (Rousseeuw, 1984) for regression works even
when half of the observations are outliers. Computationally
the question of finding this estimator boils down to the prob-
lem of finding a d-dimensional subspace that minimizes
the median Euclidean distance to the observation points.
Only modest improvements over brute-force search trying
all possible d-dimensional subspaces are known for resolv-
ing this question, see (Edelsbrunner & Souvaine, 1990). The
second approach is to identify outliers by convex optimiza-
tion. This approach, popularized by (Candès et al., 2011),
(Wright et al., 2009), and (Chandrasekaran et al., 2011),
has been centered around proving that, under some feasi-
bility assumptions on the input, a convex relaxation of the
initial optimization problem can recover the low-rank ma-
trix. We refer to (Wright et al., 2009; Xu et al., 2010; Chen
et al., 2011), and Chapter 3.3.2 in (Vidal et al., 2016) for
further information on this approach. ROBUST SUBSPACE
RECOVERY is also an extremely well-studied problem. For
an overview of approaches based on convex and non-convex
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optimization methods, see (Maunu et al., 2019; Lerman &
Maunu, 2018; Maunu & Lerman, 2019).

Much less is known about general-case algorithms with
guaranteed performance for PCA WITH OUTLIERS and
ROBUST SUBSPACE RECOVERY. For PCA WITH OUT-
LIERS, (Bhaskara & Kumar, 2018) provide two (1 + ε)-
approximation bicriteria algorithms. While the cost of their
solution is preserved within (1+ε) factor, the number of out-
liers k and the dimension of the subspace r in the solution
are also approximated. Our Theorem 1.1 approximates only
the cost of the solution. (Deshpande & Pratap, 2020) gave
another (1+ε)-approximation for PCA WITH OUTLIERS in
a more general `p-norm approximation. However, their al-
gorithm works under the assumption that the `p error of the
optimal subspace summed over the optimal inliers is at least
δ times its total `p error summed over all n points, for some
δ > 0. In comparison, our Theorem 1.1 does not make any
assumptions on the properties of the input, and the α-heavy
and α-gap assumptions used in Theorems 1.2 and 1.3 are
in a sense opposite to the assumption above: our assump-
tions hold in the case where outliers are sufficiently far from
the optimal subspace, while for the result of (Deshpande &
Pratap, 2020) the outliers must be sufficiently close.

The works of (Bhaskara & Kumar, 2018) and (Deshpande &
Pratap, 2020) introduce some assumptions on the input struc-
ture and exploit these assumptions algorithmically. Com-
paring our α-gap and α-heavy assumptions with the rank-k
condition number of (Bhaskara & Kumar, 2018), as well
as the condition considered in (Deshpande & Pratap, 2020),
our results are in a sense orthogonal to that. The rank-k
condition number is small when the inliers are sufficiently
far from the optimal low-dimensional subspace, while our
α-gap and α-heavy assumptions hold in the opposite case,
when the inliers are sufficiently close to the target subspace.
In particular, α-gap and α-heavy assumptions cover the RO-
BUST SUBSPACE RECOVERY problem, while the rank-k
condition and assumptions of (Deshpande & Pratap, 2020)
do not.

(Hardt & Moitra, 2013) provides a polynomial time ROBUST
SUBSPACE RECOVERY algorithm that works correctly when
the number of inliers is at least rdn and inliers satisfy some
linear independence property. Theorem 1.4 does not make
any assumptions on the structure of inliers.

(Simonov et al., 2019) gave an algorithm that solves PCA
WITH OUTLIERS in time roughly nO(r·d). Their algorithm
is based on the methods of algebraic geometry. Theo-
rems 1.2 and 1.3 provide much better running times, how-
ever the algorithms of (Simonov et al., 2019) does not re-
quire any assumptions on the properties of outliers. The
proofs of Theorems 1.2 and 1.3 are based on a non-trivial
adaptation of the technique introduced in (Simonov et al.,
2019).

When it comes to lower bounds, Khachiyan in (Khachiyan,
1995) proved that it is NP-hard to find a (d−1)-dimensional
subspace that contains at least (1 − ε)(1 − 1/d)n points.
(Hardt & Moitra, 2013) used the Small Set Expansion con-
jecture (SSE) to show that for ROBUST SUBSPACE RE-
COVERY, even if one allows to select (1 + δ)k outliers, for
some δ > 0, it is still unlikely that a polynomial time algo-
rithm can find a c · r-dimensional subspace containing all
remaining n− (1 + δ)k points for any c > 0. (Bhaskara &
Kumar, 2018) used the smallest edge r-subgraph conjecture
to show that, there is exists a constant c > 0, such that
no polynomial time algorithm can find an rnc-dimensional
subspace that results in a multiplicative approximation to
the objective cost. By using the hardness of the rank reduc-
tion problem for matroids, see Proposition 8.1 in (Fomin
et al., 2018a), it is possible to show that ROBUST SUBSPACE
RECOVERY is W[1]-hard parameterized by k. The lower
bound of Theorem 1.5 is incomparable with these results.

(Simonov et al., 2019) proved a lower bound which (assum-
ing ETH) rules out any constant-factor approximation of
PCA WITH OUTLIERS in time f(d) ·no(d), for any function
f of d. Theorem 1.5 provides a stronger statement, it rules
out any approximation for PCA WITH OUTLIERS within the
same running time bound. Also, we believe our reduction
is considerably simpler, and that it shows the connection
between identifying subgraphs and identifying low-rank
subsets more clearly.

2. Preliminaries
For a positive integer n, we use [n] to denote the set
{1, . . . , n}. We use bold lowercase, e.g. x = [xi], to denote
a vector and bold uppercase, e.g. A = [aij ], to denote a
matrix. All our vectors are column vectors. The i-th row
and the j-th column of A are denoted by ai: and a:j respec-
tively. For A ∈ Rn×d1 and B ∈ Rn×d2 , [A|B] denotes
the column-wise matrix concatenation of A and B. The
column and row spaces of a matrix are denoted by col(A)
and row(A) respectively. For a matrix A ∈ Rn×d and an
r-dimensional linear subspace U of Rd whose basis is given
by rows of U ∈ Rr×d, let dist2(A,U) (and dist2(A,U))
represent sum of squares of `2-distances of rows of A
from U which is equal to minX∈Rn×r ‖A−XU‖2F . For
non-negative real numbers a and b, we use the notation
a = (1± ε)b if a ∈ [(1− ε)b, (1 + ε)b].

Subspace and affine embeddings. In our result we use
dimensionality reduction tools from randomized numerical
linear algebra literature. We refer the reader to the surveys
of (Woodruff, 2014) and (Mahoney et al., 2011) for an
overview of this area.

Definition 2.1 (ε-embedding). Given a subset W ⊂ Rd
and ε ∈ (0, 1), an ε-embedding is a matrix S ∈ Rd×s for
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some s ≥ 0 such that for all x ∈ W , we have∥∥xTS
∥∥2
2

= (1± ε) ‖x‖22 .

When W is a linear subspace we call S an ε-subspace
embedding.

Essentially, an ε-embedding S is a linear transform, with
small s << d, providing an approximate isometry over the
embedded space W ⊂ Rd. In our work we will require
embeddings for subspaces. To the best of our knowledge,
the first usage of the notion of subspace embedding in nu-
merical linear algebra was done in (Sarlos, 2006) and since
then they have emerged as a powerful tool for accelerat-
ing various statistical learning procedure like `p-regression,
low-rank approximation, and PCA. The theorem of (Indyk
& Motwani, 1998) below provides the bound on embedding
dimension s of a normal transform for it to be a subspace
embedding.

Theorem 2.1 (Normal Transform (Indyk & Motwani,
1998)). Let 0 < ε, δ < 1 and S = 1√

s
G ∈ Rd×s where

the entries of matrix G are independent standard normal
random variables. Then if s = Θ((r+ log(1/δ))ε−2), then
for any fixed r-dimensional linear subspace U ⊂ Rd, with
probability at least 1− δ, S is an ε-subspace embedding.

The following theorem, observed by (Sarlos, 2006), is an
immediate application of `2-subspace embedding to `2-
regression problem which says that the solution to embed-
ded `2-regression problem provides a good approximate
solution to the original regression problem. For complete-
ness, we give the proof in the supplementary.

Theorem 2.2 ((Sarlos, 2006)). Given a matrix V ∈ Rr×d
and a ∈ Rd, we have

(1− ε) dist2(aT,V) ≤ dist2(aTS,VS)

≤ (1 + ε) dist2(aT,V).

where S ∈ Rd×s is an ε-subspace embedding for subspace
spanned by row(V) and a.

Next, we recall the concept of affine embeddings from
(Clarkson & Woodruff, 2013).

Definition 2.2. Let U ∈ Rn×r and B ∈ Rn×d′ , then S ∈
Rs×n is an ε-affine embedding for (U,B) if for every X ∈
Rr×d′ , we have

‖S(UX−B)‖22 = (1± ε) ‖UX−B‖22 .

(Clarkson & Woodruff, 2013) introduce several oblivious
(data independent) constructions for affine embeddings like
sparse embedding matrices, fast JL matrices, etc. These con-
structions vary in dimension they embed into, dependence
of embedding dimension on the failure probability, and time

it takes to apply them. For our results, we would need an
oblivious construction with embedding dimension as small
as possible and log( 1

δ ) dependence on the failure probability
δ. The embedding dimension in various constructions of
(Clarkson & Woodruff, 2013) are optimized while keeping
the time taken to apply them small and with only 1

δ depen-
dence on the failure probability. For our purposes, the time
taken to apply the sketch is not the bottleneck and thus we
show the following theorem, which gives the optimal depen-
dence on the embedding dimension. For the proof, see the
supplementary.

Theorem 2.3. Let 0 < ε, δ < 1 and S = 1√
s
G ∈ Rs×n,

where the entries of matrix G are independent standard
normal random variables. If s = O(r log(1/δ)ε−2), then
for every fixed U ⊂ Rn×r, with probability at least 1− δ,
S is an ε-affine embedding for U.

Sampling points from algebraic sets As a subroutine in
our algorithms we use the fundamental results from alge-
braic geometry about sampling points from algebraic sets.
See the book of (Basu et al., 2006) for further reference on
the algorithmic algebraic geometry.

We denote the ring of polynomials in variables X1, . . . , Xd

with coefficients in R by R[X1, . . . , Xd]. By saying that an
algebraic set V in Rd is defined by Q ∈ R[X1, . . . , Xd], we
mean that V = {x ∈ Rd|Q(x1, . . . , xd) = 0}. For a set
of s polynomials P = {P1, . . . , Ps} ⊂ R[X1, . . . , Xd],
a sign condition at point x ∈ V is defined as σPx =
(sign(P1(x)), . . . , sign(Ps(x))). An important question in
real algebraic geometry is to compute a set of points real-
izing every possible sign condition as one ranges over V .
The following theorem from (Basu et al., 2006) gives an
algorithm to find such a set.

Proposition 2.4 ((Basu et al., 2006), Theorem 13.22). Let
V be an algebraic set in Rd defined byQ(X1, . . . , Xd) = 0,
where Q is a polynomial in R[X1, . . . , Xd] of degree at
most b, and let P ⊂ R[X1, . . . , Xd] be a finite set of s
polynomials with each P ∈ P also of degree at most b.
Let D be a ring generated by the coefficients of Q and the
polynomials in P . There is an algorithm which takes as
input Q, d and P and computes a set of points realizing
every possible sign condition in V over P . The algorithm
uses at most (sb)O(d) arithmetic operations in D.

On the practical side, we note that a number of routines from
(Basu et al., 2006) is implemented in the SARAG library
(Caruso, 2006).

3. Approximation Scheme for PCA WITH
OUTLIERS

We now outline the nO(r log rε−2) time algorithm for solving
the generic case of PCA WITH OUTLIERS with (1 + ε)-
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factor approximation, as claimed by Theorem 1.1. The
general idea is to observe that the unknown rows of A that
form the inlier submatrix can be well approximated by a
small-sized sample of them, in terms of low-rank approx-
imation. This follows from established results saying that
one can obtain a subspace embedding for a matrix by sam-
pling and reweighting a few of its rows in proportion to a
certain modification of their leverage scores. In particular,
we employ the result of (Cohen et al., 2017) stating that
samplingO(r log rε−2) rows in accordance with their ridge
leverage scores provides a (1 + ε) approximation for any
rank-r orthogonal projection.

The challenge here is that we do not know the actual inlier
matrix to compute the scores and to perform the sampling
from, as an arbitrary set of k rows of the given matrix might
be outliers. However, we can guess the particular rows from
a successful sample and also guess the approximated ridge
leverage scores so that the optimal low-rank approximation
of the resulting small matrix will also approximate well the
unknown inlier matrix. Here we use crucially that constant-
factor overestimates of the ridge leverage scores still suffice
for the result of (Cohen et al., 2017). After this, it is only a
matter of greedily selecting the rows of A that are the closest
to the computed low-dimensional approximation space. The
above summarizes the intuition behind Theorem 1.1, for
the detailed proof we refer the reader to the supplementary
material.

4. α-heavy and α-gap PCA WITH OUTLIERS

In this section we present Theorems 1.2 and 1.3, their
proofs are done in two steps. First, we show an
2O(log k+log logn)rd poly(n, d, 1/δ) subspace-sampling al-
gorithm for α-gap and α-heavy instances of PCA WITH
OUTLIERS that succeeds with probability 1 − δ, building
upon the nO(rd) algorithm from (Simonov et al., 2019). Sec-
ond, we get rid of the exponential dependence on d by using
dimensionality reduction techniques.

4.1. Subspace-sampling Algorithm

We start with briefly recalling the idea of the algorithm
from (Simonov et al., 2019). One can parameterize the
unknown r-dimensional subspace by r × d variables, and
then for every pair of points construct a polynomial in these
variables such that its sign determines the farthest point
from a subspace. Thus the signs of all the

(
n
2

)
polynomials

determine exactly which k points are the farthest from the
subspace, and so are the outliers. By enumerating all possi-
ble sign conditions via Proposition 2.4 in time nO(rd), they
get all potential sets of outliers.

The main idea for our algorithm is as follows. We show
that it is possible to replace the trivial

(
n
2

)
-sized polynomial

system by a much smaller one that still allows to detect
the outliers, provided that either the α-gap or the α-heavy
assumption holds. Intuitively, we first partition the points
intom = Θ(k) buckets such that there is at most one outlier
in each bucket w.h.p. Then, we compose

(
m
2

)
polynomials

to determine the k buckets containing the outliers, and for
each bucket we also construct log n polynomials to detect
the outlier in the bucket. Thus, our system contains only
poly(k log n) polynomials, providing the desired running
time.

Now we give the proof in full detail. The algorithm, later
denoted as Subspace-sampling algorithm, proceeds as fol-
lows:

1. Partition the rows of A (the points) into m buckets
using perfect hashing. Let B1, B2,...,Bm ⊂ [n] be the
indices of points in each bucket.

2. For each bucket Bi, i ∈ [m], construct the set of poly-
nomials Pi = {P ji }1≤j≤log2 n,

P ji (V) =
∑
`∈Bi
`j=1

(dist2(aT`: ,V))b −
∑
`∈Bi
`j=0

(dist2(aT`: ,V))b

where `j is the j-th bit in the binary representation
of ` and b = Θ( logn

log(1+α) ) for α-gap instances and
b = 1 for α-heavy instances. Note that V can be
parameterized by r × d variables such that for each
` ∈ [n], dist2(aT`: ,V) can be expressed as a constant-
degree polynomial in these variables. See (Simonov
et al., 2019) for details.

3. Also consider the set of polynomials Q =
{Qi,j}1≤i<j≤m, where

Qi,j(V) =
∑
`∈Bi

(dist2(aT`: ,V))b−
∑
`∈Bj

(dist2(aT`: ,V))b

and let P be the collection of all the polynomials de-
fined above, i.e., P =

⋃
i Pi ∪Q.

4. Using Proposition 2.4, enumerate all possible sign con-
ditions of P on X , the space of all r-dimensional sub-
spaces, i.e. compute the set T = Sample(A, r, k)
where

Sample(A, r, k) = {(S,VS)|S is a sign condition of
P on X and VS realizes S}

5. For each (S,VS) ∈ T , do the following:

(a) Note that the signs of Q give an ordering on [m].
Take the top k indices from this ordering and let
w.l.o.g. this set be [k].
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(b) For each Bi, i ∈ [k], choose p ∈ Bi such that pj
is set to 1 if P ji (VS) > 0 and 0 otherwise. This
gives us k rows of A, one from each bucket, let
N ∈ Rn×d be the matrix containing these k rows
at their respective positions in A.

(c) Find the optimal r-dimensional projection L of
A−N via the vanilla PCA algorithm.

6. Return N and L from step 5 with the minimum cost of
projection.

Running time. The sampling step 4 dominates the run-
ning time. Since |P| = m log n +

(
m
2

)
= O(k log n +

k2) and the degree of all the polynomials involved in
P is bounded by O( logn

log(1+α) ), Proposition 2.4 gives the

time 2O(log k+log logn−log log(1+α))rd, and this bound also
holds for the size of T . Also in step 1, in time O(n/δ)
one can construct a perfect hash function with success
probability 1 − δ. All the other steps of the algo-
rithm take poly(n, d) time. So the total running time is
2O(log k+log logn−log log(1+α))rd poly(n, d, 1/δ).

Correctness of the algorithm. Assume that in the optimal
solution the outlier matrix is N∗, and the low-rank matrix is
L∗. Denote by V∗ the r-dimensional subspace correspond-
ing to L∗. The following claim shows that the sign condition
corresponding to V∗ allows the algorithm to restore N∗.
Claim 1. In step 5 of the algorithm, with high probability,
the outlier matrix N generated on the sign condition S∗

which comes from evaluating P on V∗ is equal to N∗.

Proof. Getting buckets with outliers, Step 5(a): Note that
in Step 1 of the algorithm we map points to O(k) buckets
in order to ensure that each bucket has at most one outlier.
So some buckets will end up having no outliers at all. We
show that in step 5(a) of the algorithm for the sign condition
S∗ we correctly find the k buckets containing outlier points.
Specifically, for a bucket Bi with an outlier point p and a
bucket Bj with no outliers we show that Qi,j(V∗) > 0. For
α-gap instances we have

Qi,j(V
∗) =

∑
`∈Bi

(dist2(aT`: ,V
∗))b −

∑
`∈Bj

(dist2(aT`: ,V
∗))b

≥ (dist2(aTp:,V
∗))b − nmax

`∈I
(dist2(aT`: ,V

∗))b

≥ ((1 + α)b − n) max
`∈I

(dist2(aT`: ,V
∗))b > 0.

Similarly, for α-heavy instances we have

Qi,j(V
∗) =

∑
`∈Bi

dist2(aT`: ,V
∗)−

∑
`∈Bj

dist2(aT`: ,V
∗)

≥ dist2(aTp:,V
∗)−

∑
`∈I

dist2(aT`: ,V
∗)

≥ α
∑
`∈I

dist2(aT`: ,V
∗) > 0.

Therefore, taking the top k buckets by the ordering induced
by the signs of Q(V∗) will give us precisely the k buckets
containing the outlier points. WLOG, let B1, B2, ..., Bk be
those buckets, later referred to as the outlier buckets.

Extracting outliers from the outlier buckets, Step 5(b):
Fix an i ∈ [k], denote the sole outlier point in the bucket
Bi by p. We show that for each j ∈ [log n], pj = 1 iff
P ji (V∗) > 0 and pj = 0 iff P ji (V∗) < 0. For α-gap
instances, if pj = 1 then we have

P ji (V) =
∑
`∈Bi
`j=1

(dist2(aT`: ,V))b −
∑
`∈Bi
`j=0

(dist2(aT`: ,V))b

≥ (dist2(aTp:,V
∗))b − nmax

`∈I
(dist2(aT`: ,V

∗))b

≥ ((1 + α)b − n) max
`∈I

(dist2(aT`: ,V
∗))b

> 0.

Analogously, if pj = 0, then P ji (V∗) < 0. Similar analysis
works for α-heavy instances with b = 1.

Thus the outlier matrix N generated on the sign condition
S∗ in step 5 is precisely the optimal N∗. Success of the
algorithm relies on perfect hashing of the outlier points into
m buckets in step 1 and for m = Θ(k) one can find in time
O(n/δ) a perfect hash function with success probability
1− δ.

Since in our algorithm we go over all possible sign condi-
tions of P on X , the sign condition S∗ will also be consid-
ered, and will provide the optimal outlier matrix. Once we
have the optimal N∗, computing the optimal rank-r projec-
tion of A−N∗ as the matrix L will give us the optimal cost.
Thus, Claim 1 implies the correctness of the algorithm.

4.2. Dimensionality Reduction

In this subsection we improve upon the d in the exponent of
the running time of the algorithm from the previous section.
We achieve this by observing that for α-gap and α-heavy
instances we only need the approximate distances of points
to a subspace instead of the exact ones. The new algorithm
proceed as follows:

1. Sample a normal transform matrix S ∈ Rd×t, where
t = O(r + log n+ log(1/δ)) for α-gap instances and
t = O(r(log k + log log n + log(1/δ)) for α-heavy
instances.

2. Sketch the input matrix A from the right, Ã = AS.

3. Find the optimal set of outliers for Ã using the algo-
rithm from the previous subsection.
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4. Construct the matrix N from the corresponding rows
of A, and return N together with the optimal rank-r
projection L of A−N.

Running Time. Clearly, step 3 dominates the run-
ning time. Since the ambient dimension is reduced
from d to t, the runtime of the new algorithm
is 2O(r(log k+log logn)(r+logn+log(1/δ))) poly(n, d)
for α-gap instances and
2O(r2(log k+log logn)(log k+log logn+log(1/δ)) poly(n, d)
for α-heavy instances.

Correctness of the algorithm. Correctness of the algo-
rithm relies on the following two lemmas, handling α-gap
instances and α-heavy instances respectively. Intuitively,
we prove that a suitable embedding preserves the set of the
optimal outliers.

Lemma 4.1. Let A ∈ Rn×d and integer parameters r and
k be an α-gap instance of PCA WITH OUTLIERS. Let
S ∈ Rd×t be an ε-embedding for

col([V∗T|a1:]), col([V∗T|a2:]), . . . , col([V∗T|an:]),

simultaneously, for a small enough constant ε. Here V∗ ∈
Rr×d is the r-dimensional linear subspace which spans
the rows of the optimal rank-r matrix L∗. Let Ã = AS
and T̃ = Sample(Ã, r, k) where Sample is the procedure
from step 4 of the Subspace-sampling algorithm. Then there
exists (C̃, Ũ) ∈ T̃ such that the outlier matrix Ñ generated
on (C̃, Ũ) in step 5 of the Subspace-sampling algorithm is
same as the optimal outlier matrix N∗

Proof. We begin by observing that the distances of the
rows of AS from row(V∗S) are the same as the dis-
tances of rows of A from row(V∗), up to a con-
stant factor distortion. Since S is a ε-embedding
for col([V∗T|a1:]), col([V∗T|a2:]), . . . , col([V∗T|an:]) si-
multaneously, using Theorem 2.2 we have for each i ∈ [n]

(1− ε) dist2(aTi: ,V
∗) ≤ dist2(aTi: S,V

∗S)

≤ (1 + ε) dist2(aTi: ,V
∗).

(1)

Now let P̃ = ∪P̃i∪Q̃ be the collection of polynomials same
as P , but defined on the smaller space, i.e. the space of all
r-dimensional subspaces in Rt, with AS as the input matrix.
Let (C̃,V∗S) ∈ T̃ be the sign condition of P̃ on V∗S. We
claim that the outlier matrix, N, generated on (C̃,V∗S) in
the step 5 of the Subspace-sampling algorithm is the optimal
outlier matrix N∗. To see this, first we we claim that in
step 5(a) the top k indices obtained from ordering on [m]

given by signs of V∗S on Q̃ give us k buckets containing
outlier points. Note that to prove this it suffices to show
that Q̃i,j(V∗S) > 0 for a bucket Bi with an outlier point

p and a bucket Bj with no outlier point. Starting with the
definition of Q̃i,j(V∗S),∑
`∈Bi

(dist2(aT
`:S,V

∗S))b −
∑
`∈Bj

(dist2(aT
`:S,V

∗S))b

≥
∑
`∈Bi

((1− ε) dist2(a`:,V
∗))b −

∑
`∈Bj

((1 + ε) dist2(a`:,V
∗))b

≥ (1− ε)b(dist2(ap:,V
∗))b − (1 + ε)bnmax

`∈I
(dist2(a`:,V

∗))b

≥ ((1− ε)b(1 + α)b − n(1 + ε)b)max
`∈I

(dist2(a`:,V
∗))b

> 0 (For an appropriate ε)

where we have used (1) in the first inequality and the α-gap
property in the third inequality.

Similarly the signs of P̃ on V∗S in the Subspace-sampling
algorithm will be able to retrieve the outlier points N∗. The
analysis is analogous to the above.

Lemma 4.2. Let A ∈ Rn×d and integer parameters r and k
be a α-heavy instance of PCA WITH OUTLIERS. After buck-
eting points in step 1 of the Subspace-sampling algorithm let
I1i,j and I0i,j be sets of indices of points in bucket Bi whose
j-bit is 1 and 0 respectively. Let S ∈ Rd×t be a ε-affine em-
bedding for {(V∗T ,A[Iki,j :]T )} 1≤i≤m

1≤j≤logn
0≤k≤1

simultaneously,

where ε is a sufficiently small constant. Here V∗ ∈ Rr×d
is the r-dimensional linear subspace which spans the rows
of optimal L. Let Ã = AS and T̃ = Sample(Ã, r, k)
where Sample is the procedure from step 4 of the Subspace-
sampling algorithm. Then there exist (C̃, Ũ) ∈ T̃ such that
the outlier matrix Ñ generated on (C̃, Ũ) in step 5 of the
Subspace-sampling algorithm is same as the optimal outlier
matrix N∗

Proof. We start by observing that since S is a ε-affine em-
bedding for {V∗T ,A[Iki,j :]T } 1≤i≤m

1≤j≤logn
0≤k≤1

simultaneously, we

have that for all i ∈ [m], j ∈ [log n] and k ∈ {0, 1}

(1− ε)
∑
`∈Bi
`j=k

dist2(aT`: ,V
∗) ≤

∑
`∈Bi
`j=k

dist2(aT`:S,V
∗S)

≤ (1 + ε)
∑
`∈Bi
`j=k

dist2(aT`: ,V
∗).

(2)

Now let P̃ = ∪P̃i∪Q̃ be the collection of polynomials same
as P but defined on smaller space, i.e. all r-dimensional
subspaces of t-dimensional space, with AS as the input
matrix. Let (C̃,V∗S) ∈ T̃ be the sign condition of P̃ on
V∗S. We claim that the outlier matrix, N, generated on
(C̃,V∗S) in the step 5 of the Subspace-sampling algorithm
is the optimal outlier matrix N∗. To see this note that that
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in step 5(a) the top k indices obtained from ordering on [s]

given by signs of V∗S on Q̃ gives us k-buckets with outlier
points. To prove this it suffices to show that Q̃i,j(V∗S) > 0
for a bucket Bi with an outlier point p and a bucket Bj with
no outlier point. Starting with the definition of Q̃i,j(V∗S),∑
`∈Bi

(dist2(a`:S,V
∗S))−

∑
`∈Bj

(dist2(a`:S,V
∗S))

≥ (1− ε)
∑
`∈Bi

(dist2(a`:,V
∗))− (1 + ε)

∑
`∈Bj

(dist2(a`:,V
∗))

≥ (1− ε)(dist2(ap:,V
∗))− (1 + ε)

∑
`∈I

(dist2(a`:,V
∗))

≥ ((1− ε)(1 + α)− (1 + ε))
∑
`∈I

(dist2(a`:,V
∗))

> 0 (For appropriate ε)

where we have used (2) in the first inequality and the α-
heavy property in the third inequality.

Next we claim that using signs of P̃ on V∗S the Subspace-
sampling algorithm will be able to retrieve the outlier points
N∗. Analysis is analogous to the above.

Lemma 4.1 and 4.2 prove the correctness of the algorithm,
given that the sketching matrix S satisfies the conditions in
the lemmas. Next we prove that the embedding dimension t
is large enough for that to happen with probability at least
1− δ.

Claim 2. Let ε, δ ∈ (0, 1) and S = 1√
s
G ∈ Rd×s where

the entries of G are independent standard normal random
variables with s = O((r + p + log(1/δ))ε−2) and p =
min(rank(A), log n). Then S is a ε-embedding simultane-
ously for col([UT|a1:]), col([UT|a2:]), . . . , col([UT|an:]),
for fixed U ∈ Rr×d, with probability at least 1− δ.

Proof. Consider the following two arguments.

1. By Theorem 2.1, for a fixed i ∈ {1, . . . , n}, S is an ε-
subspace embedding for col([UT|ai:]) with probability
at least 1 − δ

2p . By the union bound, S is the desired
ε-embedding with probability at least 1− δ

2pn.

2. Let B = {b1,b2, . . . ,brank(A)} be the row ba-
sis for A and V ′ = col([UT|b1|b2| · · · |brank(A)]).
Since col([UT|ai:]) ⊆ V ′ for each i ∈ [n], and
dim(V ′) ≤ r + rank(A), by Theorem 2.1, we have
that S is an ε-embedding for V with probability at least
1− δ

2p 2rank(A).

Combining the above two arguments we have that S is ε-
embedding for each col([UT|ai:]), i ∈ [n], with probability
at least 1− δ.

Claim 3. Let ε, δ ∈ (0, 1) and S = 1√
t
G ∈ Rd×t where the

entries of G are independent standard normal random vari-
ables with t = Θ(r(log k+log log n+log(1/δ))ε−2). Then
S is a ε-affine embedding simultaneously for {V∗T ,A[Iki,j :

]T } 1≤i≤m
1≤j≤logn
0≤k≤1

, for fixed V ∈ Rr×d, with probability 1− δ.

Proof. Follows from Theorem 2.3 and union bound.

Finally, we observe that we have two sources of error in
our algorithm. One is coming from the Subspace-sampling
algorithm and the other from the dimensionality reduction.
Setting failure probability to δ/2 in each of them and apply-
ing union bound gives us 1− δ success probability.
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