
Convex Regularization in Monte-Carlo Tree Search

A. Proofs
In this section, we describe how to derive the theoretical results presented in the paper.

First, the exponential convergence rate of the estimated value function to the conjugate regularized value function at the
root node (Theorem 1) is derived based on induction with respect to the depth D of the tree. When D = 1, we derive the
concentration of the average reward at the leaf node with respect to the∞-norm (as shown in Lemma 1) based on the result
from Theorem 2.19 in (Wainwright, 2019), and the induction is done over the tree by additionally exploiting the contraction
property of the convex regularized value function. Second, based on Theorem 1, we prove the exponential convergence rate
of choosing the best action at the root node (Theorem 2). Third, the pseudo-regret analysis of E3W is derived based on the
Bregman divergence properties and the contraction properties of the Legendre-Fenchel transform (Proposition 1). Finally,
the bias error of estimated value at the root node is derived based on results of Theorem 1, and the boundedness property of
the Legendre-Fenchel transform (Proposition 1).

Let r̂ and r be respectively the average and the the expected reward at the leaf node, and the reward distribution at the leaf
node be σ2-sub-Gaussian.

Lemma 1 For the stochastic bandit problem E3W guarantees that, for t ≥ 4,

P
(
‖ r − r̂t ‖∞≥

2σ

log(2 + t)

)
≤ 4|A| exp

(
− t

(log(2 + t))3

)
.

Proof 1 Let us define Nt(a) as the number of times action a have been chosen until time t, and N̂t(a) =
∑t
s=1 πs(a),

where πs(a) is the E3W policy at time step s. By choosing λs = |A|
log(1+s) , it follows that for all a and t ≥ 4,

N̂t(a) =

t∑
s=1

πs(a) ≥
t∑

s=1

1

log(1 + s)
≥

t∑
s=1

1

log(1 + s)
− s/(s+ 1)

(log(1 + s))2

≥
∫ 1+t

1

1

log(1 + s)
− s/(s+ 1)

(log(1 + s))2
ds =

1 + t

log(2 + t)
− 1

log 2
≥ t

2 log(2 + t)
.

From Theorem 2.19 in (Wainwright, 2019), we have the following concentration inequality:

P(|Nt(a)− N̂t(a)| > ε) ≤ 2 exp{− ε2

2
∑t
s=1 σ

2
s

} ≤ 2 exp{−2ε2

t
},

where σ2
s ≤ 1/4 is the variance of a Bernoulli distribution with p = πs(k) at time step s. We define the event

Eε = {∀a ∈ A, |N̂t(a)−Nt(a)| ≤ ε},

and consequently

P(|N̂t(a)−Nt(a)| ≥ ε) ≤ 2|A| exp(−2ε2

t
). (18)

Conditioned on the event Eε, for ε = t
4 log(2+t) , we have Nt(a) ≥ t

4 log(2+t) . For any action a by the definition of
sub-gaussian,

P

(
|r(a)− r̂t(a)| >

√
8σ2 log( 2

δ ) log(2 + t)

t

)
≤ P

(
|r(a)− r̂t(a)| >

√
2σ2 log( 2

δ )

Nt(a)

)
≤ δ

by choosing a δ satisfying log( 2
δ ) = 1

(log(2+t))3 , we have

P

(
|r(a)− r̂t(a)| >

√
2σ2 log( 2

δ )

Nt(a)

)
≤ 2 exp

(
− 1

(log(2 + t))3

)
.
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Therefore, for t ≥ 2

P

(
‖ r − r̂t ‖∞>

2σ

log(2 + t)

)
≤ P

(
‖ r − r̂t ‖∞>

2σ

log(2 + t)

∣∣∣∣∣Eε
)

+ P(ECε )

≤
∑
k

(
P

(
|r(a)− r̂t(a)| > 2σ

log(2 + t)

)
+ P(ECε ) ≤ 2|A| exp

(
− 1

(log(2 + t))3

))

+ 2|A| exp

(
− t

(log(2 + t))3

)
= 4|A| exp

(
− t

(log(2 + t))3

)
.

Lemma 2 Given two policies π(1) = ∇Ω∗(r(1)) and π(2) = ∇Ω∗(r(2)),∃L, such that

‖ π(1) − π(2) ‖p≤ L ‖ r(1) − r(2) ‖p .

Proof 2 This comes directly from the fact that π = ∇Ω∗(r) is Lipschitz continuous with `p-norm. Note that p has different
values according to the choice of regularizer. Refer to (Niculae & Blondel, 2017) for a discussion of each norm using
maximum entropy and Tsallis entropy regularizer. Relative entropy shares the same properties with maximum Entropy.

Lemma 3 Consider the E3W policy applied to a tree. At any node s of the tree with depth d, Let us define N∗t (s, a) =
π∗(a|s).t, and N̂t(s, a) =

∑t
s=1 πs(a|s), where πk(a|s) is the policy at time step k. There exists some C and Ĉ such that

P
(
|N̂t(s, a)−N∗t (s, a)| > Ct

log t

)
≤ Ĉ|A|t exp{− t

(log t)3
}.

Proof 3 We denote the following event,

Erk = {‖ r(s′, ·)− r̂k(s′, ·) ‖∞<
2σ

log(2 + k)
}.

Thus, conditioned on the event
⋂t
i=1Ert and for t ≥ 4, we bound |N̂t(s, a)−N∗t (s, a)| as

|N̂t(s, a)−N∗t (s, a)| ≤
t∑

k=1

|π̂k(a|s)− π∗(a|s)|+
t∑

k=1

λk

≤
t∑

k=1

‖ π̂k(·|s)− π∗(·|s) ‖∞ +

t∑
k=1

λk

≤
t∑

k=1

‖ π̂k(·|s)− π∗(·|s) ‖p +

t∑
k=1

λk

≤ L
t∑

k=1

‖ Q̂k(s′, ·)−Q(s′, ·) ‖p +

t∑
k=1

λk(Lemma 2)

≤ L|A|
1
p

t∑
k=1

‖ Q̂k(s′, ·)−Q(s′, ·) ‖∞ +

t∑
k=1

λk( Property of p-norm)

≤ L|A|
1
p γd

t∑
k=1

‖ r̂k(s′′, ·)− r(s′′, ·) ‖∞ +

t∑
k=1

λk(Contraction 3.1)

≤ L|A|
1
p γd

t∑
k=1

2σ

log(2 + k)
+

t∑
k=1

λk

≤ L|A|
1
p γd

∫ t

k=0

2σ

log(2 + k)
dk +

∫ t

k=0

|A|
log(1 + k)

dk

≤ Ct

log t
.
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for some constant C depending on |A|, p, d, σ, L, and γ . Finally,

P(|N̂t(s, a)−N∗t (s, a)| ≥ Ct

log t
) ≤

t∑
i=1

P(Ecrt) =

t∑
i=1

4|A| exp(− t

(log(2 + t))3
)

≤ 4|A|t exp(− t

(log(2 + t))3
)

= O(t exp(− t

(log(t))3
)).

Lemma 4 Consider the E3W policy applied to a tree. At any node s of the tree, Let us define N∗t (s, a) = π∗(a|s).t, and
Nt(s, a) as the number of times action a have been chosen until time step t. There exists some C and Ĉ such that

P
(
|Nt(s, a)−N∗t (s, a)| > Ct

log t

)
≤ Ĉt exp{− t

(log t)3
}.

Proof 4 Based on the result from Lemma 3, we have

P
(
|Nt(s, a)−N∗t (s, a)| > (1 + C)

t

log t

)
≤ Ct exp{− t

(log t)3
}

≤ P
(
|N̂t(s, a)−N∗t (s, a)| > Ct

log t

)
+ P

(
|Nt(s, a)− N̂t(s, a)| > t

log t

)
≤ 4|A|t exp{− t

(log(2 + t))3
}+ 2|A| exp{− t

(log(2 + t))2
}(Lemma 3 and (18))

≤ O(t exp(− t

(log t)3
)).

Theorem 1 At the root node s of the tree, defining N(s) as the number of visitations and VΩ∗(s) as the estimated value at
node s, for ε > 0, we have

P(|VΩ(s)− V ∗Ω(s)| > ε) ≤ C exp{− N(s)ε

Ĉ(log(2 +N(s)))2
}.

Proof 5 We prove this concentration inequality by induction. When the depth of the tree is D = 1, from Proposition 1, we
get

|VΩ(s)− V ∗Ω(s)| =‖ Ω∗(QΩ(s, ·))− Ω∗(Q∗Ω(s, ·)) ‖∞≤ γ ‖ r̂ − r∗ ‖∞ (Contraction)

where r̂ is the average rewards and r∗ is the mean reward. So that

P(|VΩ(s)− V ∗Ω(s)| > ε) ≤ P(γ ‖ r̂ − r∗ ‖∞> ε).

From Lemma 1, with ε = 2σγ
log(2+N(s)) , we have

P(|VΩ(s)− V ∗Ω(s)| > ε) ≤ P(γ ‖ r̂ − r∗ ‖∞> ε) ≤ 4|A| exp{− N(s)ε

2σγ(log(2 +N(s)))2
}

= C exp{− N(s)ε

Ĉ(log(2 +N(s)))2
}.

Let assume we have the concentration bound at the depth D − 1, Let us define VΩ(sa) = QΩ(s, a), where sa is the state
reached taking action a from state s. then at depth D − 1

P(|VΩ(sa)− V ∗Ω(sa)| > ε) ≤ C exp{− N(sa)ε

Ĉ(log(2 +N(sa)))2
}. (19)
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Now at the depth D, because of the Contraction Property, we have

|VΩ(s)− V ∗Ω(s)| ≤ γ ‖ QΩ(s, ·)−Q∗Ω(s, ·) ‖∞
= γ|QΩ(s, a)−Q∗Ω(s, a)|.

So that

P(|VΩ(s)− V ∗Ω(s)| > ε) ≤ P(γ ‖ QΩ(s, a)−Q∗Ω(s, a) ‖> ε)

≤ Ca exp{− N(sa)ε

Ĉa(log(2 +N(sa)))2
}

≤ Ca exp{− N(sa)ε

Ĉa(log(2 +N(s)))2
}.

From (19), we can have limt→∞N(sa) =∞ because if ∃L,N(sa) < L, we can find ε > 0 for which (19) is not satisfied.
From Lemma 4, when N(s) is large enough, we have N(sa)→ π∗(a|s)N(s) (for example N(sa) > 1

2π
∗(a|s)N(s)), that

means we can find C and Ĉ that satisfy

P(|VΩ(s)− V ∗Ω(s)| > ε) ≤ C exp{− N(s)ε

Ĉ(log(2 +N(s)))2
}.

Lemma 5 At any node s of the tree, N(s) is the number of visitations. We define the event

Es = {∀a ∈ A, |N(s, a)−N∗(s, a)| < N∗(s, a)

2
} where N∗(s, a) = π∗(a|s)N(s),

where ε > 0 and VΩ∗(s) is the estimated value at node s. We have

P(|VΩ(s)− V ∗Ω(s)| > ε|Es) ≤ C exp{− N(s)ε

Ĉ(log(2 +N(s)))2
}.

Proof 6 The proof is the same as in Theorem 2. We prove the concentration inequality by induction. When the depth of the
tree is D = 1, from Proposition 1, we get

|VΩ(s)− V ∗Ω(s)| =‖ Ω∗(QΩ(s, ·))− Ω∗(Q∗Ω(s, ·)) ‖≤ γ ‖ r̂ − r∗ ‖∞ (Contraction Property)

where r̂ is the average rewards and r∗ is the mean rewards. So that

P(|VΩ(s)− V ∗Ω(s)| > ε) ≤ P(γ ‖ r̂ − r∗ ‖∞> ε).

From Lemma 1, with ε = 2σγ
log(2+N(s)) and given Es, we have

P(|VΩ(s)− V ∗Ω(s)| > ε) ≤ P(γ ‖ r̂ − r∗ ‖∞> ε) ≤ 4|A| exp{− N(s)ε

2σγ(log(2 +N(s)))2
}

= C exp{− N(s)ε

Ĉ(log(2 +N(s)))2
}.

Let assume we have the concentration bound at the depth D − 1, Let us define VΩ(sa) = QΩ(s, a), where sa is the state
reached taking action a from state s, then at depth D − 1

P(|VΩ(sa)− V ∗Ω(sa)| > ε) ≤ C exp{− N(sa)ε

Ĉ(log(2 +N(sa)))2
}.

Now at depth D, because of the Contraction Property and given Es, we have

|VΩ(s)− V ∗Ω(s)| ≤ γ ‖ QΩ(s, ·)−Q∗Ω(s, ·) ‖∞
= γ|QΩ(s, a)−Q∗Ω(s, a)|(∃a, satisfied).
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So that

P(|VΩ(s)− V ∗Ω(s)| > ε) ≤ P(γ ‖ QΩ(s, a)−Q∗Ω(s, a) ‖> ε)

≤ Ca exp{− N(sa)ε

Ĉa(log(2 +N(sa)))2
}

≤ Ca exp{− N(sa)ε

Ĉa(log(2 +N(s)))2
}

≤ C exp{− N(s)ε

Ĉ(log(2 +N(s)))2
}(because of Es)

.

Theorem 2 Let at be the action returned by algorithm E3W at iteration t. Then for t large enough, with some constants
C, Ĉ,

P(at 6= a∗) ≤ Ct exp{− t

Ĉσ(log(t))3
}.

Proof 7 Let us define event Es as in Lemma 5. Let a∗ be the action with largest value estimate at the root node state s. The
probability that E3W selects a sub-optimal arm at s is

P(at 6= a∗) ≤
∑
a

P(VΩ(sa)) > VΩ(sa∗)|Es) + P(Ecs)

=
∑
a

P((VΩ(sa)− V ∗Ω(sa))− (VΩ(sa∗)− V ∗Ω(sa∗)) ≥ V ∗Ω(sa∗)− V ∗Ω(sa)|Es) + P(Ecs).

Let us define ∆ = V ∗Ω(sa∗)− V ∗Ω(sa), therefore for ∆ > 0, we have

P(at 6= a∗) ≤
∑
a

P((VΩ(sa)− V ∗Ω(sa))− (VΩ(sa∗)− V ∗Ω(sa∗)) ≥ ∆|Es) + +P(Ecs)

≤
∑
a

P(|VΩ(sa)− V ∗Ω(sa)| ≥ α∆|Es) + P(|VΩ(sa∗)− V ∗Ω(sa∗)| ≥ β∆|Es) + P(Ecs)

≤
∑
a

Ca exp{− N(s)(α∆)

Ĉa(log(2 +N(s)))2
}+ Ca∗ exp{− N(s)(β∆)

Ĉa∗(log(2 +N(s)))2
}+ P(Ecs),

where α+β = 1, α > 0, β > 0, andN(s) is the number of visitations the root node s. Let us define 1
Ĉ

= min{ (α∆)
Ca

, (β∆)
Ca∗
},

and C = 1
|A| max{Ca, Ca∗} we have

P(a 6= a∗) ≤ C exp{− t

Ĉσ(log(2 + t))2
}+ P(Ecs).

From Lemma 4, ∃C ′ , Ĉ ′ for which

P(Ecs) ≤ C
′
t exp{− t

Ĉ ′(log(t))3
},

so that

P(a 6= a∗) ≤ O(t exp{− t

(log(t))3
}).

Theorem 3 Consider an E3W policy applied to the tree. Let define DΩ∗(x, y) = Ω∗(x)− Ω∗(y)−∇Ω∗(y)(x− y) as the
Bregman divergence between x and y, The expected pseudo regret Rn satisfies

E[Rn] ≤ −τΩ(π̂) +

n∑
t=1

DΩ∗(V̂t(·) + V (·), V̂t(·)) +O(
n

log n
).
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Proof 8 Without loss of generality, we can assume that Vi ∈ [−1, 0],∀i ∈ [1, |A|]. as the definition of regret, we have

E[Rn] = nV ∗ −
n∑
t=1

〈π̂t(·), V (·)〉 ≤ V̂1(0)−
n∑
t=1

〈π̂t(·), V (·)〉 ≤ −τΩ(π̂)−
n∑
t=1

〈π̂t(·), V (·)〉 .

By the definition of the tree policy, we can obtain

−
n∑
t=1

〈π̂t(·), V (·)〉 = −
n∑
t=1

〈
(1− λt)∇Ω∗(V̂t(·)), V (·)

〉
−

n∑
t=1

〈
λt(·)
|A|

, V (·)
〉

= −
n∑
t=1

〈
(1− λt)∇Ω∗(V̂t(·)), V (·)

〉
−

n∑
t=1

〈
λt(·)
|A|

, V (·)
〉

≤ −
n∑
t=1

〈
∇Ω∗(V̂t(·)), V (·)

〉
−

n∑
t=1

〈
λt(·)
|A|

, V (·)
〉
.

with

−
n∑
t=1

〈
∇Ω∗(V̂t(·)), V (·)

〉
=

n∑
t=1

Ω∗(V̂t(·) + V (·))−
n∑
t=1

Ω∗(V̂t(·))−
n∑
t=1

〈
∇Ω∗(V̂t(·)), V (·)

〉
− (

n∑
t=1

Ω∗(V̂t(·) + V (·))−
n∑
t=1

Ω∗(V̂t(·)))

=

n∑
t=1

DΩ∗(V̂t(·) + V (·), V̂t(·))− (

n∑
t=1

Ω∗(V̂t(·) + V (·))−
n∑
t=1

Ω∗(V̂t(·)))

≤
n∑
t=1

DΩ∗(V̂t(·) + V (·), V̂t(·)) + n ‖ V (·) ‖∞ (Contraction property, Proposition 1)

≤
n∑
t=1

DΩ∗(V̂t(·) + V (·), V̂t(·)).( because Vi ≤ 0)

And

−
n∑
t=1

〈
λt(·)
|A|

, V (·)
〉
≤ O(

n

log n
), (Because

n∑
k=1

1

log(k + 1)
→ O(

n

log n
))

So that

E[Rn] ≤ −τΩ(π̂) +

n∑
t=1

DΩ∗(V̂t(·) + V (·), V̂t(·)) +O(
n

log n
).

We consider the generalized Tsallis Entropy Ω(π) = Sα(π) = 1
1−α (1−

∑
i π

α(ai|s)).
According to (Abernethy et al., 2015), when α ∈ (0, 1)

DΩ∗(V̂t(·) + V (·), V̂t(·)) ≤ (τα)−1|A|α

−Ω(π̂n) ≤ 1

1− α
(|A|1−α − 1).

Then, for the generalized Tsallis Entropy, when α ∈ (0, 1), the regret is

E[Rn] ≤ τ

1− α
(|A|1−α − 1) + n(τα)−1|A|α +O(

n

log n
),

when α = 2, which is the Tsallis entropy case we consider, according to (Zimmert & Seldin, 2019), By Taylor’s theorem
∃z ∈ conv(V̂t, V̂t + V ), we have

DΩ∗(V̂t(·) + V (·), V̂t(·)) ≤
1

2

〈
V (·),∇2Ω∗(z)V (·)

〉
≤ |K|

2
.
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So that when α = 2, we have

E[Rn] ≤ τ(
|A| − 1

|A|
) +

n|K|
2

+O(
n

log n
).

when α = 1, which is the maximum entropy case in our paper, we derive.

E[Rn] ≤ τ(log |A|) +
n|A|
τ

+O(
n

log n
)

Finally, when the convex regularizer is relative entropy, One can simply write KL(πt||πt−1) = −H(πt)− Eπt log πt−1, let
m = mina πt−1(a|s), we have

E[Rn] ≤ τ(log |A| − 1

m
) +

n|A|
τ

+O(
n

log n
).

Before derive the next theorem, we state the Theorem 2 in (Geist et al., 2019)

• Boundedness: for two constants LΩ and UΩ such that for all π ∈ Π, we have LΩ ≤ Ω(π) ≤ UΩ, then

V ∗(s)− τ(UΩ − LΩ)

1− γ
≤ V ∗Ω(s) ≤ V ∗(s). (20)

Where τ is the temperature and γ is the discount constant.

Theorem 4 For any δ > 0, with probability at least 1− δ, the εΩ satisfies

−

√
Ĉσ2 log C

δ

2N(s)
− τ(UΩ − LΩ)

1− γ
≤ εΩ ≤

√
Ĉσ2 log C

δ

2N(s)
.

Proof 9 From Theorem 2, let us define δ = C exp{− 2N(s)ε2

Ĉσ2
}, so that ε =

√
Ĉσ2 log C

δ

2N(s) then for any δ > 0, we have

P(|VΩ(s)− V ∗Ω(s)| ≤

√
Ĉσ2 log C

δ

2N(s)
) ≥ 1− δ.

Then, for any δ > 0, with probability at least 1− δ, we have

|VΩ(s)− V ∗Ω(s)| ≤

√
Ĉσ2 log C

δ

2N(s)

−

√
Ĉσ2 log C

δ

2N(s)
≤ VΩ(s)− V ∗Ω(s) ≤

√
Ĉσ2 log C

δ

2N(s)

−

√
Ĉσ2 log C

δ

2N(s)
+ V ∗Ω(s) ≤ VΩ(s) ≤

√
Ĉσ2 log C

δ

2N(s)
+ V ∗Ω(s).

From Proposition 1, we have

−

√
Ĉσ2 log C

δ

2N(s)
+ V ∗(s)− τ(UΩ − LΩ)

1− γ
≤ VΩ(s) ≤

√
Ĉσ2 log C

δ

2N(s)
+ V ∗(s).


