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Abstract

We introduce an approach for understanding con-
trol policies represented as recurrent neural net-
works. Recent work has approached this prob-
lem by transforming such recurrent policy net-
works into finite-state machines (FSM) and then
analyzing the equivalent minimized FSM. While
this led to interesting insights, the minimization
process can obscure a deeper understanding of
a machine’s operation by merging states that are
semantically distinct. To address this issue, we
introduce an analysis approach that starts with an
unminimized FSM and applies more-interpretable
reductions that preserve the key decision points
of the policy. We also contribute an attention tool
to attain a deeper understanding of the role of ob-
servations in the decisions. Our case studies on
7 Atari games and 3 control benchmarks demon-
strate that the approach can reveal insights that
have not been previously noticed.

1. Introduction
What roles do observations and memory play in the decision
making of deep policy networks for complex control tasks?
While such networks have yielded state-of-the-art perfor-
mance in reinforcement and imitation learning (e.g. (Mnih
et al., 2013; Hausknecht & Stone, 2015; Wang et al., 2015;
Van Hasselt et al., 2016; Ho & Ermon, 2016)), there are lim-
ited tools and approaches for giving insight into this ques-
tion. This is particularly the case for policies represented as
recurrent networks, e.g. LSTMs and GRUs (Hochreiter &
Schmidhuber, 1997; Chung et al., 2014; Cho et al., 2014),
which condition on high-dimensional memory vectors with
no preconceived semantics. Prior works have attempted to
gain insight via attention maps over the network input, e.g.
(Greydanus et al., 2018; Iyer et al., 2018; Gupta et al., 2020;
Atrey et al., 2020), however, this ultimately involves subjec-
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tive human interpretation of the underlying “strategic role"
of the attended-to elements. In this paper, we develop an
analysis approach that reveals such human interpretations
can sometimes be highly misleading.

Our work builds on a recent approach for understanding
recurrent policy networks by quantizing memory and ob-
servations within an RNN (Koul et al., 2019). A quantized
RNN is a type of FSM, known as a Moore Machine (MM),
which can be visualized and analyzed. In particular, the orig-
inally large MMs were algorithmically minimized, resulting
in small machines for a variety of domains, which yielded
high-level insights. For example, the minimal MM for Atari
Pong showed that memory was not actually needed (i.e. a
state-action mapping), while for Atari Bowling the MM was
an open-loop strategy that ignored observations.

While analyzing minimal MMs allows for determining
global properties, such as memory/observation use or not,
we have found it difficult to gain more in-depth insight from
minimal MMs. To see this, Figure 4 (a) and (b) show mini-
mal MMs for Pong and Bowling and Figure 5 shows a set
of frames/observations for each MM that all map to a single
state in the corresponding MM. For a human, the frames are
semantically distinct, whereas the minimization process was
able to merge them all into a single state. This is due to the
minimization focusing on maintaining logically equivalence
to the unminimized MM policy, rather than maintaining any
semantic meaning of states. Thus, we have found it very
difficult to understand the strategic role of different states in
such MMs to gain deeper insight into their decision logic.
This experience has led us to the view that minimal MMs
are unlikely to be a good starting point for gaining a deeper
understanding of recurrent policies.

Our main contribution is to develop a new approach for RL
researchers and advanced practitioners to analyze MM pol-
icy representations. We demonstrate that this approach can
yield significantly more insight into the decision making of
recurrent policies. Rather than start with a minimal MM af-
ter quantization, we start with the unminimized MM, which
is often quite large, and apply “interpretable reductions" in
order to reduce the visual complexity. The reductions are in-
tentionally simple in order to preserve the inherent decision
structure in the machine while effective at compressing the
visual representation. For example, one reduction operation
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Figure 1. Overall approach for Pong. a) QBN Insertion (Section 3) discretizes observations and memory of the original RNN (top).
b) Resulting MM with finite states and observations. c) Interpretable reductions (Section 4.1) are applied to the MM, yielding a
single decision point s197 conditioning on observations. Differential attention (Section 4.2) is used to understand decisions in terms of
observations. d) Functional pruning (Section 4.3) removes unnecessary branches, leaving an open-loop policy.

replaces a fixed series of non-branching memory states (i.e.
a macro) with a single abstract transition. The result is a
simplified machine with a fixed set of “branching states"
where the flow of the machine depends on observations.

In order to help understand the decisions made at branch-
ing states, we further develop a new differential attention
tool, aiming to identify parts of observations that are most
important for selecting one branch over another. Using the
tool, we found that often, especially in Atari, the attention
was unintuitive from a strategic point of view, which led
us to question whether observations were used for strategi-
cally important reasons, or whether they were “arbitrary"
branches. This led us to consider the “functional pruning"
reduction to assess that issue. In particular, this operation
eliminates all but one branch at a decision point to test
whether the observation-conditioned decision among multi-
ple branches was strategically important, or just an artifact
of learning a non-compact policy.

We explore this approach by studying of 7 deterministic
Atari games and 3 continuous control environments. For the
control tasks, the approach identifies interpretable machines,
whose decision points are understandable and strategically
meaningful. In contrast, for Atari, the analysis reveals new
and surprising insights. Prior works have attempted to un-
derstand the most salient pixels for policy decisions in Atari
games (Greydanus et al., 2018; Iyer et al., 2018; Gupta
et al., 2020), however, little insight was gained into how
that information was used. Our approach reveals that for the
Atari policies, observations were not used for “strategically
useful" purposes. In particular, at each state that branches
on observations, it was possible to remove all branches, ex-
cept for one, resulting in an open-loop policy that ignores
observations, while maintaining performance. We call such
policies, pruned open-loop policies, and observe that all of
our Atari policies are of this type. Finally, we identify limits
of the current approach as problems become more stochastic,
which suggests important avenues of future work.

2. Related work
Attention Maps. Attention maps have been used as a tool
to identify the most relevant parts of the input with respect
to the agent’s decision (Greydanus et al., 2018; Iyer et al.,
2018; Gupta et al., 2020; Atrey et al., 2020). Perturbation-
based attention methods have been investigated to gain in-
sight into learned Atari policies (Greydanus et al., 2018; Iyer
et al., 2018; Gupta et al., 2020), but have been criticized for
relying on the application of networks to potentially non-
sensical perturbed states (Atrey et al., 2020). This has been
partly addressed by using more advanced counterfactual
state generation (Olson et al., 2021). In general, attention
approaches produce a “local explanation" for the decisions
made at specific states, which is in contrast to “global ex-
planations" we primarily focus on in this work. Attention
methods are also limited in the type of insights they can
provide. For example, while they are applied to recurrent
policies, they provide no insight into how memory is used
and the strategic role of salient inputs. As we will show,
our results suggest that a human’s intuition about the role of
salient inputs can be highly misleading.

Hybrid Architectures. There have been efforts to induce
explanations components in the architecture to make agents
implicitly explainable (Yang et al., 2018; Mott et al., 2019).
For example, soft attention modules have been used in a
recurrent architecture to gain insight into the “attention"
of an agent (Mott et al., 2019). While attention has been
used in several context for explanation, the soundness of this
approach is not clear. In particular, the attention weights are
computed from the raw observations and memory, which is
ignored in the explanation process. Thus, it is difficult to
determine whether the attention patterns carry key strategic
information based on other parts of the raw observation, or
whether, indeed, it is only the information highlighted by
the attention that is key to decisions. Investigating ways to
distinguish these two cases is interesting future work.

Extracting Finite-State Machine. There has been signif-
icant prior work on extracting FSMs from RNNs in the
context of formal language learning of fixed finite alpha-
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Figure 2. a) An example of an MM with 7 memory states and 9 observations. The initial memory state is S0, and based on the input
observation, it goes to the next memory state until it reaches to the memory state S5, then it loops back to S2. In this example, MM has a
decision point at S2. b) Interpretable reductions applied to the MM.

bets (Tiňo et al., 1998; Cechin et al., 2003; Weiss et al.,
2017; 2019). Only recently have there been attempts to
learn FSMs for complex RL problems (Koul et al., 2019)
where machine minimization was used to extract high-level
insights. Our work builds on (Koul et al., 2019) and aims to
significantly advance the depth of understanding that such
methods can provide.

3. Recurrent Networks to Moore Machines
In this section we review recurrent policy networks (RPNs)
and how they can be converted to MMs as illustrated in
Figure 1a. This work is agnostic about how a policy is
learned, which, for example, could be via RL, imitation
learning, or other training approaches.

Recurrent Policy Networks (RPNs). An RPN is an RNN
policy that, at each time step, is given an observation ot and
outputs an action at. As illustrated in Figure 1a top, during
execution, an RPN maintains a continuous-valued hidden
memory state ht, which is updated on each transition and
influences the action choice at. Specifically, given current
observation ot and current state ht, an RPN outputs an ac-
tion at = π(ht) where π may be a feed-forward network.
Then, it updates the state according to ht+1 = δ(ft, ht),
where ft is a set of features extracted from ot, for example,
using a CNN when observations are images. δ is the tran-
sition function, which is often implemented via different
types of gating networks such as LSTMs or GRUs.

Moore Machines. Understanding action choices of an RPN
is complicated by the memory’s high-dimensionality and
lack of predefined semantics. Recent work (Koul et al.,
2019) has attempted to address this issue by transforming
RPNs to MMs, which allows for visualization and analysis
of a finite system. An MM is a finite-state machine defined
by a finite set of labeled hidden states H , a distinguished
initial state h0 ∈ H , a finite set of observation symbols O,
and a transition function ∆ : H × O → H , which returns
the next state ht+1 = ∆(ht, ot), given the current state and
observation symbol. The label associated with each state
corresponds to an action. An MM policy initializes the state
to h0 and then updates the state as observations arrive and

outputs the action associated with each state.

Quantized Bottleneck Insertion (QBN Insertion). We
now overview the approach of Quantized Bottleneck Inser-
tion (Koul et al., 2019) for transforming an RPN to an MM
policy, which is illustrated in Figure 1a bottom. Full de-
tails of this approach can be found in the original paper and
are not critical to the contributions of this paper. The key
components of the approach are Quantized Bottleneck Net-
works (QBNs), which are simply auto-encoders, for which
the encoder produces a quantized latent representation. In
this work, bottleneck representation is composed of discrete
units with output values in {−1, 0, 1}. Given a trained RPN,
a representative set of RPN trajectories is produced and the
resulting sets of hidden states {ht} and observation features
{ft} are collected. Next, a hidden-state QBN Qh and ob-
servation QBN Qo are trained to minimize reconstruction
error on the data sets. The encoders of Qh and Qo can be
viewed as discretizing the state and observation spaces. The
trained QBNs are then inserted into the RPN in place of
the “wires" that propagate the continuous memory vector
ht and observation features ft (see Figure 1a). This cre-
ates a discrete representation of the hidden states ĥt and
observation features f̂t in the RPN. In practice, QBNs have
reconstruction errors, which may impact the RPN perfor-
mance. Supervised fine-tuning of the discretized RPN can
be used to improve performance via imitation learning with
respect to the original RPN.

Trajectories of the discretized RPN are then run to collect a
representative transition set {(ĥt, at, f̂t, ĥt+1)}, indicating
that action at was taken in discrete state ĥt and a transition
to ĥt+1 was observed when the discrete observation was
f̂t. The MM is constructed by creating a transition graph
edge for each data tuple. The key parameters relevant to this
paper are sizes of the bottlenecks ofQh andQo, denotedNh

and No respectively. Larger values give more potential to
produce finer grained quantization and in turn more states.

4. Analyzing non-minimal Moore Machines
RPNs learned for complex problems can result in MMs with
large numbers of discrete states and observations. In order
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Figure 3. Differential Attention Pipeline. The pair of images under comparison result in discrete representations that differ on the
highlighted features. We produce an attention map for each of those features using the Integrated Gradient (IG) approach and average the
magnitude of the maps for an overall differential attention map.

to aid understanding, previous work (Koul et al., 2019) used
a standard minimization algorithm (Paull & Unger, 1959)
to produce equivalent minimal state MMs. As described
in Section 1, the minimal machines allowed for interesting
global insights into the general use of states and observa-
tions. However, as also described in Section 1, we have
found that minimal MMs obscure the decision making be-
havior, since they compress the original MM structure with
no regard for interpretability. For example, the observations
mapped to single states often appear to be semantically very
different (Figure 5), making it difficult to understand the
role of states and how observations influence their choices.
Thus, in this paper, we start with the unminimized MMs
with the aim to gain a more detailed understanding. Below,
we describe the steps of our analysis approach.

4.1. Interpretable Reductions

Figure 2a shows an example MM, which illustrates the main
structures we observed in the learned MMs we analyzed.
These structures provide several opportunities for simple
interpretable reductions, which simplify the visualization
of an MM without obscuring decision structure. The reduc-
tions are very simple by design and one of our contributions
is to notice that this simple set can be effective for inter-
preting very large MMs. Note that some of the following
reductions may hide some steps, for example long macros
with no decision points, to make the visualization manage-
able. But such simplifications do not essentially influence
the completeness of the decision process in MM. The first
stage of our approach applies the following interpretable
reductions.

Sequence Reduction. It is common to see long sequences
of states with a single observation between consecutive
states (e.g. S0 to S2 in Figure 2a). These sequences are
open open-loop macros that simply execute a fixed sequence
of actions whenever encountered. Examples are S0 and S1

in the sequence of state-transitions from state S0 to S2 that
have no branching states. We reduce these sequences to
a single “macro arc" represented as a dotted line with a
number indicating its length.

Loop Unrolling Reduction. There are many loops attached

to sequences that are only traversed once when the sequence
is visited. These loops increase the visual complexity of
the MMs and make it appear as if there is a decision that
controls loop exit, when there is not. Thus, we simply unroll
such loops before applying sequence reduction. To identify
such loops, once the MM is generated, we run the policy
once more and count the number of times each node is
visited; thus we exactly know how many times a loop is
covered.

Parallel Reduction. There are often multiple transition
arcs between two states with different observation labels
(e.g. between S5 and S6 in Figure 2a). This can also occur
for self-transitions. We merge these arcs into an abstract arc
labeled by the number of observations.

Startup and Termination Reduction. In some MMs, there
is a period of state transitions that corresponds to a warm-
up/termination period in the environment where actions
have no impact. If desired, these parts of an MM can be
replaced with a macro arc represented by two parallel lines
with the number of transitions in that period. This reduc-
tion requires minimal human annotation of the steps where
episodes “meaningfully" begin and end, which is usually
straightforward. For example, in Atari games, there is usu-
ally a warm-up period before actions impact the game and
the machines can have arbitrary structure that is not impor-
tant to the game playing behavior. It is straightforward for a
human to mark the time when this warm-up period ends.

The result of these reductions is shown in Figure 2b and of-
ten result in orders of magnitude smaller visualizations, e.g.,
going from Figure 1b to Figure 1c. Note that interpretable
reductions do not change the behavior of the agent, nor the
control flow, but are only for improved visualization. The
states remaining in the reduced diagram are decision points
(e.g. state S2 is the single decision point in Figure 2b),
where the next state, and hence future behavior, depends on
the observation. The decision points are the key states in
the machine that dictate how its behavior is influenced by
observations. It is these points where we can gain the most
insight about an MM.



Re-understanding Finite-State Representations of Recurrent Policy Networks

Table 1. MM results for control tasks and Atari environments. “DP" refers to decision points, “Obs."" is short for observations, and “Perf."
is short for performance.

Game QBN Sizes Original MM Functional pruning Minimal MM
Nh No DP States Obs. Perf. DP States Obs. Perf. DP States Obs. Perf.

Acrobot 4 4 9 12 38 -77.1 2 4 3 -80.7 3 3 11 -80
8 8 79 42 200 -77.1 2 4 5 -79.9 3 3 7 -86

CartPole 4 4 6 7 18 500 2 4 5 500 2 3 8 500
8 8 7 8 58 500 2 4 5 500 3 3 11 500

Lunar
Lander

32 32 195 1426 1150 180.4 184 1387 980 172.2 41 41 92 165
32 64 249 1389 1437 204.9 230 1321 1327 197.3 19 19 73 147

Bowling 32 50 5 608 525 60 0 530 437 60 5 5 19 60
64 100 5 630 552 60 0 546 488 60 3 4 12 60

Boxing 32 50 0 1274 1270 100 0 1274 1270 100 19 19 109 100
64 100 0 1097 1095 100 0 1097 1095 100 14 14 101 100

Breakout 32 50 4 2479 2466 404 0 2365 2345 404 8 8 28 404
64 100 5 1659 1608 404 0 1598 1540 404 11 11 43 404

Pacman 32 50 43 728 716 3060 0 612 597 3060 21 21 70 3060
64 100 34 895 876 3060 0 776 758 3080 9 9 45 3060

Pong 32 50 0 383 369 21 0 383 369 21 3 3 12 21
64 100 2 384 369 21 0 271 268 21 4 4 10 21

SeaQuest 32 50 46 2167 2233 2580 0 1679 1577 2580 16 16 140 2580
64 100 18 2244 2261 2580 0 1834 1883 2580 17 17 135 2580

Space
Invaders

32 50 102 1700 1709 1820 0 1314 1350 1820 30 30 40 1820
64 100 35 1914 1852 1820 0 1832 1802 1820 11 11 27 1820

4.2. Differential Attention for Decision Points

Given an MM decision point, we are interested in under-
standing how the raw observations (e.g. image pixels) in-
fluence its decisions. In particular, for a pair of outgoing
branches labeled by discrete observation f̂1 and f̂2, we
would like to answer the question: “What features of the
raw observations are most influential to selecting the f̂1
branch versus f̂2?". To help answer this, we consider pairs
of raw observations o1 and o2 that occur at the decision point
during MM execution (e.g. o342 and o267 in Figure 1c), such
that f̂i = Eo(oi) whereEo is the encoder of the observation
QBNQo which discretizes the input features. That is, o1 and
o2 are example observations that cause the machine to differ-
entiate between the branches. We then produce a differential
attention map S(o1, o2) that highlights the parts of o1 and
o2 that are most responsible for preferring branch f̂1 over
f̂2. To compute S(o1, o2), we focus on the set F (o1, o2) of
discrete features produced by Eo that differ between o1 and
o2. As described below, for each f ∈ F (o1, o2), we first
produce an attention map S[f ](o1, o2) that highlights the
parts of o1 and o2 that “explain" the difference in value of
f . S(o1, o2) is then just the average of the individual maps.

We compute each S[f ](o1, o2) via a straightforward, but
novel, adaptation of the Integrated Gradient (IG) attention

approach (Sundararajan et al., 2017). Originally, IG was
used to compute attention maps that explain the decision
of a classifier on a single image/observation o. Fundamen-
tal to the approach is the notion of a baseline image ob,
which is used as a reference that is assumed to not excite
the classifier. In an image domain, the baseline is often a
constant or noise image. Let f(o) be the classifier response
for observation o (usually the largest class-specific input
to the softmax layer), noting that f(ob) will be small, and
let IGi[f ](o, ob) be the corresponding attention value pro-
duced by IG for feature/pixel i. The key property of IG,
which makes it a meaningful notion of attention, is the rela-
tion

∑
i IGi[f ](o, ob) = f(o)− f(ob). Thus, the attention

value of pixel i can be viewed as its additive contribution
to the difference in classification responses for O over Ob.
For space reasons we refer the reader to the original paper
(Sundararajan et al., 2017) for details of the IG computation.

Figure 3 shows how we adapt IG to compute a differential
attention map S[f ](o1, o2) by treating o2 as the baseline
and letting the response function f ∈ F (o1, o2) be the
continuous features computed by the encoder just before the
discretization step. That is, differential attention is given by
S[f ](o1, o2) = IG[f ](o1, o2). This means that differential
attention satisfies

∑
i Si[f ](o1, o2) = f(o1)−f(o2), which

has the interpretation that each attention value Sj [f ] can
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(a) (b) (c) (d)

Figure 4. a) Pong minimal MM, b) Bowling minimal MM, c) Bowling pruned MM, d) Acrobot minimal MM.

be viewed as an additive contribution to the difference in
response for o1 and o2, i.e. the preference of o1 over o2. 1

4.3. Functional Pruning

After exploring the reduced MM graphs and attentions in
Atari, we made two high-level observations. First, as shown
in our experiments the differential attention results often
indicated that observations were not being used in a strategi-
cally meaningful way, e.g., branching on observations that
were extremely similar. Second, the graphs beyond different
branches at a decision point were often very similar and
appeared to address similar situations. We hypothesized
that many decision points may not be strategically meaning-
ful, but rather just an artifact of learning. That is, even if
a branching decision is not required at a certain point in a
game, the inclusion of a decision point that conditions on
an arbitrary part of the observation will not hurt the perfor-
mance as long as good behavior is learned for each of the
resulting branches. In such situations, the choice of which
branch to traverse may be arbitrary and any one of them
may work. Note that the usual attention-based tools (Grey-
danus et al., 2018; Iyer et al., 2018; Gupta et al., 2020) will
simply indicate the agent’s attention and can lead a human
to incorrectly infer strategic relevance.

Detecting unnecessary decision points cannot be done by
just graph analysis—rather, empirical analysis of modified
machines is required. To do this, we conduct a simple
form of functional pruning (details and pseudo-code in ap-
pendix), to identify and prune unnecessary branches at de-
cision points. Our approach considers each MM decision
point, and prunes each of the branches one at a time, in
order of the least to most frequently visited based on mul-
tiple MM runs. When a branch is pruned, we empirically
estimate the performance of the resulting MM, noting that
when the machine would have previously taken the pruned
branch, we force it to take the most frequent branch. If the
empirical performance does not degrade beyond a thresh-
old, we permanently remove the branch and move on to the

1Source code is available at:
github.com/modanesh/Differential_IG

next pruning step. The intent of function pruning is not to
preserve logical equivalence. Rather, the intent is to test
whether observations were strategically important or just an
artifact of learning. After gaining the insights, one could
decide to use the original machine or attempt to improve it.

We found greedy pruning to be effective for the MMs con-
sidered in this paper. For example, in Figure 1 we see that
functional pruning resulted in pruning all but one branch
from the single decision point in the MM, leaving an open-
loop policy. In such cases, when an MM can be functionally
pruned to the point of removing all decision points and leav-
ing an open loop policy, we say that the MM is a pruned
open-loop policy, which generalizes the notion of open-loop
policy to include machines that condition on observations,
but in ways that are not strategically necessary. As an anal-
ogy, consider a pruned open-loop policy for a human driving
to a store along one of two equally good routes. The human
may measure the temperature and decide between the routes
depending on whether the temperature was an even or odd
value. The observation had no real impact on the quality of
the policy, since a fixed route could have been selected, but
behavior is still seen to depend on observations.

5. Experiments
The only prior approach to compare against is the recent
MM minimization approach for analysis of MMs (Koul
et al., 2019). As described earlier, we have found it very
difficult to gain insights from minimized MMs. To further
illustrate this point, in the appendix we provide a quanti-
tative and qualitative comparison of the MM approach to
our approach in Atari games. Overall, the minimization
approach does not reveal the insights of our new approach.

We consider 7 deterministic Atari environments: Bowling,
Boxing, Breakout, MsPacman, Pong, SeaQuest and SpaceIn-
vaders, and 3 stochastic discrete-action classic control tasks:
Acrobot, CartPole, and LunarLander. For each experiment,
we follow the choices of prior discretization work (Koul
et al., 2019) for pre-processing, RPN architecture, QBN
architectures, and training via A3C (Mnih et al., 2016) rein-

https://github.com/modanesh/Differential_IG
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forcement learning. Detailed information on these choices
along with hyperparameter choices are in the appendix. In
addition to A3C, we investigate and interpret another policy
learned by the R2D2 algorithm (Kapturowski et al., 2018)
which results are provided in the appendix. We considered
two sets of QBN sizes for each environment, shown in Ta-
ble 1. From the table we see that the agent performance
remains the same after reductions for all domains, except
for Acrobot and LunarLander, where functional pruning
reduced performance within the specified tolerance. The
table also gives the number of states and observations, Nh

and No, after the reductions. Interestingly, in Atari games,
no decision points are left after functional pruning, i.e. all
of the policies were “pruned open-loop" policies. The fol-
lowing case studies illustrate how our approach is useful for
gaining insights and revealing unexpected properties of the
decision logic. Additional examples are in the Appendix.

5.1. Atari: Case Studies

Example Insights: Pong and Bowling. The RPN for Pong
achieved a maximum score of 21. The policy displays repet-
itive behavior by performing a “kill shot" against the oppo-
nent to win each point, though the behavior is not exactly
the same across all shots. Figure 1b shows a view of the
original large MM. Figure 1c shows the graph after the in-
terpretable reductions, which is quite small with only one
decision point at state S197. This key decision point is the
starting point of 3 possible loops, depending on the branch
taken, and is entered once per round (each round is one
point). This raised the questions of “What basis is the ma-
chine using to decide which loop to enter?" and “Is there a
strategic reason for the branching decision?".

To investigate, we computed the differential attention for the
decision of choosing S275 over S352, as shown in Figure 3.
It is striking that the sample observations associated with
the branches are almost identical. The differential attention
indicates that the ball region and tips of the paddles are
the most critical factors in deciding between the branches.
Close inspection reveals that the appearance and location
of the ball in the two observations are subtly different. To
understand this, we observed that these differences are due
to the fact that at the beginning of each round the starting
position of the ball is minutely different for even versus odd
rounds, which translated to the small difference observed at
the decision point. Intuitively, this difference did not appear
to have a strategic value. Indeed, after functional pruning
(Figure 1d), we see that all branches were removed except
for the one through S275, leaving an open-loop strategy with
no loss in performance. The even versus odd branching, was
an unnecessary artifact of the RNN learning process.

For Bowling, the original large MM had 630 discrete states
and 552 discrete observations. Our interpretable reductions

(a) (b)

Figure 5. Four observations that enter a state in the corresponding
minimal MM. a) Frames of Pong for in-going observations to S2,
b) Frames of Bowling for in-going observations to S0.

revealed only 5 of those states corresponded to true decision
points. Further, Figure 4c shows the result of functional
pruning to get an MM with no loss in performance. Similar
to Pong we end up with a pruned open-loop policy. Again
the observations used at decision points were not strategi-
cally relevant and rather artifacts of learning.

Comparison to Prior Work. We now compare to the min-
imization approach of (Koul et al., 2019). For Pong, our
approach was able to isolate a single decision point (Fig-
ure 1d) where behavior depended on observations in an
understandable way, which was ultimately determined to
be non-strategic. Meanwhile, Figure 4a shows the mini-
mal MM produced by prior work for the same initial MM.
This minimal MM merges the key decision point with se-
mantically unrelated states (e.g. from multiple macros),
obscures insights, and gives no understanding of how mem-
ory and observations are used. To highlight this, Figure 5a
demonstrates four frames of Pong which enter S2 in the
corresponding minimal MM. This is an evidence of minimal
MMs merging states that are semantically distinct. Fur-
ther, it is unclear how the equivalent of functional pruning
could be done using the minimal MM, due to the merging
of decision points. Also, it is unclear how to uncover the
key insight identified by our approach by starting with the
minimal MM.

A similar comparison holds for Bowling where our approach
resulted in the open-loop policy (Figure 4c). Rather, the
minimal MM of the same initial policy is shown in Figure
4b, which resembles the tightly coupled minimal MM of
Pong. Figure 5b shows frames that lead to decision point
S0, which appear to be semantically very different from a
human perspective. This is also the case for other states,
which makes it very difficult to extract meaningful insights
from the minimal MM. Again, it is completely unclear how
we could start with the minimal machine and gain the re-
alization that the observations play no significant strategic
role, which our approach revealed.

Overall Results. Due to page limit, qualitative compar-
isons of other Atari games are provided in the appendix.
Nevertheless, they provide similar distinctions which show
our approach’s advantage over (Koul et al., 2019)’s. Ta-
ble 1, gives information about the MMs before and after
functional pruning for each game, and a comparison with
the minimization approach. Note that 0 decision points in-
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(a)

(b)

Figure 6. Pruned MMs for control tasks. a) CartPole, and b) Ac-
robot. In each case, we show attention of features for decision
points. Also, we show scatter plots of continuous observations
during an episode at each decision point for the two most salient
features, where color indicates the discrete machine observation.

dicates an open-loop policy. We see that before functional
pruning there is only one case of open-loop policies: Box-
ing. All other MMs have at least one decision point. This
initially makes one to believe that observations are a key
part of the overall MM strategy. However, in each such
case, we found that it was rare to find a decision point where
observations provide strategic values at a decision point.
This was confirmed by our most striking finding. After
functional pruning, each of the games resulted in open-loop
MMs (i.e. zero decision points). Thus, in all cases, Atari
RPNs produced MMs that were pruned open-loop policies.

5.2. Stochastic Classic Control Tasks

Acrobot. This control task includes two joints and two
links, where the joint between the two links is actuated.
Initially, the links are hanging downwards, and the goal is
to swing the end of the lower link up to a given height. The
state vector gives the sin and cos of the two rotational joint
angles and the joint angular velocities. The actions involved
are -1,0 or +1 torque. We share pruned state machine for
QBN sizes (4, 4) in Figure 6b. We applied our differential
attention approach to decision point S2 and found that the
most important observation features were ‘sin of joint angle
1" and “joint 2 velocity". The Figure 6b shows the scatter

plot of the decisions at S2 versus these features. The plot
reveals that for positive sin values, a torque of -1 is applied
by starting in S2 forcing link 1 and link 2 to rise against
gravity. This torque is applied until it transitions to S3

via O1 which corresponds to a positive velocity for joint
2 as shown in the scatter plot. This happens when link
2 cannot go further up against gravity under the current
momentum. In this state, it applies +1 torque to supplement
the momentum provided by the pull of gravity. It transitions
back to S2 via O0 only when the joint velocity of link 1 is
positive, indicating that it cannot go further up. This loop
between state S2 and S3 generates enough momentum to
eventually reach the goal.

In contrast, we compare against the minimal MM (Fig-
ure 4d) extracted via prior work (Koul et al., 2019). This
MM, is fully connected and merges many different types of
observations. Through various previous attempts, we were
unable to elicit a clear description of the machines operation.
Rather, our reduction approach was able to lead to the above
relatively clear understanding of the machine.

CartPole. We use the standard OpenAI CartPole environ-
ment with randomized initial states. For QBN pairs of (4,4),
Table 1 shows that the number of decision points is 6 before
functional pruning and reduces to 2 after. The pruned MM is
shown in Figure 6a, which has the same simple structure as
for Acrobot. The machine primarily transitions between S2

(left movement) and S3 (right movement) with self-loops
at those states between transitions. The figure shows the
differential attention computed over the features at S2 and
S3 with the key features being “pole-velocity" followed by
“pole-angle". The scatter plots for the decisions against these
features show that at S2 there is a clear threshold of positive
pole-velocity that transitions to S3 to take the “right" action,
and otherwise continues with “left". This is an intuitive strat-
egy for reducing the velocity. Similar insights are gained via
the scatter plot at S3, but here both pole-velocity and pole-
angle play a role in the decision. Again, our approach was
able to produce an MM that has meaningful interpretation.

Lunar Lander. This task involves landing a rover using
actions that fire one of three thrusters: main, left, right, and
no-op. The MMs for both QBN sizes were significantly
larger than for the above tasks, likely due to increased com-
plexity and stochasticity. Functional pruning was ineffective,
leaving 184 and 230 decision points for the two QBN sizes,
which indicates the observations have a strong strategic role.
We analyzed many of the decision points and found that the
“distance to the ground" is usually the most salient feature
across decision points. One exception is the initial deci-
sion point. At this decision point there were three branches
with different observations leading to states with different
fire actions main engine, right engine and left engine. The
attention comparison of these observations shows prime
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differences in x-velocity and y-velocity, thereby opposite
direction engines are fired to stabilized the rover. This deci-
sion point does not attend to rover coordinates (x,y position)
and leg-positions, which are more relevant when the lander
is closer to the ground. While it is difficult to articulate a
concise description of such a machine, we see that this anal-
ysis approach is able to provide insights about the decisions
that may help build confidence or identify concerns.

6. Discussion and Current Challenges
Our analysis is the first to provide such detailed insights into
the decision making of RPNs for deterministic Atari games.
Indeed, the observation that all of the considered policies
resulted in pruned open-loop controllers was unexpected
apriori and not apparent from prior work. For example, prior
work on attention analysis of Atari policies, even for the
deterministic setting, leaves one to believe that observations
play key roles in decision making. It is tempting to discount
the above insights, due to the deterministic setting, since
1) it is clear that there exist open-loop controllers for any
deterministic domain, and 2) prior work has shown that
search is able to find effective open-loop plans for some
Atari games (Bellemare et al., 2013; Machado et al., 2018).
However, these points do not imply that an RPN would
necessarily learn an open-loop controller and indeed we
observed that they do not. It is reasonable to expect that
RPNs would meaningfully use observations to get a more
general policy, but we instead saw the role for observations
was very different. This demonstrates the importance of
developing a variety of tools to reveal insights that rely less
on human assumptions and interpretation.

Our preliminary experience with larger and more complex
environments shows that sometimes our approach does not
reveal easily analyzable MMs. This was apparent in stochas-
tic Atari experiments, where we observed that the discrete
sequences produced across different episodes have some
overlap, but are dominated by large numbers of disjoint
states. Some potential explanations for this are: 1) An inade-
quacy of our approach–e.g., the quantization process and/or
reduction steps/analysis may need to be improved; 2) Our
approach may be identifying the fundamental nature of the
learned RNN policies. That is, the policies may effectively
use large numbers of trajectories to encode large numbers
of effectively (pruned) open-loop patterns. As new obser-
vations are encountered the machines then map to encoded
patterns in a nearest neighbor style. This second possi-
bility would suggest the need for improved RPN training
approaches to support data efficiency and interpretability.
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