
Newton Method over Networks is Fast up to the Statistical Precision

Supplementary Material
This supplementary material is organized as follows. Sec. A provides additional numerical experiments, complementing
those in Sec. 5 of the main paper. In Sec. C, we establish asymptotic convergence of DiRegINA and prove some intermediate
results that are instrumental for our rate analysis. Sec. D-G are devoted to prove Sec. 4 of the paper, namely: Theorem 7 is
proved in Sec. D; Theorem 9 and Corollary 11 are proved in Sec. E; and finally, Theorem 12 is proved in Sec. F.

Furthermore, there are some convergence results stated in Table 1 that could not be stated in the paper because of space limit;
they are reported here in the following sections: i) the case of quadratic functions fi in the setting of Theorem 9 is stated in
Theorem 18 in Sec. E.4 while the case of quadratic fi’s in the setting of Theorem 12 is stated in Theorem 19, Sec. G.

A. Additional Numerical Experiments
Convex (non-strongly convex) objective

We consider a (non-strongly) convex instance of the regression problem. Specifically, we have: fi(x) = (1/2n) ‖Aix− bi‖2
and K = Rd, where Ai and bi are determined by the scaled LIBSVM dataset space-ga (N = 3107, d = 6, and
β = 0.6353). The network is simulated as the Erdős-Rényi network model, with m = 30 and two connectivity values,
ρ = 0.3843 and ρ = 0.8032. We compared DiRegINA with the algorithms described in Sec. 4, namely: NN-1, NT, DIGing
and SONATA-F. Note that NN-1 and NT are not guaranteed to converge when applied to convex (non-strongly convex)
functions. The tuning of the algorithm is the same as the one described in Sec. 5.1. In Fig. 4, we plot the optimization error
versus the communication rounds achieved by the aforementioned algorithms in the two network settings, ρ = 0.3843 and
ρ = 0.8032. As already observed for the other simulated problems (cf. Sec. 5.1), SONATA-F shows similar performance of
DiRegINA when running on well-connected networks while its performance deteriorates in poorly connected network. NT
seems to be non-convergent while NN1 and DIGing converge, yet slow, to acceptable accuracy.

10 20 30 40

communication rounds

10
-6

10
-4

10
-2

10
0

o
p

ti
m

iz
a

ti
o

n
 e

rr
o

r

DiRegINA

NN-1

DIGing

SONATA-F

NT

(a)

10 20 30 40

communication rounds

10
-6

10
-4

10
-2

10
0

o
p

ti
m

iz
a

ti
o

n
 e

rr
o

r

DiRegINA

NN-1

DIGing

SONATA-F

NT

(b)

Figure 4. Distributed ridge regression on space-ga dataset and Erdős-Rényi graph with (a) ρ = 0.3843 (b) ρ = 0.8032.

O(1/
√
mn)-regularized logistic regression

We train logistic regression models, regularized by an additive `2-norm (with coefficient λ > 0). The problem is an
instance of (P), with each fi(x) = −(1/n)

∑n
j=1[ξ

(j)
i ln(z

(j)
i ) + (1 − ξ

(j)
i ) ln(1 − z

(j)
i )] + (λ/2)||x||2 and K = Rd,

where z(j)
i , 1/(1 + e−〈a

(j)
i ,x〉) and binary class labels ξ(j)

i ∈ {0, 1} and vectors a(j)
i , i = 1, . . .m and j = 1, . . . , n are

determined by the data set. We considered the LIBSVM a4a (N = 4, 781, d = 123) and we set λ = 1/
√
mn. The Network

is simulated according to the Erdős-Rényi model with m = 30 and connectivity ρ = 0.3372 and ρ = 0.7387.

We compare DiRegINA , NN-1, DIGing, SONATA-F and NT, all initialized from the same random point. The free parameters
of the algorithms are tuned manually; the best practical performance are observed with the following tuning: DiRegINA is
tuned as described in Sec. 5.2, i.e., τ = 1, M = 1e− 3, and K = 1; NN-1, α = 1e− 3 and ε = 1; DIGing, stepsize equal
to 1; SONATA-F, τ = 0.1; NT, ε = 0.2 and α = 0.05.
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Figure 5. Distributed logistic regression on a4a dataset and Erdős-Rényi graph with (a) ρ = 0.3372 (b) ρ = 0.7387.

In Fig. 4, we plot the optimization error versus the communication rounds achieved by the aforementioned algorithms in
two network settings corresponding to ρ = 0.3372 and ρ = 0.7387. In both settings (panels (a)-(b)), NN-1 and DIGing
still exhibits slow convergence, with a slight advantage of DIGing over NN-1. DiRegINA , NT and SONATA-F, perform
similarly, with DiRegINA showing some improvements when the network is better connected [panel (a)].

B. Notations and Preliminary Results
We begin introducing some notation which will be used in all the proofs, along with some preliminary results.

Define
δνi , sνi −∇F (xνi ) and Bνi , ∇2fi(x

ν
i )−∇2F (xνi ), (17)

The local surrogate function F̃i(y;xνi ) in (7a) can be rewritten as

F̃i(y;xνi ) , F (xνi ) + 〈∇F (xνi ) + δνi , y − xνi 〉+
1

2

〈[
∇2F (xνi ) +Bνi + τiI

]
(y − xνi ), y − xνi

〉
+
Mi

6
‖y − xνi ‖

3
. (18)

Let us recall the following basic result, which is a consequence of Assumption 3.

Lemma 1 (Nesterov (2018, Lemma 1.2.4)). Let F : Rd → R be a twice-differentiable function satisfying Assumption 3.
Then, for all x, y ∈ Rd,

∣∣F (y)− F (x)− 〈∇F (x), y − x〉 − 1

2

〈
∇2F (x)(y − x), y − x

〉 ∣∣ ≤ L

6
‖y − x‖3 . (19)∥∥∇F (y)−∇F (x)−∇2F (x)(y − x)

∥∥ ≤ L

2
‖y − x‖2 . (20)

Setting x = xνi in (19) implies

F (xνi ) + 〈∇F (xνi ), y − xνi 〉+
1

2

〈
∇2F (xνi )(y − xνi ), y − xνi

〉
≤ F (y) +

L

6
‖y − xνi ‖

3
, ∀y ∈ Rd,

which, together with (18), gives the following upper bound for the surrogate function F̃i defined in (18):

F̃i(y;xνi ) ≤F (y) +
1

2
‖y − xνi ‖

2
(β+τi)I

+
Mi + L

6
‖y − xνi ‖

3
+ 〈δνi , y − xνi 〉 , ∀y ∈ Rd, (21)



Newton Method over Networks is Fast up to the Statistical Precision

where for a positive semidefinite matrix A, ‖x‖2A , 〈Ax, x〉. We also denote

∆xνi , xν+
i − x

ν
i , δν , (δνi )mi=1, J , 11>/m, (22)

where we remind that xν+
i is obtained by the minimization of the local surrogate function F̃i(y;xνi ). The rest of the symbols

and notations are as defined in the main manuscript.

C. Asymptotic convergence of DiRegINA
In this section we prove the following theorem stating asymptotic convergence of DiRegINA .

Theorem 13. Let Assumptions 1 and 3-5 hold, Mi ≥ L and τi = 2β for all i = 1, . . . ,m. If a reference matrix W
satisfying Assumption 6 is used in steps (7b)-(7c), with ρ , λmax(W − J) < 1 and K = Õ(1/

√
1− ρ) (explicit condition

is provided in eq. (41)), then pν → 0 and ||xνi − xνj || → 0, as ν →∞ for all i, j = 1, . . . ,m.

We prove the theorem in three main steps:

Step 1 (Sec. C.1): Deriving optimization bounds on the per-iteration decrease of pν ;

Step 2 (Sec. C.2): Bounding the gradient tracking error δν , which in turn affects the per-iteration decrease of pν ;

Step 3 (Sec. C.3): Constructing a proper Lyapunov function based on the error terms in the previous two steps, whose
dynamics imply asymptotic convergence of DiRegINA .

To simplify the derivations, we study the case of strongly convex or nonstronlgy convex F together, by setting µ = 0 in the
latter case.

C.1. Optimization error bounds

In this subsection we establish an upper bound for pν+1 − pν [cf. (32)]. We begin with two technical intermediate
results–Lemma 2 and Lemma 3.

Lemma 2. Under Assumption 1, there holds

F̃i(x
ν+
i ;xνi ) ≤ F̃i(xνi ;xνi )− Mi

3
‖∆xνi ‖

3 − µi + τi
2

‖∆xνi ‖
2
. (23)

Proof. By the optimality of xν+
i in (18), we infer

〈
sνi +

[
∇2fi(x

ν
i ) + τiI

]
∆xνi ,∆x

ν
i

〉
≤ −Mi

2
‖∆xνi ‖

3
. (24)

Since F̃i(xνi ;xνi ) = F (xνi ), we have

F̃i(x
ν+
i ;xνi )− F̃i(xνi ;xνi )

(18)
=
〈
sνi , x

ν+
i − x

ν
i

〉
+

1

2

〈[
∇2fi(x

ν
i ) + τiI

]
∆xνi ,∆x

ν
i

〉
+
Mi

6

∥∥xν+
i − x

ν
i

∥∥3

(24)
≤ − 1

2

〈[
∇2fi(x

ν
i ) + τiI

]
∆xνi ,∆x

ν
i

〉
− Mi

3
‖∆xνi ‖

3

≤− Mi

3

∥∥xν+
i − x

ν
i

∥∥3 − µi + τi
2

∥∥xν+
i − x

ν
i

∥∥2
.

Lemma 3. Let Assumptions 1 and 3-4 hold. Then, any arbitrary ε > 0, we have

F (xν+
i )− F̃i(xν+

i ;xνi ) ≤− Mi − L
6
||∆xνi ||3 −

τi − β − ε
2

||∆xνi ||2 +
1

2ε
‖δνi ‖

2
. (25)
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Proof. Taylor’s theorem applied to functions F̃i(·;xνi ) and F (·) around xνi yields

F (xν+
i ) =F (xνi ) + 〈∇F (xνi ),∆xνi 〉+ ∆xν>i Hν

i ∆xνi , (26a)

F̃i(x
ν+
i ;xνi ) =F̃i(x

ν
i ;xνi ) +

〈
∇F̃i(xνi ;xνi ),∆xνi

〉
+ ∆xν>i H̃ν

i ∆xνi , (26b)

where

Hν
i =

∫ 1

0

(1− θ)∇2F (θxν+
i + (1− θ)xνi )dθ,

H̃ν
i =

∫ 1

0

(1− θ)∇2F̃i(θx
ν+
i + (1− θ)xνi ;xνi )dθ.

Since F̃i(xνi ;xνi ) = F (xνi ) and ∇F̃i(xνi ;xνi ) = ∇F (xνi ) + δνi , subtracting (26a)-(26b) gives

F (xν+
i )− F̃i(xν+

i ;xνi ) =
〈(
Hν
i − H̃ν

i

)
∆xνi ,∆x

ν
i

〉
− 〈δνi ,∆xνi 〉 . (27)

Now let us simplify (27). Note that the hessian of F̃i(·;xνi ) is

∇2F̃i(xi;x
ν
i ) = ∇2F (xνi ) +Bνi + τiI +MiG(xi;x

ν
i ), (28)

where

G (xi;x
ν
i ) ,

1

2

(
‖xi − xνi ‖ I +

(xi − xνi )(xi − xνi )>

‖xi − xνi ‖

)
.

Hence,

Hν
i − H̃ν

i

=

∫ 1

0

(1− θ)∇2F
(
θxν+

i + (1− θ)xνi
)
dθ −

∫ 1

0

(1− θ)∇2F̃i
(
θxν+

i + (1− θ)xνi ;xνi
)
dθ

(28)
=

∫ 1

0

(1− θ)∇2F
(
θxν+

i + (1− θ)xνi
)
dθ −

∫ 1

0

(1− θ)
[
∇2F (xνi ) +Bνi

]
dθ −

∫ 1

0

(1− θ)τiIdθ

−
∫ 1

0

(1− θ)MiθG(xν+
i ;xνi )dθ

=

∫ 1

0

(1− θ)
(
∇2F

(
θxν+

i + (1− θ)xνi
)
−∇2F (xνi )

)
dθ

−
∫ 1

0

(1− θ)Bνi dθ −
∫ 1

0

(1− θ)τiIdθ −
∫ 1

0

(1− θ)MiθG(xν+
i ;xνi )dθ

(a)

�
∫ 1

0

(1− θ)Lθ||xν+
i − x

ν
i ||Idθ

−
∫ 1

0

(1− θ)Bνi dθ −
∫ 1

0

(1− θ)τiIdθ −
∫ 1

0

(1− θ)MiθG(xν+
i ;xνi )dθ

=− Mi

6
G(xν+

i ;xνi ) +
L

6
||xν+

i − x
ν
i ||I −

τi
2
I − Bνi

2

(29)

where (a) holds since∇2F is L-Lipschitz continuous. Combining (27) and (29), we conclude

F (xν+
i )− F̃i(xν+

i ;xνi ) ≤− Mi − L
6
||∆xνi ||3 −

τi
2
||∆xνi ||2 −

1

2
〈Bνi ∆xνi ,∆x

ν
i 〉 − 〈δνi ,∆xνi 〉

≤ − Mi − L
6
||∆xνi ||3 −

τi − β − ε
2

||∆xνi ||2 +
1

2ε
‖δνi ‖

2
,

for arbitrary ε > 0, where the last inequality is due to the Cauchy-Schwarz inequality and | 〈Bνi ∆xνi ,∆x
ν
i 〉 | ≤ β||∆xνi ||2,

which is a consequence of (17) and Assumption 4.
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We are now in a position to prove the main result of this subsection.

Combining (23) in Lemma 3 with (25) in Lemma 2, and using F̃i(xνi ;xνi ) = F (xνi ), yields

F (xν+
i )− F (xνi ) ≤−

(
Mi

2
− L

6

)
||∆xνi ||3 −

(
µi
2

+ τi −
β + ε

2

)
||∆xνi ||2 +

1

2ε
‖δνi ‖

2
.

Since under either Assumption 1 or Assumption 2 combined with Assumption 4 it holds that µi ≥ max {0, µ− β}, we
obtain

F (xν+
i )− F (xνi ) ≤−

(
Mi

2
− L

6

)
||∆xνi ||3 −

(
max(0, µ− β)

2
+ τi −

β + ε

2

)
||∆xνi ||2 +

1

2ε
‖δνi ‖

2
. (30)

Denoting pν+ , (1/m)
∑m
i=1

{
F (xν+

i )− F (x̂)
}

, we derive a simple relation with pν+1:

pν+1 + F (x̂) =
1

m

m∑
i=1

F
(
xν+1
i

)
(7b)
=

1

m

m∑
i=1

F
( m∑
j=1

(WK)i,j x
ν+
j

)
(a)

≤ 1

m

m∑
i,j=1

(WK)i,jF
(
xν+
j

)
(b)
=

1

m

m∑
j=1

F
(
xν+
j

)
= pν+ + F (x̂),

(31)

where (a) is due to convexity of F (cf. Assumptions 1 and 2) and
∑m
j=1(WK)ij = 1 (cf. Assumption 6); and in (b) we used∑m

i=1(WK)ij = 1 (cf. Assumption 6). Summing (30) over i while setting ε = β, τi = 2β and Mi ≥ L/3 (recall that it is
assumed Mi ≥ L), gives the desired per-iteration decrease of pν when ‖δν‖ is sufficiently small:

pν+1 − pν
(31)
≤ pν+ − pν ≤− max(µ, β)

2
· 1

m

m∑
i=1

‖∆xνi ‖2 +
1

2mβ
‖δν‖2 . (32)

C.2. Network error bounds

The goal of this subsection is to prove an upper bound for ‖δν‖ in terms of the number of communication steps K, implying
that this error can be made sufficiently small by choosing sufficiently large K. For notation simplicity and without loss of
generality, we assume d = 1; the case d > 1 follows trivially.

Recall that xν , (xνi )mi=1, sν , (sνi )mi=1, J , (1/m)1m1>m, and

xν⊥ , (I − J)xν = xν − 1m
1>mx

ν

m
, sν⊥ , (I − J)sν = sν − 1m

1>ms
ν

m
, ∆xν , (∆xνi )mi=1.

Note that the vectors xν⊥ and sν⊥ are the consensus and gradient-tracking errors; when ‖xν⊥‖ = ‖sν⊥‖ = 0, we have xνi = xνj
and sνi = sνj for all i, j = 1, . . . ,m. The following holds for xν⊥ and sν⊥.

Lemma 4 (Proposition 3.5 in Sun et al. (2019)). Under Assumptions 1 and 5-6, for all ν ≥ 0,

‖xν+1
⊥ ‖ ≤ ρK‖xν⊥‖+ ρK‖∆xν‖, (33a)

‖sν+1
⊥ ‖ ≤ ρK‖sν⊥‖+ 2QmaxρK‖xν⊥‖+QmaxρK‖∆xν‖, (33b)

where ρK = λmax(WK − J) < 1. Note that in case of K-rounds of communications using a reference matrix W with
ρ , λmax(W − J) < 1, we have ρK = ρK; if Chebyshev acceleration is employed, we have ρK =

(
1−
√

1− ρ
)K

.

Now let us bound δνi defined in (17). Note that by column-stochasticity of WK and initialization rule s0
i = ∇fi(x0

i ), it can
be trivially concluded from (7c) that

1>ms
ν =

m∑
j=1

∇fj(xνj ).
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Hence,

‖δνi ‖
2

=
∥∥∥sνi − 1>ms

ν

m
+

1

m

m∑
j=1

∇fj(xνj )−∇F (xνi )
∥∥∥2

(a)

≤2
∥∥∥sνi − 1>ms

ν

m

∥∥∥2

+
2Q2

max

m

 m∑
j=1

∥∥∥xνi ± 1>mx
ν

m
− xνj

∥∥∥2


≤2
∥∥∥sνi − 1>ms

ν

m

∥∥∥2

+
4Q2

max

m

(
‖xν⊥‖2 +m

∥∥∥xνi − 1>mx
ν

m

∥∥∥2
)
,

(34)

where (a) is due to Qmax-Lipschitz continuity of∇fi. Summing (34) over i and taking the square root, gives

‖δν‖ ≤ δ̃ν ,
√

2 (‖sν⊥‖+ 2Qmax‖xν⊥‖) . (35)

It remains to bound δ̃ν defined above:

δ̃ν+1 =
√

2
(
‖sν+1
⊥ ‖+ 2Qmax‖xν+1

⊥ ‖
) (a)

≤ρK
√

2 (‖sν⊥‖+ 4Qmax‖xν⊥‖) + 3
√

2QmaxρK‖∆xν‖

≤2ρK δ̃
ν + 3

√
2QmaxρK‖∆xν‖,

where in (a) we used Lemma 4 [cf. (33a)-(33b)]. Consequently,

(δ̃ν+1)2 ≤8ρ2
K(δ̃ν)2 + 36Q2

maxρ
2
K‖∆xν‖2. (36)

Since ρK decreases as K increases, the latter inequality provides a leverage to make δ̃ν+1 sufficiently small by choosing K
sufficiently large.

C.3. Asymptotic convergence

We combine the results of the previous two subsections to finally prove Theorem 13. Combining (32) and (35), we obtain

pν+1 ≤ pν − max(β, µ)

2m
‖∆xν‖2 +

1

2mβ
(δ̃ν)2. (37)

Next, we combine (36) with (37) multiplied by some weight w > 0 to obtain

wpν+1 + (δ̃ν+1)2 ≤wpν +

(
8ρ2
K +

w

2mβ

)
(δ̃ν)2 − w

(
max(β, µ)

2m
− 36

w
Q2

maxρ
2
K

)
||∆xν ||2. (38)

Let w = cwβ, for some 0 < cw ≤ 1. Then, if

8ρ2
K +

w

2mβ
≤ cw,

max(β, µ)

4m
≥ 36

w
Q2

maxρ
2
K , (39)

(38) becomes

wpν+1 + (δ̃ν+1)2 ≤wpν + cw(δ̃ν)2 − wmax(β, µ)

4m
||∆xν ||2. (40)

Note that by Lemma 4, condition (39) holds if

K ≥ 1√
1− ρ

log

max

 2
√

2√
cw(1− 1

2m )
,

12
√
mQmax√

cwβmax(β, µ)


 . (41)

Denoting
ξν , wpν + (δ̃ν)2, (42)
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let us show that ξν → 0 as ν →∞, which implies that the optimization error pν and network error δ̃ν asymptotically vanish.
Since ξν ≥ 0, inequality (40) implies

∑∞
ν=0 ||∆xν ||2 < ∞. Thus, ||∆xν || → 0; and ||∆xν || ≤ D1, for some D1 > 0

and all ν ≥ 0. Further, {ξν}ν is non-increasing and ||ξν || ≤ D2 for some D2 > 0 and all ν ≥ 0. Thus, pν ≤ D2/w,
which together with Assumption 1(iv) and Assumption 2, also implies ||xνi || ≤ D3 for some D3, all i and ν ≥ 0. Using
||∆xν || → 0 and (36), if 8ρ2

K < 1 (which holds under (41)), we obtain that δ̃ν → 0. Finally, it remains to show that pν → 0.
Using optimality condition of xν+

i defined in (7a), we get〈
∇F (xνi ) + δνi +

[
∇2F (xνi ) +Bνi + τiI

]
∆xνi +

Mi

2
||∆xνi ||∆xνi , x̂− xν+

i

〉
≥ 0.

Rearranging terms gives 〈
∇F (xνi ) +∇2F (xνi )∆xνi , x̂− xν+

i

〉
≥
〈Mi

2
||∆xνi ||∆xνi , xν+

i − x̂
〉

+
〈
δνi , x

ν+
i − x̂

〉
+
〈
B̃νi ∆xνi , x

ν+
i − x̂

〉
,

(43)

where B̃νi , Bνi + τiI . By convexity of F , we can write

0 ≥F (x̂)− F (xν+
i )

≥
〈
∇F (xν+

i ), x̂− xν+
i

〉
=
〈
∇F (xν+

i )−∇F (xνi )−∇2F (xνi )∆xνi , x̂− xν+
i

〉
+
〈
∇F (xνi ) +∇2F (xνi )∆xνi , x̂− xν+

i

〉
(43)
≥
〈
∇F (xν+

i )−∇F (xνi )−∇2F (xνi )∆xνi , x̂− xν+
i

〉
+
〈Mi

2
||∆xνi ||∆xνi , xν+

i − x̂
〉

+
〈
δνi , x

ν+
i − x̂

〉
+
〈
B̃νi ∆xνi , x

ν+
i − x̂

〉
.

(44)

Using Lipschitz continuity of ∇F , ||∆xνi || → 0 and δ̃ν → 0 (hence ||δνi || → 0), we conclude that the RHS of (44)
asymptotically vanishes, for all i = 1, . . . ,m. Hence, F (xν+

i )− F (x̂)→ 0, for all i = 1, . . . ,m. Using (31), we finally
obtain pν → 0.

Finally, by (35) and δ̃ν → 0, we obtain ‖sν⊥‖ → 0 and ‖xν⊥‖ → 0, implying ||xνi − xνj || → 0, for all i, j = 1, . . . ,m as
ν →∞. This concludes the proof of Theorem 13.

Remark 14. Note that (36) implies

(δ̃ν)2 ≤ ρ2
KD̄δ, D̄δ , 8D2 + 36Q2

maxD
2
1, ∀ν ≥ 0, (45)

since (δ̃ν)2 ≤ ξν ≤ D2 and ||∆xν || ≤ D1, for all ν ≥ 0.

D. Proof of Theorem 7
We first prove a detailed “region-based” complexity of DiRegINA (cf. Theorem 15, Subsec. D.1) for the prevalent scenario
0 < β ≤ 1 [recall that typically β = O(1/

√
n)]. For the sake of completeness, the case β ≥ 1 is studied in Theorem 16 (cf.

Subsec. D.2). Building on Theorems 15-16, we can finally prove the main result, Theorem 7 (cf. Subsec. D.3).

D.1. Complexity Analysis when 0 < β ≤ 1

Theorem 15 (0 < β ≤ 1 and L > 0). Let Assumptions 1 and 3 -5 hold along with 0 < β ≤ 1. Let Mi = L > 0, τi = 2β,
and recall the definition of D > 0 implying ||x0

i − x̂|| ≤ D, for all i = 1, . . . ,m. W.l.o.g. assume D ≥ 2/L. Pick an
accuracy ε > 0. If a reference matrix W satisfying Assumption 6 is used in steps (7b)-(7c), with ρ , λmax(W − J) < 1

and K = Õ(log(1/ε)/
√

1− ρ) (the explicit expression of K can be found in (63)), then the sequence {pν} generated by
DiRegINA satisfies the following:

(a) if pν ≥ 2LD3,

pν+1 ≤ 5

6
pν ,
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(b) if β2 · (2LD3) ≤ pν ≤ 2LD3,

pν ≤ 244 · LD3

ν2
,

(c) if ε ≤ pν ≤ β2 · (2LD3),

pν ≤ 242 · (LD3)2 · β
2

ε
· 1

ν2
.

Proof. Recalling Lemma 3 from the proof of Theorem 13, we can write

F (xν+
i ) ≤ F̃i(xν+

i ;xνi ) +
1

2ε
‖δνi ‖

2
, (46)

for arbitrary ε > 0, Mi ≥ L, and τi ≥ β+ ε. In addition, by the upperbound approximation of F̃i(·;xνi ) in (21), there holds

F̃i(y;xνi ) ≤F (y) +
1

2
‖y − xνi ‖

2
(β+τi+ε)I

+
Mi + L

6
‖y − xνi ‖

3
+

1

2ε
‖δνi ‖

2
, ∀y ∈ K. (47)

Let α0 ∈ (0, 1]. Set ε = β and τi = 2β. By (46)-(47) and xν+
i being the minimizer of F̃ (·;xνi ) [see (7a)], we obtain

F (xν+
i )− F (x̂)

≤min
y∈K

{
F (y)− F (x̂) + 2β ‖y − xνi ‖

2
+
Mi + L

6
‖y − xνi ‖

3
+

1

β
‖δνi ‖

2

}
≤ min
α∈[0,α0]

{
F (y)− F (x̂) + 2β ‖y − xνi ‖

2
+
Mi + L

6
‖y − xνi ‖

3
+

1

β
‖δνi ‖

2

: y = αx̂+ (1− α)xνi

}
≤ min
α∈[0,α0]

{
(1− α) (F (xνi )− F (x̂))

+ 2βα2 ‖x̂− xνi ‖
2

+
Mi + L

6
α3 ‖x̂− xνi ‖

3
+

1

β
‖δνi ‖

2
}
,

(48)

where the last inequality holds by the convexity of F . Note that, by definition, ||x0
i − x̂|| ≤ D, for all i = 1, . . . ,m.

Assuming ||xνi − x̂|| ≤ D, for all i = 1, . . . ,m, we prove descent at iteration ν + 1, i.e. pν+1 < pν , unless pν = 0. Note
that by Assumption 1(iv), if {pν}ν is non-increasing, then ||xνi − x̂|| ≤ D for all ν ≥ 0 and i = 1, . . . ,m. Now set Mi = L
in (48) and compute the mean over i = 1, . . . ,m, which yields

pν+1
(31)
≤ pν+ ≤ min

α∈[0,α0]

{
(1− α)pν + 2βα2D2 +

LD3

3
α3 +

1

mβ
‖δν‖2

}
. (49)

Denote

C1 ,
LD3

3
. (50)

Since D ≥ 2
L , it holds 2βD2 ≤ 3βC1. Then, setting α0 = min{1, pν/(6βC1)} in (49) yields

pν+1 ≤ min
α∈[0,min{1, pν

6βC1
}]

{
(1− α)pν + 3βC1α

2 + C1α
3 +

1

mβ
‖δν‖2

}
≤ min
α∈[0,min{1, pν

6βC1
}]

{
(1− α/2)pν + C1α

3 +
1

mβ
‖δν‖2

}
.

(51)

Let us assess (51) over the following “regions”. Denoting by α∗ the minimizer of the optimization problem at the RHS of
(51), we have the following:

(a) If pν ≥ 6C1, then α∗ = 1 and

pν+1 ≤ 1

2
pν + C1 +

1

mβ
‖δν‖2 ≤

(
1

2
+

1

6

)
pν +

1

mβ
‖δν‖2 , (52)
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and under the condition
1

mβ
‖δν‖2 ≤ 1

6
pν ⇐=

1

mβ
‖δν‖2 ≤ C1, (53)

(52) yields

pν+1 ≤ 5

6
pν .

Note that, by (45) and Lemma 4, condition (53) holds if

K ≥ 1√
1− ρ

· 1

2
log

(
D̄δ

mβC1

)
. (54)

(b) If 6β2C1 ≤ pν ≤ 6C1, then α∗ =
√

pν

6C1
and

pν+1 ≤ pν − (pν)3/2

3
√

6C1

+
1

mβ
‖δν‖2 , (55)

and if (similar to derivation of (54))

K ≥ 1√
1− ρ

· 1

2
log

(
D̄δ

mβ4C1

)
=⇒ 1

mβ
‖δν‖2 ≤ β3C1 =⇒ 1

mβ
‖δν‖2 ≤ (pν)3/2

6
√

6C1

, (56)

(55) implies

pν+1 ≤ pν − (pν)3/2

6
√

6C1

. (57)

Finally, since pν is non-increasing,

1√
pν+1

− 1√
pν

=
pν − pν+1(√

pν +
√
pν+1

)√
pνpν+1

(57)
≥

1
6
√

6C1
(pν)3/2(√

pν +
√
pν+1

)√
pνpν+1

≥c0 ,
1

12

√
1

6C1
,

and consequently,

pν ≤ 1

c20

(
ν + 1

c0
√
p0

)2 ≤
1

c20ν
2
.

(c) If ε ≤ pν ≤ 6β2C1, then α∗ = pν

6βC1
and

pν+1 ≤ pν − (pν)2

18βC1
+

1

mβ
‖δν‖2 , (58)

and if (similar to derivation of (54))

K ≥ 1√
1− ρ

· 1

2
log

(
36C1D̄δ

mε2

)
=⇒ 1

mβ
‖δν‖2 ≤ ε2

36βC1
=⇒ 1

mβ
‖δν‖2 ≤ (pν)2

36βC1
, (59)

we deduce from (58)

pν+1 ≤ pν − (pν)2

36βC1
. (60)

Since pν is non-increasing,

1√
pν+1

− 1√
pν

=
pν − pν+1(√

pν +
√
pν+1

)√
pνpν+1

(60)
≥

1
36βC1

(pν)2(√
pν +

√
pν+1

)√
pνpν+1

≥c̃0 ,

√
ε

72βC1
,

(61)
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and consequently,

pν ≤ 1

c̃20

(
ν + 1

c̃0
√
p0

)2 ≤
1

c̃20ν
2

= 722 · C2
1 ·

β2

ε
· 1

ν2
. (62)

Finally, combining all the conditions (41), (54),(56), and (59), the requirement on K reads

K ≥ 1√
1− ρ

· 1

2
log

max

 16

cw
,

122mQ2
max

cwβmax(β, µ)
,

D̄δ

min
{
mβC1,mβ4C1,

m
36C1

ε2
}

 , (63)

where D̄δ and C1 are defined in (45) and (50), respectively.

D.2. Complexity Analysis when β ≥ 1

Theorem 16 (β ≥ 1 and L > 0). Let Assumptions 1 and 3-5 hold and β ≥ 1. Let Mi = L > 0, τi = 2β, and recall the
definition of D > 0 implying maxi∈[m] ||x0

i − x̂|| ≤ D. W.l.o.g. assume D ≥ 2/L. Pick an arbitrary ε > 0. If a reference
matrix W satisfying Assumption 6 is used in steps (7b)-(7c), with ρ , λmax(W − J) < 1 and K = Õ(log(1/ε)/

√
1− ρ)

(the explicit expression is given in (63)), then the sequence {pν} generated by DiRegINA satisfies the following:

(a) if pν ≥ β · (2LD3),

pν+1 ≤ 5

6
pν ,

(b) if ε ≤ pν ≤ β · (2LD3),

pν ≤ 242 · (LD3)2 · β
2

ε
· 1

ν2
.

Proof. Excluding β, the parameter setting is identical to Theorem 15. Recall (51), i.e.,

pν+1 ≤ min
α∈[0,min{1, pν

6βC1
}]

{
(1− α/2)pν + C1α

3 +
1

mβ
‖δν‖2

}
, (64)

where C1 is defined in (50). Denoting by α∗ the minimizer of the optimization problem at the RHS of (51), we have:

(a) If pν ≥ 6βC1, then α∗ = 1 and under (63), (64) yields

pν+1 ≤ 4 + 1/β

6
pν ≤ 5

6
pν .

(b) If ε ≤ pν ≤ 6βC1, then α∗ = pν

6βC1
. Under (63), (64) yields

pν+1 ≤pν − (pν)2

36βC1
,

and following similar steps as in derivation of (62), we obtain

pν ≤ 1

c̃20ν
2

= 722 · C2
1 ·

β2

ε
· 1

ν2
.
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D.3. Proof of main theorem

We proceed to prove Theorem 7. Given an accuracy 0 < ε � 1, when 0 < β ≤ 1, Theorem 15 gives the following
expression of rate: to achieve pν ≤ ε, DiRegINA requires

O

(
log

(
1

6C1

)
+

√
LD3

ε
+
β
(
LD3

)
ε

)
= Õ

(√
LD3

ε
+
β
(
LD3

)
ε

)
, (65)

iterations, while if β ≥ 1, by Theorem 16, DiRegINA requires

O

(
log

(
1

2βLD3

)
+
β
(
LD3

)
ε

)
= Õ

(
β
(
LD3

)
ε

)

iterations. Therefore, (65) is a valid rate complexity expression (in terms of iterations) in both discussed cases (i.e. 0 < β ≤ 1
and β ≥ 1). Now, recall that every iteration requires K rounds of communications, with K satisfying (41) and (63); hence
K = Õ

(
1/
√

1− ρ · log(1/ε)
)

= Õ
(
1/
√

1− ρ · ε−α/2
)
, for any arbitrary small α > 0. Therefore the final communication

complexity reads

Õ

(
1√

1− ρ
·

{√
LD3

ε1+α
+
β
(
LD3

)
ε1+α

2

})
.

E. Proof of Theorem 9 and Corollary 11
We begin introducing some intermediate technical results, instrumental to proving the main theorems, namely: i) Lemmata
6-5 in Sec. E.1; and ii) a detailed “region-based” complexity of DiRegINA as in in Theorem 17 (cf. Sec. E.2). We prove
Theorem 9 and the improved rates in case of quadratic functions in Sec. E.3 and Sec. E.4, respectively. Finally, Corollary 11
is proved in Sec. E.5.

E.1. Preliminary results

We establish necessary connections between the optimization error pν , the network error ‖δν‖ and ||∆xν || in Lemmata 5-6:

Lemma 5. Let Assumptions 2-4 hold, τi = 2β, and Mi ≥ L/3. Then

1

m

m∑
i=1

‖∆xνi ‖
2 ≤ 8

µ
pν +

2

mβµ
‖δν‖2 , (66)

where pν is defined in (9).

Proof. By µ-strongly convexity of F and optimality of x̂,

F (xν+
i )− F (x̂) ≥µ

2

∥∥xν+
i − x̂

∥∥2 ≥ µ

4

∥∥xν+
i − x

ν
i

∥∥2 − µ

2
‖xνi − x̂‖

2

≥µ
4

∥∥xν+
i − x

ν
i

∥∥2 − (F (xνi )− F (x̂)) .

Averaging the above inequalities over i = 1, . . . ,m, yields

1

m

m∑
i=1

‖∆xνi ‖
2 ≤ 4

µ

(
pν+ + pν

)
,

where pν+ = (1/m)
∑m
i=1

{
F (xν+

i )− F (x̂)
}

. Using (32) proves (66).

Lemma 6. Let Assumptions 2-4 hold and set τi = 2β. Define

ω0 ,
12β√

L2 + 4M2
max

, Mmax , max
i∈[m]

Mi.
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Then
1

m

m∑
i=1

{
F (xν+

i )− F (x̂)
}
≤ϕ

(
{xν+

i }i, {x
ν
i }i
)

+
8

mµ
‖δν‖2 , (67)

where

ϕ
(
{xν+

i }i, {x
ν
i }i
)

=


L2+4M2

max

mµ

(∑m
i=1

∥∥xν+
i − xνi

∥∥2
)2

, if C:
√∑m

i=1

∥∥xν+
i − xνi

∥∥2 ≥ ω0;

144β2

mµ

∑m
i=1

∥∥xν+
i − xνi

∥∥2
, if C:

√∑m
i=1

∥∥xν+
i − xνi

∥∥2
< ω0.

Proof. Recall (43), a consequence of optimality of xν+
i (defined in (7a)), reads〈

∇F (xνi ) +∇2F (xνi )∆xνi , x̂− xν+
i

〉
≥
〈Mi

2
||∆xνi ||∆xνi , xν+

i − x̂
〉

+
〈
δνi , x

ν+
i − x̂

〉
+
〈
B̃νi ∆xνi , x

ν+
i − x̂

〉
,

(68)

where B̃νi = Bνi + τiI and recall ∆xνi = xν+
i − xνi [cf. (22)]. By µ-strongly convexity of F ,

F (x̂)− F (xν+
i )

≥
〈
∇F (xν+

i ), x̂− xν+
i

〉
+
µ

2

∥∥xν+
i − x̂

∥∥2

=
〈
∇F (xν+

i )−∇F (xνi )−∇2F (xνi )∆xνi , x̂− xν+
i

〉
+
µ

2

∥∥xν+
i − x̂

∥∥2

+
〈
∇F (xνi ) +∇2F (xνi )∆xνi , x̂− xν+

i

〉
(68)
≥
〈
∇F (xν+

i )−∇F (xνi )−∇2F (xνi )∆xνi , x̂− xν+
i

〉
+
µ

2

∥∥xν+
i − x̂

∥∥2

+

〈
Mi

2
||∆xνi ||∆xνi , xν+

i − x̂
〉

+
〈
δνi , x

ν+
i − x̂

〉
+
〈
B̃νi ∆xνi , x

ν+
i − x̂

〉
≥− 1

2µ

∥∥∇F (xν+
i )−∇F (xνi )−∇2F (xνi )∆xνi

∥∥2

+

〈
Mi

2
||∆xνi ||∆xνi , xν+

i − x̂
〉

+
〈
δνi , x

ν+
i − x̂

〉
+
〈
B̃νi ∆xνi , x

ν+
i − x̂

〉
,

(69)

and by applying Lemma 1 (cf. inequality (20)) to the first term on the RHS of (69) along with Cauchy-schwarz inequality,
yield

F (x̂)− F (xν+
i )

≥−
(
L2

8µ
+
Mi

4ε0

)
‖∆xνi ‖

4 − Miε0
4

∥∥xν+
i − x̂

∥∥2 − 1

2ε1
‖δνi ‖

2 − ε1
2

∥∥xν+
i − x̂

∥∥2
+
〈
B̃νi ∆xνi , x

ν+
i − x̂

〉
(a)

≥ −
(
L2

8µ
+
Mi

4ε0

)
‖∆xνi ‖

4 −
(
Miε0
2µ

+
ε1
µ

)(
F (xν+

i )− F (x̂)
)
− 1

2ε1
‖δνi ‖

2
+
〈
B̃νi ∆xνi , x

ν+
i − x̂

〉
,

(70)

for arbitrary ε0, ε1 > 0, where (a) is due to the µ-strongly convexity of F and optimality of x̂. By Assumption 4 and some
algebraic manipulations, the last term on the RHS of (70) is lower-bounded as

〈
∆xνi , x

ν+
i − x̂

〉
B̃νi
≥− β + τi

2ε2
‖∆xνi ‖

2 − ε2(β + τi)

2

∥∥xν+
i − x̂

∥∥2

(a)

≥ − β + τi
2ε2

‖∆xνi ‖
2 − ε2(β + τi)

µ

(
F (xν+

i )− F (x̂)
)
,

(71)

with arbitrary ε2 > 0, where (a) follows from the µ-strong convexity of F and optimality of x̂. Set

ε0 =
µ

2Mmax
, ε1 =

µ

4
, ε2 =

µ

4(β + τmax)
,
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where τmax , maxi∈[m] τi; then combining (70)-(71) and averaging over i = 1, . . . ,m, lead to

1

m

m∑
i=1

(
F (xν+

i )− F (x̂)
)
≤ L2 + 4M2

max

2mµ

m∑
i=1

‖∆xνi ‖
4

+
8 (β + τmax)

2

mµ

m∑
i=1

‖∆xνi ‖
2

+
8

mµ
‖δν‖2 . (72)

The bound (67) is a direct consequence of (72), with τi = 2β, for all i = 1, . . . ,m.

E.2. Preliminary complexity results

Theorem 17. Let Assumptions 2-5 hold. Let also Mi ≥ L and τi = 2β, for all i = 1, . . . ,m, and denote

C2 , ξ · (Mmax + L)
√

2m

3µ3/2
, Mmax , max

i∈[m]
Mi,

for some arbitrary ξ ≥ 1. If a reference matrix W satisfying Assumption 6 is used in steps (7b)-(7c), with ρ ,
λmax(W −J) < 1 andK = Õ(1/

√
1− ρ) (the explicit expression ofK is given in (97)), then the sequence {pν} generated

by DiRegINA satisfies the following:

(a) If

pν ≥ p
1
,

µ3

2m(Mmax + L)2ξ2

(
1 +

4β

µ

)4

,

then

(pν)1/4 ≤ (p0)1/4 − ν

12
√

3C2

.

(b) Assume [exclusively in this case (b)] β ≤ µ and denote

p̃ν , pν/c2, c ,
µ
√
µ

8
√
m(L2 + 4M2

max)
, p

2
,

2 · 124

L2 + 4M2
max

· β
2µ

m
.

If pν ≥ p
2

and pν−1 ≤ c2, then p̃ν ≤ (p̃ν−1)2.

(c) If

pν < p
3
,

9

L2 + 4M2
max

· β
2µ

m
, (73)

then {pν} converges Q-linearly to zero with rate

(
1 +

max(β, µ)

4mb2

)−1

=

(
1 +

1

576
· µmax(β, µ)

β2

)−1

. (74)

Proof. We organize the proof into three parts, (a)-(c), in accordance with the three cases in the statement of the theorem.

(a) Recall Lemma 3 from the proof of Theorem 13:

F (xν+
i ) ≤ F̃i(xν+

i ;xνi ) +
1

2ε
‖δνi ‖

2
, (75)

for arbitrary ε > 0, where Mi ≥ L and τi ≥ β + ε. In addition, by the upperbound approximation of F̃i(·;xνi ) in (21), there
holds

F̃i(y;xνi ) ≤F (y) +
1

2
‖y − xνi ‖

2
(β+τi+ε)I

+
Mi + L

6
‖y − xνi ‖

3
+

1

2ε
‖δνi ‖

2
, ∀y ∈ K. (76)
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Set τi = 2β and ε = β, then by (75)-(76) and xν+
i being the minimizer of F̃ (·;xνi ),

F (xν+
i )− F (x̂)

≤min
y∈K

{
F (y)− F (x̂) + 2β ‖y − xνi ‖

2
+
Mi + L

6
‖y − xνi ‖

3
+

1

β
‖δνi ‖

2

}
≤ min
α∈[0,α0]

{
F (y)− F (x̂) + 2β ‖y − xνi ‖

2
+
Mi + L

6
‖y − xνi ‖

3
+

1

β
‖δνi ‖

2
: y = αx̂+ (1− α)xνi

}
(a)

≤ min
α∈[0,α0]

{
(1− α) (F (xνi )− F (x̂))− α(1− α)µ

2
‖xνi − x̂‖

2

+ 2βα2 ‖x̂− xνi ‖
2

+
Mi + L

6
α3 ‖x̂− xνi ‖

3
+

1

β
‖δνi ‖

2
}
,

(77)

where (a) is due to the µ-strong convexity of F . If α0 = 1/(1 + 4β/µ), (77) implies

F (xν+
i )− F (x̂) ≤ min

α∈[0,α0]

{
(1− α) (F (xνi )− F (x̂)) +

Mi + L

6
α3 ‖x̂− xνi ‖

3
+

1

β
‖δνi ‖

2
}
,

where by the µ-strongly convexity of F and optimality of x̂, we also deduce

F (xν+
i )− F (x̂)

≤ min
α∈[0,α0]

{
(1− α) (F (xνi )− F (x̂)) +

Mi + L

6
α3

(
2

µ
(F (xνi )− F (x̂))

)3/2

+
1

β
‖δνi ‖

2
}
.

(78)

Averaging (78) over i = 1, 2, . . . ,m while using (31), yields

pν+1 ≤ min
α∈[0,α0]

{
(1− α)pν + C2α

3 (pν)
3/2

+
1

mβ
‖δν‖2

}
, C2 , ξ · (Mmax + L)

√
2m

3µ3/2
, (79)

where Mmax = maxi∈[m] Mi and ξ ≥ 1 is arbitrary.

Denote by α∗ the minimizer of the RHS of (79); then if pν ≥ p
1
, 1/(9C2

2α
4
0), we have α∗ = 1/

√
3C2
√
pν , and

pν+1 ≤pν − 2(pν)3/4

3
√

3C2

+
1

mβ
‖δν‖2 . (80)

If
1

mβ
‖δν‖2 ≤ 1

3
√

3C2

(p
1
)3/4 =⇒ 1

mβ
‖δν‖2 ≤ 1

3
√

3C2

(pν)3/4, (81)

(80) yields

pν+1 ≤pν − c̃ (pν)3/4, ∀ν ≥ 0, c̃ ,
1

3
√

3C2

. (82)

Note that, by (45) and Lemma 4, condition (81) holds if

K ≥ 1√
1− ρ

· 1

2
log

(
3D̄δ

√
3C2

mβp
3/4
1

)
. (83)

We now prove by induction that (82) implies

(pν)1/4 ≤ lν , (p0)1/4 − c̃

4
ν, ∀ν ≥ 0. (84)

Clearly, (84) holds for ν = 0. Since the RHS of (82) is increasing (as a function of pν) when pν ≥ (3c̃/4)
4

= 1/(9 · 28C2
2 )

(which holds since pν ≥ p
1
), then pν ≤ l4ν implies

pν+1 ≤ l4ν − c̃l3ν ,
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which also implies pν+1 ≤ l4ν+1, as by definition of lν in (84),

l4ν − l4ν+1 = (lν − lν+1) (lν + lν+1)
(
l2ν + l2ν+1

)
=
c̃

4
(lν + lν+1)

(
l2ν + l2ν+1

)
≤ c̃ l3ν .

(b) Recall (40) (from the proof of Theorem 13), which under Assumptions 2-6 and condition (41), reads

wpν+1 + (δ̃ν+1)2 ≤wpν + cw(δ̃ν)2 − wµ

4m
||∆xν ||2. (85)

Recall also Lemma 6 when condition C is satisfied, which together with (31), implies

pν+1 ≤b1

(
m∑
i=1

∥∥xν+
i − x

ν
i

∥∥2

)2

+
8

mµ
‖δν‖2 , b1 ,

L2 + 4M2
max

mµ
. (86)

Note that pν+1 ≥ p
2

implies that condition C in Lemma 6 holds, as proved next by contradiction. Suppose pν+1 ≥ p
2

but
||∆xν || < ω0. Then Lemma 6 yields

p
2
≤ pν+1

(31)
≤ pν+ <

144β2

mµ
· ω2

0 +
8

mµ
‖δν‖2

(a)

≤ 2 · 124

L2 + 4M2
max

· β
4

mµ
,

implying β > µ, which is in contradiction with the assumption; note that (a) holds under (similar to derivation of (83))

K ≥ 1√
1− ρ

· 1

2
log

(
D̄δ

18β2ω2
0

)
=⇒ 8

mµ
‖δν‖2 ≤ 144β2ω2

0

mµ
. (87)

Now since x 7→ xh is subadditive for 0 ≤ h ≤ 1, i.e. (a+ b)h ≤ ah + bh for any a, b ≥ 0, (86) together with (35) imply

−
m∑
i=1

‖∆xνi ‖
2 ≤− b−

1
2

1

(
pν+1

) 1
2 +

√
8

mµb1
δ̃ν . (88)

Combining (85) with (88) yields

wpν+1 + (δ̃ν+1)2 ≤ wpν + cw(δ̃ν)2 − wµ

4m
√
b1

√
pν+1 +

wµ

4m

√
8

mµb1
δ̃ν ,

and since δ̃ν ≤
√
ξν ≤

√
D2,∀ν ≥ 0 (see the discussion in Subsec. C.3, proof of Theorem 13), we get

wpν+1 + (δ̃ν+1)2 ≤wpν − wµ

4m
√
b1

√
pν+1 + C3δ̃

ν , C3 ,

(
cw
√
D2 +

cwβµ

4m

√
8

mµb1

)
. (89)

Since pν+1 ≥ p
2
, under (similar to derivation of (83))

K ≥ 1√
1− ρ

· 1

2
log

(
64D̄δm

2b1C
2
3

c2wβ
2µ2p

2

)
=⇒ C3δ̃

ν ≤
wµ√p

2

8m
√
b1
, (90)

(89) yields
pν+1 + c

√
pν+1 ≤ pν , c ,

µ

8m
√
b1
.

Denote by p̃ν , pν/c2, then we get p̃ν+1 +
√
p̃ν+1 ≤ p̃ν which implies quadratic convergence when pν+1 ≥ p

2
and

p̃ν ≤ 1 ≡ pν ≤ c2.

(c) Again recall (40):

wpν+1 + (δ̃ν+1)2 ≤wpν + cw(δ̃ν)2 − wmax(β, µ)

4m
||∆xν ||2. (91)
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Invoking Lemma 6 under condition C̄ and τi = 2β, along with (31) and (35), we have

pν+1 ≤b2
m∑
i=1

∥∥xν+
i − x

ν
i

∥∥2
+

8

mµ
(δ̃ν)2, b2 ,

144β2

mµ
. (92)

Combining (91) and (92) yields

w

(
1 +

max(β, µ)

4mb2

)
pν+1 + (δ̃ν+1)2 ≤wpν +

(
cw +

2wmax(β, µ)

m2µb2

)
(δ̃ν)2, (93)

where by choosing cw to satisfy(
cw +

2wmax(β, µ)

m2µb2

)
≤
(

1 +
max(β, µ)

4mb2

)−1
(a)
≡ cw ≤

(
1 +

2βmax(β, µ)

m2µb2

)−1(
1 +

max(β, µ)

4mb2

)−1

, (94)

[where (a) is due to w = cwβ defined in Sec. C.3], (93) becomes

w

(
1 +

max(β, µ)

4mb2

)
pν+1 + (δ̃ν+1)2 ≤wpν +

(
1 +

max(β, µ)

4mb2

)−1

(δ̃ν)2,

implying linear convergence of {ξν}ν where

ζν , w

(
1 +

max(β, µ)

4mb2

)
pν + (δ̃ν)2,

and decay rate (
1 +

max(β, µ)

4mb2

)−1

=

(
1 +

1

576
· µmax(β, µ)

β2

)−1

. (95)

Therefore, {pν}ν converges Q-linearly with rate (95).

Now let us derive (73) that defines this region. The goal is to identify the region where C̄ (cf. Lemma 6) holds. Under the
condition (similar to derivation of (83))

K ≥ 1√
1− ρ

· 1

2
log

(
4D̄δ

βµω2
0

)
=⇒ 2(δ̃ν)2

βµ
≤ ω2

o

2
, (96)

and Lemma 5, there holds

1

m

m∑
i=1

‖∆xνi ‖
2 ≤ 8

µ
pν +

ω2
0

2m
,

which implies that C̄ is necessarily satisfied when

pν <
ω2

0µ

16m
=

9

L2 + 4M2
max

· β
2µ

m
.

Finally, unifying the conditions on K derived in (41). (83), (87), (90), (96), K must satisfy

K ≥ 1√
1− ρ

· 1

2
log

(
D̄δ ·max

{
16

D̄δcw
,

122mQ2
max

D̄δcwβmax(β, µ)
,

3
√

3C2

mβp
3/4
1

,
1

18β2ω2
0

,
64m2b1C

2
3

c2wβ
2µ2p

2

,
4

βµω2
0

})
, (97)

where recall that cw > 0 must satisfy (94).
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E.3. Proof of Theorem 9

Let Mi = L for all i = 1, . . . ,m, and set the free parameter ξ ≥ 1 (defined in Theorem 17) to ξ = 100
√

5, and define the
regions of convergence,

(R0) : Ω0 ≤ pν ,
(R1) : Ω1 ≤ pν < Ω0,

(R2) : max(ε,Ω2) ≤ pν < Ω1,

(R3) : ε ≤ pν < max(ε,Ω2),

where

Ω0 = 244 ·D2µ, Ω1 = c2/2 =
1

640L2
· µ

3

m
, Ω2 = p

2
=

2 · 124

5L2
· β

2µ

m
,

and c and p
2

are defined in Theorem 17.

Using Theorem 15, region (R0) takes at most
√

LD
µ iterations. Now using Theorem 17, region (R1) lasts at most ν1

iterations satisfying

(Ω1)
1/4 ≥ (Ω0)1/4 − ν1

12
√

3C2

⇐= ν1 ≥ 480

√
3
√

5 ·m1/4 ·

√
LD

µ
.

Let us conservatively consider scenarios Ω1 ≥ ε ≥ Ω2 and ε < Ω2, then the region of quadratic convergence (R2) lasts for
at most

2 log

(
2 log

(
min

{
c2

Ω2
,
c2

ε

}))
≤ 2 log

[
2 log

[
min

{
1

128 · 124
· µ

2

β2
,

µ3

320mL2
· 1

ε

}]]
: c2 ≥ Ω2, ε ≤ c2,

iterations. Note that conditions pν ≥ p
2

and pν < p
3

in Theorem 17 are sufficient conditions identifying the region of
quadratic and linear rate (or more specifically C and C̄ in Lemma 6); note that p

2
and p

3
are identical up to multiplying

constants. Hence, to obtain a valid complexity of overall performance, we pessimistically associate the region of linear
rate (R3) with ε < pν ≤ max(ε,Ω2) rather than ε < pν ≤ max(ε, p

3
); therefore, this region at most lasts for O(β/µ ·

log(max(ε,Ω2)/ε)) iterations. Thus, since the number of communications per iteration is Õ
(
1/
√

1− ρ
)

[cf. (41), (63),
(97) and note that ε = Ω0 in (63)], the overall complexity reads

Õ

(
1√

1− ρ

{√
LD

µ

(
1 +m1/4

)
+ log

[
log

[
µ2

β2
·min

{
1,
β2µ

mL2
· 1

ε

}]]
+
β

µ
log

[
max

(
1,
β2µ

mL2
· 1

ε

)]})

communications.

E.4. The case of quadratic fi in Theorem 9

Here we refine the proof of Theorem 9 to enhance the rate when L = 0:

Theorem 18. Let Assumptions 2-5 hold with L = 0 and β < µ. Denote by Dp an upperbound of p0, i.e. p0 ≤ Dp for all
ν ≥ 0. Also choose Mi = Θ(µ3/2/

√
mDp) sufficiently small (explicit condition is provided in (98)) and τi = 2β for all

i = 1, . . . ,m. If a reference matrix W satisfying Assumption 6 is used in steps (7b)-(7c), with ρ , λmax(W − J) < 1 and
K = Õ

(
1/
√

1− ρ
)

(explicit condition is provided in (97)), then for any given ε > 0, DiRegINA returns a solution with
pν ≤ ε after total

Õ

(
1√

1− ρ
·
{

log log

(
Dp

ε

)
+
β

µ
log

(
Dpβ

2

µ2ε

)})
communications. Note that when β = O(1/

√
n), ε = Ω(VN ) and n ≥ m, the above communication complexity reduces to

Õ

(
1√

1− ρ
·
{

log log

(
Dp

VN

)})
.
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Proof. Let us specialize the results established in Theorem 17 (in particular case (b)-(c)). Note that, since L = 0, we can
impose p0 ≤ c2/2 by a proper choice of Mi, allowing DiRegINA to circumvent the first region (associated with case (a) in
Theorem 17) and start off in the quadratic rate region. Hence we only need to derive a sufficient condition for p0 ≤ c2/2.
Let us first consider case (b): if Mi = Θ(µ3/2/

√
mDp),∀i, sufficiently small,

Mi ≤
µ3/2

16
√

2mDp

, ∀i =⇒ p0 ≤ µ3

512mM2
max

=⇒ p0 ≤ c2/2, (98)

where Mmax , maxi∈[m] Mi. Let us also evaluate the precision achieved in case (b), i.e. p
2
: denote by CM such that

Mi ≥ CMµ3/2/
√
mDp,∀i, then

p
2
,

124

2M2
max

· β
2µ

m
≤ 124

2C2
M

· β
2Dp

µ2
.

Therefore the number of iterations to reach ε = Ω(p
2
) is O(log log(c2/p

2
)) = log log(Dp/ε), and since K =

Õ
(
1/
√

1− ρ
)
, the total number of communication will be Õ

(
1/
√

1− ρ · log log(Dp/ε)
)
.

Now let us derive the complexity when ε = O(p
2
) (i.e. case (c) in Theorem 17). Setting L = 0

and following similar arguments, for arbitrary precision ε > 0, we obtain a communication complexity
Õ
(
1/
√

1− ρ ·
{

log log(Dp/ε) + β/µ log(β2Dp/(µ
2ε))

})
.

E.5. Proof of Corollary 11

Let us customize the rate established in Theorem 17 (in particular case (b)-(c)). We derive a sufficient condition for
p0 ≤ c2/2 which guarantees that the initial point is in the region of quadratic convergence. Using initialization policy (8),
there holds p0 ≤ C∆/n for some C∆ > 0. Hence, under

n ≥ 640C∆L
2

µ3
·m =⇒ p0 ≤ µ3

640mL2
=⇒ p0 ≤ c2/2,

DiRegINA converges quadratically to the precision

p
2
,

2 · 124

5L2
· β

2µ

m
.

By β = O(1/
√
n), p

2
= O(VN ). Hence, since K = Õ

(
1/
√

1− ρ
)
, the total number of communication will be

Õ
(
1/
√

1− ρ · log log(µ3/(mL2VN ))
)
.

F. Proof of Theorem 12
Let Mi = L for all i = 1, . . . ,m, and set the free parameter ξ = 50β/(3µ) (defined in Theorem 17) and define the regions
of convergence,

(R0) : Ω0 ≤ pν ,
(R1) : Ω1 ≤ pν < Ω0,

(R2) : ε ≤ pν < Ω1,

where

Ω0 = 244 ·D2µ, Ω1 =
0.9

L2
· β

2µ

m
.

Using Theorem 15, region (R0) takes at most
√

LD
µ iteration; note that µ = Ω(β2) by assumption n ≥ m, thus Ω0 =

Ω(β2 · 2LD3). Now using Theorem 17, region (R1) lasts at most ν1 iteration satisfying

(
Ω1

)1/4 ≥ (Ω0)1/4 − ν1

12
√

3C2

⇐= ν1 ≥ 240
√

2 ·
√
βLD

√
m

µ
.
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Finally, by case (c) in Theorem 17, region (R2) lasts for O(β/µ · log(Ω1/ε)). Thus, since communication cost per iteration
is Õ

(
1/
√

1− ρ
)

[cf. (41), (97)], the overall complexity is

Õ

(
1√

1− ρ

{√
LD

µ

(
1 +m1/4 ·

√
β

µ

)
+
β

µ
log

(
β2µ

mL2
· 1

ε

)})
.

G. The case of quadratic fi in Theorem 12
Theorem 19. Instate the setting of Theorem 12 where L = 0. Then, the total number of communications for DiRegINA to
make pν ≤ ε reads

Õ
(

1√
1− ρ

· β
µ

log
(1

ε

))
.

When β = O(1/
√
n), ε = Ω(VN ) and n ≥ m, the above communication complexity reduces to

Õ
(

1√
1− ρ

·m1/2 · log
( 1

VN

))
.

Proof. We customize case (c) in Theorem 17, when L = 0. Note that C̄ in Lemma 6 holds for all ν ≥ 0 and condition (96)
is no longer required. Therefore, the algorithm converges linearly with rate (74) and returns a solution within ε precision
within O (β/µ · log(1/ε)) iterations and since K = Õ

(
1/
√

1− ρ
)

[cf. (41)] , the total number of required communications
is Õ

(
1/
√

1− ρ · β/µ · log(1/ε)
)
.


