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6. Appendix

Symbols
N(δ, Θ, || · ||q) δ-cover of Θ w.r.t. || · ||q norm

M(δ, Θ, || · ||q) δ-packing of Θ w.r.t. || · ||q norm

Bkq (r) k-dimensional ball of radius r w.r.t. || · ||q norm

S1 ⊕ S2 Minkowski sum of the sets S1, S2, i.e. the set
{x+ y|x ∈ S1, y ∈ S2}

G(T ) Gaussian complexity of set T

[M ] Set {1, ...,M}

6.1. Proofs

6.1.1. METRIC ENTROPY FOR THE l1 BALL

Definition 2 (Covering number (Wainwright, 2019)). A
δ-covering of a set T with respect to a metric ρ is a set
{θ1, ..., θM} ⊂ T such that for each θ ∈ T, there exists
some i ∈ [N ] such that ρ(θ, θi) ≤ δ. The δ-covering
number N(δ,T, ρ) is the cardinality of the smallest δ-cover.

Definition 3 (Packing number (Wainwright, 2019)). A δ-
packing of a set T with respect to a metric ρ is a set
{θ1, ..., θM} ⊂ T such that ρ(θi, θj) > δ for all distinct
i, j ∈ [M ]. The δ-packing number M(δ,T, ρ) is the cardi-
nality of the largest δ-packing.

Lemma 2 (Wainwright (2019)). For all δ > 0, the packing
and covering numbers are related as follows:

M(2δ,T, ρ) ≤ N(δ, T, ρ) ≤M(δ, T, ρ). (7)

Theorem 2 (Maurey’s Empirical Method (Pisier, 1986)).
Let Bd1 (r) = {x ∈ Rd | ||x||1 ≤ r}. Then,

logN(δ,Bd1 (r), || · ||2) ≤ r2

δ2
log(2d+ 1). (8)

A short proof of this result follows.

Proof. Fix x ∈ Rd. Let Z be the following RV:

Z =

{
sgn(xi)rei, w.p. |xi|r
0, w.p.1− ||x||1r

(9)

Observe that: E[Zi] = sgn(xi)r · |xi|r = xi and V [Zi] =

r2 · |xi|r = r|xi|.

Let

Z̄ =
1

t

t∑
i=1

Zi (10)

where Zi are independent copies of Z.

We have that:

E[||Z̄ − x||2] = E

 d∑
j=1

(Z̄j − xj)2

 (11)

=

d∑
j=1

E
[
(Z̄j − xj)2

]
=

d∑
j=1

V (Z̄j) (12)

=

d∑
j=1

V

(
1

t

t∑
i=1

(Zi)j

)
= (13)

1

t2
t

d∑
j=1

V (Zj) =
1

t

d∑
j=1

r|xi| =
r||x||1
t
≤ r2

t
. (14)

If we choose t such that: r2

t ≤ δ2, then, we have that
E[||Z̄ − x||2] ≤ δ2. Hence, for t ≥ r2

δ2 , by the Pigeonhole
Principle, we have that there is a Z̄ such that: ||Z̄ − x|| ≤ δ.
In other words, the set of all possible Z̄ form an δ−net for
Bd1 (r) for t ≥ r2

δ2 . Set t = r2

δ2 . We will now count how
many Z̄ there are. For each Z̄, we have t choices, each one
of which can take one value among 2d+ 1 values. Hence,
there are (2d+ 1)t different Z̄. Therefore, we can create an

δ-net of Bd1 (r) that has (2d+ 1)
r2

δ2 elements, i.e.

logN(δ,Bd1 (r), || · ||2) ≤ r2

δ2
log(2d+ 1).

The same result (up to constants) for the size of the ε-net for
an l1 ball follows from Sudakov’s minoration inequality.
Theorem 3 (Sudakov minoration (Sudakov, 1969; Wain-
wright, 2019)). Let {Xθ, θ ∈ T} be a zero-mean Gaussian
process on T ⊂ Rd. Then,

G(T ) ≥ δ

2

√
logM(δ/2, T, ρX), (15)

with ρX(θ1, θ2) =
√
E[(Xθ1 −Xθ2)2].

Corollary 1.

logN(δ,Bd1 (r), || · ||2) ≤ 16r2

δ2
log d. (16)

Proof. Observe that:

G(Bd1 (r)) = Ew

[
sup
||u||1≤r

uTw

]
(17)

≤ rEw [||w||∞] (18)

≤ 2r
√

log d. (19)
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By Inequality (15),

G(T ) ≥ δ

2

√
logM(δ/2, T, ρX)⇒ (20)

logM(δ/2, Bd1 (r), || · ||2) ≤ 16
r2
1

δ2
log d. (21)

It follows from the definition of the covering number that:

M(δ, T, || · ||2) ≤M(δ/2, T, || · ||2).

By Inequality (7), we also have:

N(δ, T, || · ||2) ≤M(δ, T, || · ||2). (22)

Hence,

logN(δ,Bd1 (r), || · ||2) ≤ 16r2

δ2
log d. (23)

Theorem 4 (Volume rations and metric entropy (Wain-
wright, 2019)). Let Θ be an arbitrary set. Then,

vol(Θ)

vol(δBdq (1))
≤ N(δ,Θ, || · ||q) ≤

vol
(

2
δΘ⊕Bdq (1)

)
vol(Bdq (1))

(24)

Corollary 2.

logN(δ,Bd1 (r), || · ||2) ≤ d log
4r

δ
(25)

Proof. By Theorem 4, we have that:

N(δ,Bd1 (r), || · ||2) ≤
vol
(

2
δB

d
1 (r)⊕Bd2 (1)

)
vol(Bd2 (1))

(26)

vol
(

2
δB

d
2 (r)⊕Bd2 (1)

)
vol(Bd2 (1))

≤
(

2r

δ
+ 1

)d
(27)

≤
(

4r

δ

)d
. (28)

Remark 5. Observe that by Theorem 2 and Corollary 2,
we get two different upper bounds regarding the covering
of the l1-ball. With Maurey’s method, the covering number
depends logarithmically in the dimension but polynomially
on 1

ε . On the other hand, the volumetric argument gives
polynomial dependence on the dimension and logarithmic
dependence on 1

ε . The Maurey’s bound is tighter when

ε = Ω
(
r√
d

)
.

6.1.2. S-REC

Lemma 3 (S-REC for nested l1-ball). Let G = G2 ◦ G1

with G1 : Rk → Rp be an L1-Lipschitz function and G2 :
Rp → Rn be an L2-Lipschitz function. Let A ∈ Rm×n be
a random matrix with Aij ∼ N (0, 1/m) i.i.d. entries.

Then, if

m =
1

(1− γ)2
Ω

(
k log

L1L2r1

δ
+K2 log p

)
(29)

r2 =
K · δ
L2

, 1 < K <
√
p (30)

w.p. 1 − e−Ω((1−γ)2m), we have that A satisfies S-
REC(G2(G1(Bk2 (r1))⊕Bp1(r2)), γ, log(4K) ·

√
p

K · log
√
p

K ).

Proof. Using Theorem 4, we get that:

N

(
δ

L1 · L2
, Bk2 (r1), || · ||2

)
≤(

2L1L2r1

δ
+ 1

)k
≤
(

4L1L2r1

δ

)k
(31)

Using the fact that G2 ◦G1 is L1L2 Lipschitz, we get that:

N(δ,G(Bk2 (r1)), || · ||2) ≤
(

4L1L2r1

δ

)k
(32)

Using Maurey’s Empirical Method (see Theorem 2), we get
that:

logN

(
δ

L2
, Bp1(r2), || · ||2

)
≤ r2

2L
2
2

δ2
log(2p+ 1). (33)

Setting r2 = K·δ
L2

and using the fact that G2 is L2-Lipschitz,
we get:

logN (δ,G2(Bp1(r2)), || · ||2) ≤ K2 log 3p (34)

By (32), (34), we get that:

logN
(
δ,G2(G1(Bk2 (r1))⊕Bp1(r2)), || · ||2

)
≤

k log
4L1L2r1

δ
+K2 log 3p. (35)

By JL lemma, if m = 1
a2 Ω

(
k log 4L1L2r1

δ +K2 log 3p
)
,

then w.p. 1− e−Ω(a2m), we have that:

||AG2(ẑp2)−AG2(ẑp1)|| ≥
(1− a)||G2(ẑp2)−G2(ẑp1)||, ∀ẑp1 , ẑ

p
2 ∈ S (36)

where S is a minimal δ-net of G2(G1(Bk2 (r1))⊕Bp1(r2)).
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Let zp1 , z
p
2 ∈ G1(Bk2 (r1))) ⊕ Bp1(r2) and ẑp1 =

argminz̃p1∈S ||z
p
1− z̃

p
1 ||, ẑ

p
2 = argminz̃p2∈S ||z

p
2− z̃

p
2 ||. Then,

||AG2(z
p
2)−AG2(z

p
1)|| ≥ ||AG2(ẑ

p
2)−AG2(ẑ

p
1)||

−||AG2(z
p
2)−AG2(ẑ

p
2)|| − ||AG2(z

p
1)−AG2(ẑ

p
1)|| (37)

≥ (1− a)||G2(ẑ
p
2)−G2(ẑ

p
1)|| − ||AG2(z

p
2)−AG2(ẑ

p
2)||

−||AG2(z
p
1)−AG2(ẑ

p
1)|| (38)

≥ (1− a)||G2(z
p
2)−G2(z

p
1)||−

(1− a) (||G2(z
p
2)−G2(ẑ

p
2)||+ ||G2(z

p
1)−G2(ẑ

p
1)||)

−||AG2(z
p
2)−AG2(ẑ

p
2)|| − ||AG2(z

p
1)−AG2(ẑ

p
1)|| (39)

≥ (1− a)||G2(z
p
2)−G2(z

p
1)|| − 2δ

−||AG2(z
p
2)−AG2(ẑ

p
2)|| − ||AG2(z

p
1)−AG2(ẑ

p
1)|| (40)

By Lemma 4, we have that w.p. 1 − e−Ω(m),
||AG2(zp2) − AG2(ẑp2)|| + ||AG2(zp1) − AG2(ẑp1)|| =

O
(

log(4K) ·
√
p

K · log
√
p

K

)
· δ. Let a = 1− γ. Hence,

||AG2(zp2)−AG2(zp1)|| ≥ γ||G2(zp2)−G2(zp1)||

− log(4K) ·
√
p

K
· log

√
p

K
· δ. (41)

Lemma 4. Let G = G2 ◦ G1 with G1 : Rk → Rp
be an L1-Lipschitz function and G2 : Rp → Rn be an
L2-Lipschitz function. Let A ∈ Rm×n be a random ma-
trix with Aij ∼ N (0, 1/m) i.i.d. entries. Let M0 be
a δ
L2

net of G1(Bk2 (r1)) ⊕ Bp1(r2) such that log |M0| ≤
k log

(
4L1L2r1

δ

)
+K2 log 3p.

Then, if

m = Ω

(
k log

(
4L1L2r1

δ

)
+K2 log p

)
,

r2 =
K · δ
L2

, 1 < K <
√
p. (42)

then for any x ∈ G2(G1(Bk2 (r1)) ⊕ Bp1(r2)), if x′ =
argminx̂∈G2(M0)||x− x̂||, w.p. 1− eΩ(m), we have that:

||A(x− x′)|| = O

(
log(4K) ·

√
p

K
· log

√
p

K

)
· δ. (43)

Proof. From Lemma 8.2 of (Bora et al., 2017), we have that
if ε ≥ 2 + 4

m log 2
f , then

P (||Ax|| ≥ (1 + ε)||x||) ≤ f. (44)

Let N0 ⊆ N1 ⊆ ... ⊆ Nl be a chain of minimal δi-nets of
G2(G1(Bk2 (r1))⊕Bp1(r2)).

Let also:

Ti = {xi+1 − xi|xi+1 ∈ Ni+1, xi ∈ Ni}. (45)

By union bound,

P (||At|| ≤ (1 + εi)||t||, ∀i ∈ [0, ..., l − 1], ∀t ∈ Ti) ≥

1−
l−1∑
i=0

|Ti|fi, (46)

where εi = 2 + 4
m log 2

fi
. We want to choose fi such that∑l−1

i=0 |Ti|fi decays exponentially with m.

First notice that:

log |Ti| ≤ log |Ni+1|+ log |Ni| (47)

To develop bounds for log |Ni|, log |Ni+1| we first need to
decide how δi decays and then whether we are going to use
Maurey’s method or the volumetric argument.

We choose δi = δ
2i . Now assume m = K2 log(3p) +

k log
(
L1L2r1

δ

)
.

For 0 ≤ i < log
√
p

K we will use Maurey’s method.

log |Ti| ≤ 2 log |Ni+1| (48)

≤ 2

((
Kδ

δi+1

)2

log(3p) + k log

(
L1L2r1

δi

))
(49)

≤ 2 ·
(

4i+1K2 log(3p) + k log

(
L1L2r1

δ

)
+ k (i+ 1)

)
(50)

≤ 2 ·
(

4i+1K2 log(3p) + 2k log

(
L1L2r1

δ

)
(i+ 1)

)
(51)

≤ 2 · 4i+1m. (52)

To get probability that decays exponentially with m, we
choose:

log fi = −3 · 4i+1m (53)

εi = O(1) + 3 · 4i+1. (54)

For log
√
p

K ≤ i ≤ l − 1, we will use the volumetric argu-
ment.

log |Ti| ≤ p log

(
4K

δ

δi

)
+ p log

(
4K

δ

δi+1

)
+

k log

(
L1L2r1

δi

)
+ k log

(
L1L2r1

δi+1

)
(55)

≤ 2p log (4K) + p(2i+ 1)+

2k log

(
L1L2r1

δ

)
+ k(2i+ 1) (56)

≤ 2p log (4K) + 3pi+ 2k log

(
L1L2r1

δ

)
+ 3ki (57)

≤ 5ip log(4K) + 5ik log

(
L1L2r1

δ

)
(58)
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We choose:

log fi = −6ip log(4K)− 6ik log

(
L1L2r1

δ

)
(59)

εi ≤ O(1) + log(4K)
ip

m
+ i. (60)

Notice that:

log |Ti|fi ≤ −ip log(4K)− ik log

(
L1L2r1

δ

)
≤ −im.

(61)

For that choice of parameters, observe that:

P (||At|| ≤ (1 + εi)||t||, ∀i ∈ [0, ..., l − 1], ∀t ∈ Ti)
(62)

= 1− e−Ω(m). (63)

Let x be the image we want to recostruct and xi be the
closest point of that image to the δi net. Then,

x− x0 =

l−1∑
i=0

(xi+1 − xi) + x− xl ⇒ (64)

||Ax−Ax0|| ≤
l−1∑
i=0

||Axi+1 −Axi||+ ||Ax−Axl||.

(65)

Now w.h.p. ||Axi+1−Axi|| ≤ (1+εi)||xi+1−xi||. There-
fore, w.h.p.:

||Ax−Ax0|| ≤
l−1∑
i=0

(1 + εi)||xi+1 − xi||+ ||Ax−Axl||

(66)

≤
l−1∑
i=0

(1 + εi)δi + ||Ax−Axl|| (67)

≤
log

√
p

K −1∑
i=0

(
O(1) + 3 · 4i+1

) δ
2i

+

+

l−1∑
i=log

√
p

K

(
O(1) + log(4K)

ip

K2 log 3p
+ i

)
δ

2i
+

+||Ax−Axl|| (68)

≤ O
(

log(4K) ·
√
p

K
· log

√
p

K

)
· δ + ||Ax− xl||. (69)

Observe that:

||Ax−Axl|| ≤ ||A|| · ||x− xl|| (70)

≤ 2
√
n||x− xl|| (71)

≤ 2

√
n

2l
δ. (72)

For l = log n, we have that ||Ax−Axl|| ≤ δ. Hence,

||Ax−Ax0|| ≤ O
(

log(4K) ·
√
p

K
· log

√
p

K

)
· δ. (73)

6.1.3. PROOF OF MAIN THEOREM

Proof of Theorem 1. Let δl1 =
(

log(4K) ·
√
p

K log
√
p

K

)
δ.

Then,

||G2(z̄p)−G2(z̃p)|| ≤ (74)

||AG2(z̃p)−AG2(z̄p)||+ δl1
γ

(75)

≤ ||Ax−AG2(z̄p)||+ ||Ax−AG2(ẑp)||+ δl1
γ

(76)

≤ 2||Ax−AG2(z̄p)||+ δl1
γ

(77)

≤ 4||G2(z̄p)− x||+ δl1
γ

. (78)

Finally, observe that:

||G2(z̃p)− x|| ≤ ||G2(z̄p)− x||+ ||G2(z̄p)−G2(z̃p)||
(79)

≤
(

1 +
4

γ

)
||x−G2(z̄p)||+ δl1

γ
. (80)

Remark 6. Similar to the analysis of the CSGM paper (see
Lemma 4.3), γ is a constant that we control and we may set
it to γ = 4

5 to get the same scaling term with CSGM.

6.1.4. PROOF OF LEMMA 1

Lemma 5. Consider the setting of Theorem 1. Let g =
[g1, · · · , gn] be a vector with i.i.d. Gaussian entries of vari-
ance 1/m, let F ∈ Rm×n be a partical circulant matrix
that has g in its first row, and let D ∈ Rn×n be a diagonal
matrix with uniform ±1 entries along its diagonal. Then
for m = Ω

(
1

(1−γ)2 (k log L1L2r1
δ +K2 log p) log4(n)

)
,

FD satisfies S-REC(G2(G1(Bk2 (r1))⊕Bp1(r2)), 1− γ, δ ·
log(4K)

γ ·
√
p

K log
√
p

K ) with probability 1− e−Ω(m).

Proof. The proof follows from the proof of Lemma 3 above
and Theorem 3.1 in (Krahmer & Ward, 2011). The proof of
Lemma 3 requires the Johnson-Lindenstrauss guarantee for
a set of size 2O(m), and invoking Theorem 3.1 in (Krahmer
& Ward, 2011), this is guaranteed to hold for the matrix
FD.
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The proof of Lemma 3 also requires ‖FD‖op ≤
√
n. This

is also guaranteed by noting that

‖FD‖op ≤ ‖FD‖F ≤
√
n, w.p.1− e−Ω(m).

6.2. Code

We plan to release the code we used for all our experiments.
The whole package is included in the Supplementary Mate-
rial submission and we are working towards a public release
soon.

Our code is implemented in PyTorch (Paszke
et al., 2019). Our code is based on the follow-
ing open-source implementations of StyleGAN-
2: https://github.com/rosinality/stylegan2-pytorch,
https://github.com/NVlabs/stylegan2. We also draw
inspiration from the open-source implementation of
PULSE: https://github.com/tg-bomze/Face-Depixelizer. A
Tensorflow (Abadi et al., 2016) implementation is in the
works.

Our current repository includes:

• Detailed instructions on how to setup the environment
and download the dependencies.

• Code for image pre-processing, such as random in-
painting, interactive masks, noise addition, automatic
face alignment, etc.

• Examples on how to run inpainting, denoising, super-
resolution and compressed-sensing with circulant ma-
trices for custom images.

• Code for out-of-distribution generation on 1000 Im-
ageNet (Deng et al., 2009) classes using a robust
classifier. We use a robust classifier from the
robustness (Engstrom et al., 2019) library.

• Code for evaluating the performance of ILO and previ-
ous methods on Celeba-HQ (Liu et al., 2018; Lee et al.,
2020).

• Tools to visualize performance and track experiments.

• Code for generating GIF files by collecting frames
during the optimization.

Our code is GPU/CPU compatible.

6.3. Experimental details

We performed all our experiments on a single GPU. As
mentioned in the paper, obtaining a solution for a single
inverse problem requires less than a minute on a single

1080Ti. All the experiments can be reproduced in less than
a day on a single GPU.

Unless mentioned otherwise, we use Adam (Kingma &
Ba, 2014) optimizer with an initial learning rate of 0.1 for
each layer. During a single layer optimization, learning
rate ramps up linearly and is ramped down using a cosine
scheduler, as proposed by (Karras et al., 2020).

Loss functions are changed for each task as explained in the
paper. For all tasks, we use a geodesic loss with coefficient
0.01. For random inpainting, we use both MSE and LPIPS
when we have more than 20% observed pixels, otherwise
we only use MSE. When both MSE and LPIPS are used, we
search co-efficients in the set {0.5, 1, 2, 5} for each of the
terms. For inpainting with continuous black boxes, we used
both MSE and LPIPS. For the experiments of Figure 1 of
the main paper, we used the same co-efficient for both MSE
and LPIPS.

Our optimization algorithm is Projected Gradient De-
scent (Nocedal & Wright, 2006). First, we project each
latent code to the unit sphere. Next, when optimizing over
deeper layers, we use l1 projection to stay close to the mani-
fold induced by the previous layers. The projection in that
case includes the solution of the previous layers, the latent
codes (i.e. wi) and the noises, (i.e. ui). We tune seperately
the l1 radii for each one of the optimization variables and
for each one of the layers. Empirically, we find that the
following radii for the first four layers works decently for
most of the tasks/images:

• Radius of noises: 300, 2000, 2000, 4000.

• Radius of latent codes: 300, 500, 1000, 2000.

• Radius of previous solutions: 500, 1000, 2000.

Projection to the l1 ball allows for optimization on deep lay-
ers of the generator (that is not possible without projections).
By doing that we get better reconstruction that comes with
the cost of increased number of optimization steps. Gener-
ally, tuning the radii for each layer is an especially difficult
procedure. Even worse, these hyperparameters do not trans-
fer across tasks. For the first four layers, we encourage the
reader to use the parameters mentioned above.

To obtain the plots of Figure 2, we sampled (randomly) 5
images from Celeba-HQ and we reported the best score for
each point on the horizontal axis over 5 different runs (25
runs in total for each method for each point in the plot) with
different hyperparameters. The error bars are computed
across the experiments for different images. For the plots
of Figure 2, we searched over the following combinations
of number of steps for each layer (starting from the first):
{300, 200, 200, 100}, {300, 200, 100},
{300, 200, 200, 100, 50}, {50, 50, 50, 50, 500},

https://github.com/rosinality/stylegan2-pytorch
https://github.com/NVlabs/stylegan2
https://github.com/tg-bomze/Face-Depixelizer


Intermediate Layer Optimization for Inverse Problems

{100, 100, 100, 100, 100}. Each reported point is the aver-
age (across images) of the minimums of those runs.

6.4. Additional Experiments

In this section, we list additional figures and experiments.

Figure 8 shows that by combining MSE loss to a refer-
ence image and the classification probability, we can morph
a given person to an ImageNet (Deng et al., 2009) class.
We observe experimentally that better results are obtained
by only using MSE and LPIPS loss during the first ILO
rounds and only using the additional classification term in
the deeper layers of the generator. An extra benefit of this
method is that we can interpolate intermediate frames to
see how actually a human face can be transformed to an
imagenet class since the generator first matches the phase
and then uses the classifier to alter it.

Table 2 shows the effect of the radius of the l1 deviations
to the ground truth reconstruction error. For many mea-
surements m = n, increasing the radius to infinity gives
the smallest error since regularization is not needed. For
lower measurements m = 0.8n, smaller radius is helping
performance.

We also compare with the Projected Gradient Descent (PGD)
algorithm, proposed by Shah & Hegde (2018b). This al-
gorithm proceeds by first taking a step in the pixel space
to match the measurements and then projecting the new
image back to the generator range. Table 3 shows the results
of the comparison. We evaluate on images with 10% ran-
domly observed pixels and additive noise of σ = 12.5 | 25.0.
As shown, PGD improves upon CSGM but ILO is clearly
superior in terms of ground truth MSE.

Finally, in order to show that our method can be successfully
in other datasets as well, we perform inpainting experiments
using a pre-trained StyleGAN-2 generators on cats. Results
are shown in Figure 9.
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Task Steps l1 radius MSE LPIPS

Inversion (m = n) 100, 100, 100
0 0.0315 0.1532

300 0.0259 0.1467
∞ 0.0247 0.1402

Inpainting (m = 0.8n)
100, 100, 100

0 0.0327 0.1576
300 0.0268 0.1495
∞ 0.0285 0.1529

Table 2. Effect of radius of l1 deviations from the range of an intermediate layer. For many measurements m = n, increasing the radius
to infinity gives the smallest error since regularization is not needed. For lower measurements m = 0.8n, smaller radius is helping
performance.

Method Observed Pixels Noise std MSE
PGD

10% 12.5
0.0370

CSGM 0.0611
ILO 0.0057

PGD
10% 25.0

0.0418
CSGM 0.0643

ILO 0.0090

Table 3. Qualitative comparison with the Projected Gradient Descent (PGD) (Shah & Hegde, 2018b) algorithm. We evaluate on images
with 10% randomly observed pixels and additive noise of σ = 12.5 | 25.0. As shown, PGD improves upon CSGM but ILO is clearly
superior in terms of ground truth MSE.

Figure 8. Morphing using a classifier for Bull Frog class, keeping also a loss term for distance to a well-known machine learning researcher.
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Figure 9. Inpainting using a StyleGAN trained to generate cat images. First column: Original image (never observed). Second column:
Observed image. Third column: ILO reconstruction.
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6.5. Ethical Considerations

Previous research has reported that StyleGAN leads to bi-
ased generations (Menon et al., 2020; Jain et al., 2020; Tan
et al., 2020; Salminen et al., 2020). In practice, we observe
that by extending the range of the generator we obtain more
diverse generations. A similar finding has been reported by
Abdal et al. (2019). Even though we observe less biased
reconstructions, we encourage a lot more research on this
topic.

Admittedly, our method makes the creation of Deep-
Fakes (Korshunov & Marcel, 2018) easier, since it expands
the range of the generator. Arguably, the technology be-
hind DeepFakes is already very powerful so the negative
effect of this work will be diminishing. An interesting
topic of research is whether existing defences against Deep-
Fakes (Matern et al., 2019; Güera & Delp, 2018; Nguyen
et al., 2019; Yang et al., 2020) are robust to images that lie
outside of the range of the GAN.

Experiments with a robust classifier combined with similar-
ity to a reference image can be abused to generate images
that are offensive in various ways. In this paper we are
only exploring with what is possible, but future work should
consider detecting and preventing such abuse.

6.6. Things that did not work

We share some negative results we encountered during the
process of writing this paper. Our goal is to inform the
research community about some methods that failed so that
future research can avoid them, reformulate them or even
contradict our findings. We also suggest ways to mitigate
some of the issues we experienced.

First, we observed that joint optimization of all noise vectors
leads to poor visual reconstructions. Even in cases where the
MSE loss to the unobserved image was going down, joint-
optimization of all noise vectors was giving blurry and/or
unrealistic reconstructions. Thus we believe that expanding
the generator space without sequential optimization and
constraints fails since it makes it too powerful.

We also tried to establish a criterion on how many steps
to run per layer. In practice, we observed that a working
heuristic is to move to the next layer when the observed
MSE error flattens. Even though this idea works well for
the first layers, it can lead to unrealistic reconstructions
when applied to deeper layers of the generator. To mitigate
this issue, we choose very small radii when optimizing in
deep layers. Tuning the hyperparameters (learning rates,
number of steps and optimization radii) for each of the
layers can be a particularly toilsome procedure. Sadly, we
observed that these parameters do not generalize across
different tasks (even though they mostly generalize across
different images).

On the theoretical side, we tried (unsuccessfully) to obtain
similar results for an l2 dilation of the range of the first
generator. The main bottleneck is the measurements bound;
for the l2 ball, we cannot avoid linear dependence on the
intermediate dimension. It is not clear yet whether a similar
result for the l2 case could be proved. In practice, we did not
observe significant difference between projecting in l1 or l2
balls. Moreover, it is known that l1 projection encourages
sparsity in some cases, e.g. see LASSO (Tibshirani, 1996).
Establishing a connection between the l0 and the l1 solutions
is left as future work.
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