
Supplementary Material
High-Dimensional Gaussian Process Inference with Derivatives

A. Linear Algebra
Kronecker products play an important role in the derivations so here list a few properties that will be useful, see (Van Loan,
2000) for more. The Kronecker product for a matrix A ∈ RM×N and B ∈ RP×Q is a block matrix (A⊗B) ∈ RMP×NQ

with block [i, j] = Aij · B. We will also require the “perfect shuffle” matrix S and the column-stacking operation of a
matrix vec(·) (Van Loan, 2000).

Properties For matrices of appropriate sizes (these will be valid for the derivations).

• (A⊗B)−1 = (A−1 ⊗B−1)

• (A⊗B)(C ⊗D) = (AC ⊗BD)

• SNQ vec(X) = vec(X>) for X ∈ RQ×N

• (A⊗B) vec(X) = vec(BXA>) for A ∈ RM×N , B ∈ RP×Q and X ∈ RQ×N .

The final property is particularly prevalent the in derivations so we introduce the shorthand

(A⊗B) vec(X)→ BXA>

to denote the ”unvectorized” result. If the vectorization operation is applied to the result then the flattened correct result is
obtained.

Notation The derivations contain several several matrices that we here list to give an overview. The input dimension is D
and there are N observations.

• X ∈ RD×N : All evaluation points stacked into a matrix.

• ∇K∇′ ∈ RDN×DN : Kernel gram matrix for the derivatives with decompositions∇K∇′ = B + UCU>.

• G ∈ RD×N : All gradients stacked into a matrix. vec(G) r.h.s. of ∇K∇′ vec(Z) = vec(G).

• Z ∈ RD×N : the solution to∇K∇′ vec(Z) = vec(G), (Riesz representers).

• B ∈ RDN×DN : Kronecker product of K ′ ⊗ Λ

• C ∈ RN2×N2

: Symmetric matrix defined as C = diag(vec(K ′′))SNN = SNN diag(vec(K ′′)).

– C vec(M)→ K ′′ �M>.
– C−1 vec(M)→M> �K ′′.
– � and � correspond to the elementwise multiplication and division respectively.

• U ∈ RND×N2

: Tall and thin Kronecker product used in∇K∇′ = B + UCU>.

– For dot product kernels U = (I ⊗ Λ(X − c)).
– For stationary kernels U = (I ⊗ ΛX)L.

• L ∈ RN2×N2

: Sparse operator required for U in stationary kernels

High-Dimensional Gaussian Process Inference with Derivatives

– [L> vec(M)]ab →Maa −Mab

– [L vec(M)]ab → diag(
∑
a
Mab)−Mab

• Q ∈ RN×N : Solution to (C−1 + U>B−1U) vec(Q) = U>B−1 vec(G)

B. Kernel derivatives
Conditioning a GP on gradient observations requires the derivative of the kernel w.r.t. its arguments. Here we derive these
terms for kernels with inner products and stationary kernels. We use the notation ∂bj as shorthand for ∂/∂xbj and use k′ to
refer to the derivative w.r.t. the scalar argument r. The notation mirrors that of Sec. 2.

B.1. General kernels

If we write a general kernel k(xa,xb) = k(r(xa,xb)) then the general form of each component for gradient inference will
take the following form.

k(xa,xb) = k(r(xa,xb))

∂b
jk(r) = k′(r)∂b

jr

∂a
ik(r) = k′(r)∂a

ir

∂a
i∂b

jk(r) = k′ab(r) · ∂a
i∂b

jr + k′′ab(r) · (∂a
ir)(∂b

jr)

(18)

We thus use the convention of ordering the entries in the Gram matrix ∇K∇′ first according to the N data points x1:N , and
then according to dimension, i.e.,

∇K∇′ =

∇k(x1,x1)∇′ . . . ∇k(x1,xN)∇′
...

. . .
...

∇k(xN ,x1)∇′ . . . ∇k(xN ,xN)∇′

 , (19)

where each block has the size D ×D. We highlight this ordering as it deviates from the conventional way found in the
literature. Each element of the a, bth block take the form ∂a

i∂b
jk(r) specified in Eq. (18), where no assumption on the

structure of the kernel has been done at this point. The first term decomposes into a Kronecker product for the kernels we
consider, because indices a, b and i, j separate. This term can thus be efficiently inverted. The second term is what usually
makes closed-form gradient inference intractable which will be further explored below for dot product kernels and stationary
kernels.

B.2. Dot Product Kernels

For dot product kernels we define the function r as

r(xa,xb) = (xa − c)>Λ(xb − c). (20)

See Sec. B.2.1 for examples of dot product kernels.

The relevant terms of Eq. (18) are:

∂a
ir(xa,xb) = [Λ(xb − c)]i

∂b
jr(xa,xb) = [Λ(xa − c)]j

∂a
i∂jbr(xa,xb) = Λij

From this we see the Gram matrix of Eq. (18) will look like:

∂a
i∂b

jk(r) = k′ab(r) · Λij + k′′ab(r) · [Λ(xb − c)]i[(xa − c)>Λ]j

= [K ⊗ Λ]ijab + [(I ⊗ ΛX̃) (SNN diag(vec(K ′′)))︸ ︷︷ ︸
C

(I ⊗ X̃Λ)>]ijab
(21)

High-Dimensional Gaussian Process Inference with Derivatives

The first term is of Kronecker structure which is easy to invert using properties of Kronecker products. The second consists
of rank-1 corrections block-wise multiplied with the scalar value k′′ab. The input indices are flipped for the term i.e., b
appears as a row index and a as column. This shuffling is what makes the structure of the gradient Gram matrix difficult, but
it can be resolved with the Kronecker transposed product. To derive the structure of the second term we start by defining the
matrix X̃ ∈ RD×N , X̃ = X − c. We can then form the following outer product to get the structure:

[Λ(xb − c)]i
[
(xa − c)>Λ>

]j
= [ΛX̃b]

i[(ΛX̃b)
>]j

=

N∑
m,n

[ΛX̃n]i[ΛX̃m]jδamδbn

=

N∑
n,n′

N∑
m,m′

[ΛX̃n]i[ΛX̃m]jδam′δbn′δmm′δnn′

=

N∑
n,n′

N∑
m,m′

(
δam′ · [ΛX̃n]i

)
(δmm′δnn′)︸ ︷︷ ︸

SNN

(
δbn′ · [ΛX̃m]j

)

=

N∑
n,n′

N∑
m,m′

[I ⊗ ΛX̃]ia,m′n [SNN]m′n,n′m [I ⊗ (ΛX̃)>]jn′m,b

=
[
(I ⊗ ΛX̃)SNN (I ⊗ X̃Λ)>

]ij
ab

To get the right scalar value for each block outer product one has to write the term like below.

(I ⊗ ΛX̃)︸ ︷︷ ︸
U

(SNN diag(vec(K ′′)))︸ ︷︷ ︸
C

(I ⊗ ΛX̃)>︸ ︷︷ ︸
U>

(22)

with Cm′n,n′m = K ′′mnδmm′δnn′ a symmetric N2 ×N2 matrix.

B.2.1. EXAMPLES FOR INNER PRODUCT KERNELS

Kernel k(r) k′(r) k′′(r)

Polynomial(p) rp

p(p−1)
rp−1

(p−1) rp−2

Polynomial(2) r2

2 r 1

Exponential/Taylor exp (r) exp (r) exp (r)

Table 1. Examples for inner product kernels where r = (xa − c)>Λ(xb − c).

B.3. Stationary kernels

For a stationary kernel we define
r(xa,xb) = (xa − xb)>Λ(xa − xb).

Note here the discrepancy to conventional notation and do not think of r as a radius or Mahalonobis distance here (but rather
its square). Then we have the following identities:

∂a
ir(xa,xb) = 2 · [Λ(xa − xb)]i

∂b
jr(xa,xb) = −2 · [Λ(xa − xb)]j

∂a
i∂b

jr(xa,xb) = −4 · Λij .

High-Dimensional Gaussian Process Inference with Derivatives

The Gram matrix will have the general structure:

∂a
i∂b

jk(r) = −2k′ab(r) · Λjl − 4k′′ab(r) · [Λ(xa − xb)]i[(xa − xb)>Λ]j . (23)

Usually the factors 2 and 4 disappear due to scalar values of k′(r) and k′′(r), see Sec. B.3.1.

Writing the second term in matrix form is a bit more intricate than Eq. (22), but taking the same approach we get

[Λ(xa − xb)]i[(xa − xb)>Λ]j = [Λxa]i[x>a Λ]j − [Λxb]
i[x>a Λ]j − [Λxa]i[x>b Λ]j + [Λxb]

i[x>b Λ]j

=
∑
mn

δamδbn
(
[Λxm]i[x>mΛ]j − [Λxn]i[x>mΛ]j − [Λxm]i[x>nΛ]j + [Λxn]i[x>nΛ]j

)
=
∑
mn

(
δam

(
[Λxm]i − [x>nΛ]i

)) (
δbn
(
[x>mΛ]j − [x>nΛ]j

))
=
∑
mnpp′

(
δam

(
δpm[Λxp]

i − δpn[x>p Λ]i
)) (

δbn
(
δp′m[x>p′Λ]j − δp′n[x>p′Λ]j

))
=

∑
mnoo′pp′

(
[Λxp]

iδaoδmo(δpm − δpn)
) (

[x>nΛ]jδbo′δno′(δp′m − δp′n)
)

=
∑
mn

∑
op

δao[Λxp]
i︸ ︷︷ ︸

Uai,op

δom(δpm − δpn)︸ ︷︷ ︸
Lop,mn

∑
o′p′

δo′n(δp′m − δp′n)︸ ︷︷ ︸
Lmn,o′p′

δo′b[x
>
nΛ]j︸ ︷︷ ︸

Uo′p′,bj

(24)

For dot product kernels we used U = (I ⊗ Λ(X − c)), for stationary kernels we instead use U = (I ⊗ ΛX)L. The second
term of the Gram matrix is formed by UCU> in the same way as Eq. (22). U is however no longer a Kronecker product
which makes the algorithmic details more involved. It is therefore more convenient to use the UL representation where L is
a sparse linear operator. U> vec(g) = L> vec(X>Λg)mn = vec(X>Λgmn −X>Λgmm)

B.3.1. EXAMPLES FOR STATIONARY KERNELS

Kernel k(r) k′(r) k′′(r)

Squared exponential e−r/2 − 1
2k(r) 1

4k(r)

Matérn ν = 1/2 e−
√
r −k(r)

2
√
r

1
4r3/2

(
√
r + 1) k(r)

Matérn ν = 3/2 (1 +
√

3r) e−
√

3r
√

3
2
√
r

(
e−
√

3r −k(r)
) √

3
2
√
r

(
k(r)
2r − k

′(r)− e−
√

3r 1+
√

3r
2r

)
Matérn ν = 5/2

(
1 +
√

5r + 5r
3

)
e−
√

5r
(√

5
2
√
r

+ 5
3

)
e−
√

5r −
√

5
2
√
r
k(r)

√
5

2
√
r

(
k(r)
2r − k

′(r)− e−
√

5r
(

1+
√

5r
2r + 5

3

))
Rational quadratic

(
1 + r

2α

)−α − 1
2

(
1 + r

2α

)−α−1 α+1
4α

(
1 + r

2α

)−α−2

Table 2. Examples for stationary kernels where r = (xa − xb)
>Λ(xa − xb).

Table 2 contains the kernels we considered. For reasons of space, we derive the general expressions for the Matérn family
with half integer smoothness parameter ν = p+ 1

2 for p ∈ N here, which reads

kp+1/2(r) = exp
(
−
√

2νr
) Γ(p+ 1)

Γ(2p+ 1)

p∑
i=0

(p+ i)!

i!(p− i)!

(√
8νr
)p−i

,

and has the monstrous derivatives

k′p+1/2(r) = −
√

ν

2r
kp+1/2 + exp

(
−
√

2νr
) Γ(p+ 1)

Γ(2p+ 1)

p−1∑
i=0

(p+ i)!

i!(p− i− 1)!

(√
8νr
)p−i−1

√
2ν

r

k′′p+1/2(r) =

(√
ν

8r3
+

ν

2r

)
kp+1/2 −

(√
ν

2r3
+

2ν

r

)
exp

(
−
√

2νr
) Γ(p+ 1)

Γ(2p+ 1)

p−1∑
i=0

(p+ i)!

i!(p− i− 1)!

(√
8νr
)p−i−1

+

√
2ν

r
exp

(
−
√

2νr
) Γ(p+ 1)

Γ(2p+ 1)

p−2∑
i=0

(p+ i)!

i!(p− i− 2)!

(√
8νr
)p−i−2

.

High-Dimensional Gaussian Process Inference with Derivatives

The general form of the Matérn kernels also falls into the category of stationary kernels, as do the spectral mixture kernels
(Wilson & Adams).

C. Decomposition Benefits
In Appendix B we showed that ∇K∇′ can be written as B + UCU>, see Appendix A for summary. In Sec. 2.3 we
discussed some benefits of the decomposition that we here explain more in detail.

C.1. Woodbury vector for N < D

The decomposition is particularly interesting when the number of observations N is small. In this setting we can employ the
matrix inversion lemma, Eq. (6) restated here for convenience

(B + UCU>)−1 = B−1 −B−1U
(
C−1 + U>B−1U

)−1
U>B−1.

If the size of C is smaller than B and B−1 is “cheap”, then the r.h.s. above is computationally beneficial. The involved
matrices are all comparatively large, but by using the important properties of Kronecker products (Appendix A) it is possible
to significantly lower the requirements. Here we outline the required operations for a dot product kernel with X̃ = X − c.
The operations for stationary kernels are similar but require the additional application of L for each operation involving U .

1. T = U>B−1 vec(G)→ X̃>G(K ′)−1.

• T ∈ RN×N

2. Solve:
(
C−1 + U>B−1U

)
vec(Q) = vec(T):

(
C−1 + (K ′)−1 ⊗ (X̃>ΛX̃)

)
vec(Q) = vec(T).

• Q ∈ RN×N

3. vec(Z) = B−1 vec(G)−B−1U vec(Q): Z = Λ−1G(K ′)−1 −XQ(K ′)−1.

• Z ∈ RD×N

Special case Step 2 in the above procedure is the source of the O((N2)3) scaling in computations. For the situation
outlined in Sec. 4.2 it is possible to solve the linear system analytically. A multiplication with the linear system in step 2 for
the second order polynomial kernel is performed as

(C−1 + (X̃ΛX̃)−1 ⊗ (X̃>ΛX̃)) vec(V)→ V > + (X̃>ΛX̃)V (X̃ΛX̃)−1. (25)

For the outlined situation in Sec. 4.2 the r.h.s. T = (X̃>AX̃)(X̃>ΛX̃)−1.

The solution to the linear system is

Q =
1

2
(X̃>ΛX̃)−1(X̃>AX̃).

This is easily verified by inserting the value for Q in Eq. (25)

Q> + (X̃>ΛX̃)Q(X̃>ΛX̃)−1 =
1

2
(X̃>AX̃)(X̃>ΛX̃)−1 + (X̃>ΛX̃)[

1

2
(X̃>ΛX̃)−1(X̃>AX̃)](X̃>ΛX̃)−1

=
1

2
(X̃>AX̃)(X̃>ΛX̃)−1 +

1

2
(X̃>AX̃)(X̃>ΛX̃)−1

= (X̃>AX̃)(X̃>ΛX̃)−1 = T

C.2. Benefits for general N

The derived Kronecker structure of the Gram matrix∇K∇′ in Eq. (2) highlights an important speedup of multiplication.
Multiplying a vectorized matrix V of same shape as G with the Gram matrix is obtained by the following computations

∇K∇′ vec(V) = ΛV K ′ + ΛX(K ′′ � V >ΛX),

A full algorithm for multiplication with the Gram matrix is available in Alg. 2, with modification for stationary kernels
written in red. The advantage of defining such a routine is that the Gram matrix never needs to be built, which reduces the
memory requirement from O((DN)2) to O(DN +N2).

High-Dimensional Gaussian Process Inference with Derivatives

Algorithm 2∇K∇′-MVM
Require: x0

Input: (V ∈ RD×N , K ′ ∈ RN×N , K ′′ ∈ RN×N , X̃ ∈ RD×N)
M = X̃>ΛV
m = diag(M) {Multiplication with L>}
M = M −m>
M = K ′′ �M>
m =

∑
aMab {Multiplication with L}

M =m> −M
Return: ΛV K ′ + ΛX̃M

D. Gradient and Hessian inference
Once Z ∈ RD×N has been obtained from solving∇K∇′ vec(Z) = vec(G) it is possible to infer the gradient and Hessian
at a new point xa. Note that a is now an index with a single value and b takes N values, so Kab = kab is a row vector.
Inferring the gradient and Hessian at a point xa requires the following contractions

ḡ(xa)i =
∑
bl

[∂ia∂
l
bk(r)]ilabZ

l
b, (26)

and
H̄(xa)ij =

∑
bl

[∂ia∂
j
a∂

l
bk(r)]ijlaabZ

j
b . (27)

D.1. Dot product kernels

Gradient For dot product kernels the gradient at a point xa is readily available from Eq. (26) and Eq. (20) as

g(xa) = ΛZ(k′ab)
> + Λ(X − c)((k′′ab)> � Z>(xa − c)).

A prior mean for the gradient was omitted.

Hessian The posterior mean of the Hessian in Eq. (27) first requires the third derivative of the kernel. Differentiating
Eq. (20) again yields

∂a
i∂a

i∂b
lk(r) = k′′ab · Λjl · [Λ(xb − c)]i + k′′ab · Λil · [Λ(xb − c)]j + δabk

′′
ab · Λij · [Λ(xa − c)]l

+ k′′′ab[Λ(xb − c)]j [Λ(xa − c)]l[Λ(xb − c)]i

To perform the contraction in Eq. (27) we first introduce X̃ = X − c and perform the contraction over l which results in

H̄(xa)ij =
∑
b

k′′ab · [ΛZ]jb · [ΛX̃]ib + k′′ab · [ΛZ]ib · [ΛX̃]jb + δab · Λij · k′′ab · [Λ(xa − c)>ΛZ]ab

+ k′′′ab · [ΛX̃]ib · [ΛX̃]jb · [(xa − c)
>ΛZ]ab.

The final contraction of b can easily be interpreted as standard matrix multiplication to arrive at the form

H̄(xa) =
[
ΛX̃,ΛZ

] [M M̂

M̂ 0

] [
X̃>Λ
Z>Λ

]
+ Λ · Tr(M̆).

All these M -matrices are diagonal matrices with N elements

Mbb = k′′′ab � [(xa − c)>ΛZ]ab,

M̂bb = k′′ab

M̆bb = δab · k′′ab(xa − c)>ΛZ.

The last expression including Tr(M̆) can be simplified to k′′aa(xa − c)>ΛZ if xa ∈ X .

High-Dimensional Gaussian Process Inference with Derivatives

D.2. Stationary kernels

Gradient inference for stationary kernels looks similar to the dot product kernels but has some important differences. For
the following derivations we introduce k̃′ = 2k′, k̃′′ = 4k′′, k̃′′′ = 8k′′ and X̃ = (xa −X). The posterior mean gradient at
a point xa for a stationary kernel is

g(xa) = −ΛZk̃
′
ba − ΛX̃(k̃

′′
ba �mb),

mb = (
∑
l

Zlb � [ΛX̃]lb)
(28)

Hessian The third derivative of stationary kernels required for the Hessian inference is

∂a
i∂a

i∂b
lk(r) = −k̃′′ab · Λjl · [Λ(xa − xb)]i − k̃′′ab · Λil · [Λ(xa − xb)]j + k̃′′ab · Λij · [Λ(xa − xb)]l

− k̃′′′ab[Λ(xa − xb)]j [Λ(xa − xb)]l[Λ(xa − xb)]i,

withmb the same vector as in Eq. (28). The posterior mean is obtained in the same way as for the dot product, by Eq. (27)

H̄(xa)ij =
∑
b

−k̃′′ab · [ΛZ]jb · [ΛX̃]ib − k̃′′ab · [ΛZ]ib · [ΛX̃]jb + Λij · k̃′′ab �mb

− (k̃′′′ab �mb) · [ΛX̃]ib · [ΛX̃]jb.

The posterior mean can be written in standard matrix notation as

H̄(xa) =
[
ΛX̃,ΛZ

] [M M̂

M̂ 0

] [
X̃>Λ
Z>Λ

]
+ Λ · Tr(M̆).

The diagonal matrices are this time given by

Mbb = k̃
′′′
ab �mb,

M̂ = −k̃
′′
ab,

M̆bb = k̃
′′
ab �mb.

E. Further details about applications
E.1. Infering the optimizer

A GP with gradient observations learns a mapping x → ∇f(x). With efficient gradient inference we can also flip the
inference and learn a mapping ∇f(x) → x(∇f) and query what x(∇f(x) = 0) for a new update. This is achieved by
performing gradient inference but interchanging the input and output. The posterior mean for which x∇f(x) = 0 occurs is

x̄∗ = xm + [∇K∇′(0, G)] [∇K∇′(G,G)]
−1

vec(X − xm).

E.2. Stationary linear solvers

For the special case of stationary linear solvers in linear algebra we have f(x) = 1
2 (x− x∗)>A(x− x∗) and ∇f(x) =

g(x) = A(x− x∗) and we are interested in inferring x∗.

For the polynomial(2) kernel if we use c = gm and prior mean µ = xm inference is fast. First define X̃ = X − xm and
G̃ = g − gm. Because G̃>X̃ = X̃>G̃ we get the Z that solves∇K∇′ vec(Z) = vec(X̃):

Z = Λ−1X̃(G̃>ΛG̃)−1 − 1

2
G̃(G̃>ΛG̃)−1G̃>X̃(G̃>ΛG̃)−1 (29)

High-Dimensional Gaussian Process Inference with Derivatives

Inferring at which the point x̂a a gradient ga occurs is done by the following computation:

x̂a = xm + ΛZ(G̃>Λ(g̃a − g̃m)) + ΛX̃[Z>Λ(g̃a − g̃m))]

= xm + X̃(G̃>ΛG̃)−1(G̃>Λ(g̃a − g̃m))− 1

2
ΛG̃(G̃>ΛG̃)−1G̃>X̃(G̃>ΛG̃)−1(G̃>Λ(g̃a − g̃m))

+ ΛG̃[(G̃>ΛG̃)−1X̃>(g̃a − g̃m)− 1

2
(G̃>ΛG̃)−1G̃>X̃(G̃>ΛG̃)−1G̃>Λ(g̃a − g̃m)]

= xm + X̃(G̃>ΛG̃)−1G̃>Λ(g̃a − g̃m)

+ ΛG̃[(G̃>ΛG̃)−1
(
X̃>(g̃a − g̃m)− G̃>X̃(G̃>ΛG̃)−1G̃>Λ(g̃a − g̃m)

)
]

F. Details about experiments
F.1. linear algebra

For the linear algebra task we generated the matrix A Eq. (14) in a manner beneficial for CG. The eigenvalues of A were
generated according to

λi = λmin +
λmax − λmin

N − 1
· ρN−i · (N − i),

with λmin = 0.5, λmax = 100 yielding a condition number of κ(A) = 200 and ρ = 0.6 so approximately the 15 largest
eigenvalues are larger than 1. In this setting CG is expected to converge in slightly more than 15 iterations. A relative
tolerance in gradient norm of 10−5 was used as termination criterion due to numerical instabilities. The starting and solution
points were sampled according to x0 ∼ N (0, 52 · I) and x∗ ∼ N (−2 · 1, I). The Hessian-based optimization used a fixed
c = 0 and gc = A(c− x∗) = −Ax∗ = −b in the linear system interpretation Ax = b. There a plenty of possibilities for
how the algorithm can be implemented and this particular version was sensitive to the relative position of c and x∗.

F.2. Nonlinear Optimization

We chose the test function (restated here for convenience)

f(x) =

D−1∑
i=1

x2
i + 2 · (xi+1 − x2

i)
2

for the more challenging nonlinear experiments. It is a relaxed version of the famous Rosenbrock function, which was used
to better control the magnitude of the gradients for the high-dimensional problem. This was important because the RBF
kernels used for the optimization used a fixed Λ, which could lead to numerical issues if the magnitude of the steps and
gradients drastically changed between iterations. The lengthscale of the isotropic kernels in the algorithms were Λ = 9 · I
for GP-H and Λ = 0.05 · I . There are too many options of extending the algorithm to go over in this manuscript, which is
why the algorithm should be seen more as a proof-of-concept than radical new algorithm.

F.3. Hamiltonian Monte Carlo

We used the following unnormalized density as a target for the HMC experiment

f(x) = exp

(
−1

2

(
x2

1 + (a0x
2
1 + a1x2 + a2)2 +

D∑
i=3

aix
2
i

))
(30)

and set the parameter vector to a = [2,−2, 2, . . . , 2]>. The distribution is thus Gaussian with variance 1
2 in all components

other than x1 and x2. Since we use an isotropic RBF kernel to model the potential energy (i.e., the negative logarithm of the
above function), we randomly rotate the above function by applying sampled orthonormal matrices to the input vector.

Fig. 4 uses Eq. (30) directly, and thus the kernel is aligned with the problem. We choose a (squared) lengthscale of 0.4D
where D = 100 from visual inspection of the typical scale of the “banana”. HMC uses a step-size ε = 4 · 10−3/d 4

√
De and

number of leapfrog steps T = 32 · d 4
√
De, with the term d 4

√
De being motivated by the analysis of how these parameters

should change with increasing dimension (Neal et al., 2011). For all experiments we draw a standard normal vector as a

High-Dimensional Gaussian Process Inference with Derivatives

starting point and simulate D times with plain HMC for burn-in, before retaining samples in the case of HMC, or starting the
training procedure for GPG-HMC. The training is performed as described in Sec. 5.3.

The rotated version of the above function used slightly different parameters for the RBF kernel, a squared lengthscale of
0.25D to stay on the conservative side about the target function. Also we halved the stepsize of the leapfrog integrator while
leaving the number of steps taken unchanged. Otherwise, the acceptance rate also dropped significantly for both methods.
All experiments used a mass parameter of m = 1.

Algorithm 3 summarizes the GPG-HMC method without the training procedure which leaves a lot of space for engineering.
In fact, this is identical to standard HMC, except for the fact that instead of the true gradient ∇E the GP surrogate ∇̂E is
used.

Algorithm 3 GPG-HMC

input x0, E(·), ∇̂E(·), N , T , ε, m
output X
x = x0;X = []
for n = 1:N do
p ∼ N (0,mI)

H ← U(x) + p>p
2m

xnew,p← LEAPFROG(x,p, ∇̂E(·), T, ε)
∆H ← E(x) + p>p

2m −H
if r ∼ UNIFORM[0, 1] < min(1, e−∆H) then
x← xnew

end if
X ← [X,x]

end for

