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A. Appendix
In this section, we illustrate the additive hybrid diffusion
kernel (Equation 4.10) by providing a running example.

A.1. Running example for additive hybrid diffusion
kernel

We illustrate the additive hybrid diffusion kernel and its
recursive computation using a 3-dimensional hybrid space,
where the first two dimensions correspond to discrete sub-
space and the last dimension correspond to continuous sub-
space. Let k1, k2, k3 be the base kernels for first, second,
and third dimension respectively. The additive diffusion ker-
nel can be computed recursively step-wise as shown below:

K1 = θ21 · (k1 + k2 + k3), S1 = (k1 + k2 + k3)

K2 = θ22 · (k1k2 + k1k3 + k2k3), S2 = (k21 + k22 + k23)

K3 = θ23 · (k1k2k3), S3 = (k31 + k32 + k33)

K0 = 1;

K1 = θ21 · S1;

K2 = θ22 ·
1

2
(K1 · S1 − S2) ;

K3 = θ23 ·
1

3
(K2 · S1 −K1 · S2 + S3) ;

KHYB = K1 +K2 +K3

B. Additional Experimental Details
B.1. Real world benchmarks

1) Pressure vessel design optimization. The objective
function (cost of cylindrical pressure vessel design) F(x)
for this domain is given below:

min
{x1,x2,x3,x4}

0.6224x1x3x4 + 1.7781x2x
2
3+

3.1661x21x4 + 19.84x21x3

(B.1)

where x1, x2 are discrete variables (thickness of shell and
head of pressure vessel) lying in {1, · · · , 100} and x3 ∈
[10, 200], x4 ∈ [10, 240] are continuous variables (inner
radius and length of cylindrical section).

2) Welded beam design optimization. The objective func-
tion (cost of fabricating welded beam) F(x) for this domain
is:

min
{x1,x2,x3,x4,x5,x6}

(1 +G1)(x1x5 + x4)x23 +G2x5x6(L+ x4)

(B.2)

where x1 ∈ {0, 1}, x2 ∈ {0, 1, 2, 3} are discrete vari-
ables, x3 ∈ [0.0625, 2], x4 ∈ [0, 20], x5 ∈ [2, 20], x6 ∈

[0.0625, 2] are continuous variables, G1 is the cost per vol-
ume of the welded material, and G2 is the cost per volume
of the bar stock. The constants (G1, G2, L), which are de-
pendent on the second discrete variable x2, are given in
(Deb & Goyal, 1996; Reklaitis et al., 1983).

3) Speed reducer design optimization. The objective func-
tion (weight of speed reducer) F(x) for this domain is:

min
{x1,x2,x3,x4,x5,x6,x7}

0.79x2x
2
3(3.33x31 + 14.93x1 − 43.09)

− 1.51x2(x26 + x27) + 7.48(x36 + x37) + 0.79(x4x
2
6 + x5x

2
7)

(B.3)

where x1 ∈ {17, 18 · · · , 28} represents the discrete vari-
able (number of teeth on pinion), x2 ∈ [2.6, 3.6], x3 ∈
[0.7, 0.8], x4 ∈ [7.3, 8.3], x5 ∈ [0.7, 0.8], x6 ∈
[2.9, 3.9], x7 ∈ [5, 5.5] represents the continuous variables
(face width, teeth module, lengths of shafts between bear-
ings, and diameters of the shafts respectively).

The above three benchmarks are usually described with
known constraints in a declarative manner. However, for
simplicity, we consider their unconstrained version for eval-
uation in this paper. If required, since the constraints are
known, we can easily avoid searching for invalid solu-
tions by using an appropriate acquisition function optimizer
within HyBO.

4) Optimizing control for robot pushing. This do-
main was taken from this URL 7. We consider a hy-
brid version of this problem by discretizing the loca-
tion parameters (x1, x2, x3, x4 ∈ {−5,−4, · · · , 5} and
x5, x6, x7, x8 ∈ {−10,−9, · · · , 10}). There are two
other discrete variables corresponding to simulation steps
x9, x10 ∈ {2, 3, 4, · · · , 30} and two continuous variables
x11, x12 lying in [0, 2π].

5) Calibration of environmental model. The details of
the objective function for this domain are available in
(Bliznyuk et al., 2008; Astudillo & Frazier, 2019). The
single discrete variable has 284 candidate values lying in
the set {30.01, 30.02, · · · 30.285}. There are three con-
tinuous variables lying in the range: x2 ∈ [7, 13], x3 ∈
[0.02, 0.12], x4 ∈ [0.01, 3].

6) Hyper-parameter optimization. The type and range
for different hyper-parameters considered in this domain
are given in Table 5. We employed the scikit-learn (Pe-
dregosa et al., 2011) neural network implementation for this
benchmark.

7https://github.com/zi-w/
Ensemble-Bayesian-Optimization/tree/master/
test_functions

https://github.com/zi-w/Ensemble-Bayesian-Optimization/tree/master/test_functions
https://github.com/zi-w/Ensemble-Bayesian-Optimization/tree/master/test_functions
https://github.com/zi-w/Ensemble-Bayesian-Optimization/tree/master/test_functions
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Hyperparameter Type Range
Hidden layer size Discrete {40, 60, · · · , 300}
Type of activation Discrete {’identity’, ’logistic’, ’tanh’, ’relu’}

Batch size Discrete {40, 60, · · · , 200}
Type of learning rate Discrete {’constant’, ’invscaling’, ’adaptive’}

Early stopping Discrete True/False
Learning rate initialization Continuous [0.001, 1]

Momentum Continuous [0.5, 1]
Alpha parameter Continuous [0.0001, 1]

Table 5. Type and range of hyper-parameters considered for the HPO benchmark.
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Figure 4. Results comparing the proposed HyBO approach with state-of-the-art baselines on multiple real world benchmarks. These
figures also contain HyBO without marginalization and Cont-BO results.

C. Additional Results
Results for real-world benchmarks. Figure 4 extends the
plots of Figure 3 by including the performance of Cont-BO
and HyBO w/o Marg on the real-world benchmarks. The
results show similar trend where Cont-BO performs worse
than all other methods showing the need to take into account
the hybrid input structure. Also, the performance of HyBO
w/o Marg remains similar to HyBO (except on calibration of
environment model) demonstrating the effective modeling
strength of additive hybrid diffusion kernel.

Comparison with (Garrido-Merchán & Hernández-
Lobato, 2020) As mentioned in our related work, this is
an interesting approach for BO over discrete spaces but it is
specific to discrete spaces alone. Since our problem setting
considers hybrid input spaces, we performed experiments
using this method for the discrete part and using the standard

Benchmark HyBO G-M et al. Vanilla BO
Synthetic Function 1 79.7 99.4 86.2
Synthetic Function 2 394.6 420 407
Synthetic Function 3 81.1 143 135
Synthetic Function 4 395.2 458 456.8

Table 6. Results for additional baseline experiments

BO approach for the continuous part with HyBO’s AFO pro-
cedure. Results of this approach (referred as G-M et al.,) on
the 4 synthetic benchmarks are shown in Table 6. The best
function value achieved after 200 iterations and averaged
over 25 different runs (same configuration as described in
the main paper) is shown. We also add another baseline
named Vanilla BO (GP with RBF kernel to model hybrid
space + HyBO’s AFO procedure) in Table 6. It is evident
from the results that HyBO performs significantly better.
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