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Figure 1. Inputs for the TD-CNN model. Random samples of 
two agent trajectories (top) and two human trajectories (bottom). 
Each image represents one whole trajectory/video, obtained by 
projecting the symbolic representation (agent position) along the 
”up” direction (z-coordinate). 

Figure 2. Inputs for the BC-CNN model. Random samples of two 
agent trajectories (top) and two human trajectories (bottom). Time 
is along the x-axis, each column in the image represents a single 
frame in the video where each colour channel has been separately 
averaged to compress the 2D frame to 1D in this representation. 
This allows us to represent an entire video the format expected by 
the VGG network: [COLOR, HEIGHT, WIDTH]. 

A. Appendix 
A.1. Classifer Training Details 

This section provides training details for our Automated 
Navigation Turing Test (ANTT) classifers (described in 
Section 3 of the main paper). 

To estimate the mean validation accuracy for hyperparame-
ter tuning each model, we ran 5-fold cross-validation with 
an 80-20 split for training and validation. The training and 
validation sets are composed of a total of 100 episodes col-
lected by four human players and 198 episodes of trained 
agents from two checkpoints. The test set is composed of 
the 40 videos shown in the Human Navigation Turing Test 
(HNTT, see Section 4 of the main paper), collected by three 
different human players and a different checkpoint for the 
trained agents (i.e., there was no overlap in players or agent 
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checkpoints between the test and training/validation set). 
Human videos are selected by weighted sampling during 
cross-validation to account for class imbalance. 

As discussed in the paper, our experiments consider different 
input formats to represent human and agent trajectories. To 
give readers a better understanding of the quality of the top-
down (TD) and bar-code (BC) representations, we include 
additional examples in Figures 1 and 2. 

For the VIS-FF, VIS-GRU, and TD-CNN models, we use a 
VGG network (Simonyan & Zisserman, 2014) pre-trained 
on the Imagenet dataset (Deng et al., 2009). The VGG’s 
last layer is then replaced by a feedforward network (1 or 
2 layers with dropout, depending on the hyperparameters) 
which is trained on our dataset. 

Our hyperparameter tuning focused on reducing overftting. 
We considered different dropout percentages (0%, 50%, 
85%), hidden layer dimensions (0, 16, 32) and, for recurrent 
models, sequence lengths (5, 10, 20). Training effciency 
was not a priority in our hyperparameter search as training 
was relatively fast. Each run took about 10 minutes on a 
single machine equipped with a Tesla V100 GPU and 6 Intel 
Xeon E5-2690 v4 CPUs. As such, hyperparameters such as 
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batch size, optimizer, learning rate, and number of epochs 
were not explored. Our fnal best hyperparameter settings 
for each model are chosen based on their mean validation 
accuracy. This resulted in the following hyperparameters: 

• SYM-FF: dropout 0%, hidden layer size 32, 50 epochs, 
batch size 256, Adam optimizer with learning rate 
10−3 . 

• SYM-GRU: dropout 0%, hidden layer size 32, se-
quence length 5, 50 epochs, batch size 256, Adam 
optimizer with learning rate 10−3 . 

• VIS-FF: dropout 50%, hidden layer size 32, 10 epochs, 
batch size 8, Adam optimizer with learning rate 10−4 . 

• VIS-GRU: dropout 50%, hidden layer size 32, se-
quence length 20, 10 epochs, batch size 8, Adam opti-
mizer with learning rate 10−4 . 

• TD-CNN: dropout 50%, no hidden layer, 10 epochs, 
batch size 32, SGD optimizer with learning rate 5 × 
10−3 and momentum 0.9. 

• BC-CNN: dropout 0%, hidden layer size 32, 10 epochs, 
batch size 8, Adam optimizer with learning rate 10−4 . 

A.2. Human Navigation Turing Test - Procedure 

This section provides additional details about the behavioral 
study (Section 4.2 of the main paper) used to collect human 
ground truth data for our Human Navigation Turing Test 
(HNTT). 

Survey. Two HNTT studies were administered as anony-
mous surveys structured with Introduction, Background, 
and Task components as follows. The Introduction included 
an IRB-approved consent form and was followed by a Back-
ground page, which included a short description of Third 
Person Action Games, the game used in this study, and the 
research and task descriptions. Participants were asked to 

Figure 3. HNTT familiarity questions. 

rank on a 5-point Likert scale the answer to: “How familiar 
are you with Third Person Action video games?” and “How 
familiar are you with the video game [title]?” (Figure 3). 

Task. The Task component of the survey consisted of ten 
Human Navigation Turing Test trials, in each of which par-
ticipants watched two side-by-side videos (Video A and 
Video B), and were asked three questions about the videos. 
The frst HNTT question, a two alternative forced choice 
(2AFC), was: “which video is more likely to be human?”, 
to which the participant could respond by choosing “Video 
A is more likely to be human” or “Video B is more likely 
to be human”. Participants followed by giving a free-form 
response to the question “why do you think this is the case? 
Please provide as much detail as possible”. Finally they 
were asked to indicate on a 5-point Likert scale: “How cer-
tain are you of your choice?”. See Figure 6 in the main 
paper for a screenshot of the HNTT trial. 

A.3. Navigation Agent Training Details 

This section provides details on our training procedure for 
the reinforcement learning agents (Section 4.3 in the main 
paper). 

Agent architectures Our symbolic and hybrid agent archi-
tectures are referenced in Figure 4 in the main paper, con-
taining hidden layer sizes for the fully connected layers. For 
the convolutional layers of the hybrid model, we used the 
following hyperparameters: and 

The output of the convolutional layers was fattened and 
passed through a Dense layer of size 128 with ReLU activa-
tions (Zeiler et al., 2013). 

Hyperparameter Value 

Batch size 2048 

Dropout rate 0.1 

Learning rate 3e-4 

Optimizer Adam 

Gamma 0.996 

Lambda 0.95 

Clip range 0.2 

Gradient norm clipping coeffcient 0.5 

Entropy coeffcient 0.0 

Value function coeffcient 0.5 

Minibatches per update 4 

Training epochs per update 4 

Table 1. Hyperparameters for training the symbolic and the hybrid 
agent models using PPO (Schulman et al., 2017). 
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Classifer Identity Accuracy Human-Agent Accuracy Human-Agent Rank Hybrid-Symbolic Accuracy Hybrid-Symbolic Rank 

SYM-FF 0.850 (0.062) 0.850 (0.062) 0.364 (0.043) 0.475 (0.166) −0.244 (0.252) 
SYM-GRU 0.850 (0.082) 0.850 (0.082) 0.173 (0.049) 0.400 (0.200) −0.249 (0.210) 

VIS-FF 0.633 (0.041) 0.633 (0.041) −0.041 (0.160) 0.225 (0.050) −0.165 (0.286) 
VIS-GRU 0.767 (0.097) 0.767 (0.097) 0.220 (0.267) 0.425 (0.127) −0.056 (0.331) 

TD-CNN 0.583 (0.075) 0.583 (0.075) 0.222 (0.059) 0.525 (0.094) −0.093 (0.149) 
BC-CNN 0.717 (0.145) 0.717 (0.145) −0.009 (0.131) 0.475 (0.050) −0.095 (0.412) 

Table 2. Classifer accuracy and rank compared to human judgments on held-out test data. All results are the mean (and standard deviation) 
from 5 repeats of training the classifer with hyperparameter settings chosen by their average validation accuracy in 5-fold cross-validation. 

The size of the models’ logit output is equivalent to the 
agents’ discretized action space of size 8, which corresponds 
to the following valid actions: none, forward, left/right (by 
30, 45, 90 degrees). 

We used a fxed set of hyperparameters throughout all agent 
training, as shown in Table 1. These were found to perform 
best on preliminary experiments. 

Training framework Both symbolic and hybrid agents 
were trained using the OpenAI Baselines PPO2 implemen-
tation (Dhariwal et al., 2017) running on Tensorfow 2.3 
(Abadi et al., 2015), on top of a custom library for asyn-
chronous data sampling. 

Training infrastructure The symbolic model was trained 
on a CPU-only machine, with 64 Intel Xeon E5-2673 v4 
2.3 GHz cores. The hybrid model made use of 1 GPU for 
training, an Nvidia Tesla K80 and 24 Intel Xeon E5-2690 v3 
CPUs. The samples were collected from 60 parallel game 
instances, running in an Azure virtual scale set of 20 virtual 
machines (VMs). Each VM ran 3 separate game instances. 
Each simulation VM had one half of an Nvidia Tesla M60 
GPU and 6 Intel Xeon E5-2690 v3 (Haswell) CPUs. 

A.4. Evaluation Details 

This section provides details for Section 5.2 in the main 
paper. All evaluation in this section is only on the held out 
test data set composed of the videos shown in the behavioral 
study. These videos were collected by different human 
players and a different checkpoint for the trained agents 
than those included in the training and validation data set. 

To compare our models (that are trained to classify a single 
trajectory as either human or agent) and the responses from 
the behavioral study (where participants chose which of 
a pair of videos was more likely to be human) we must 
defne a method for the models to pick the most human-like 
video from a pair. For models that classify a single full 
trajectory (TD-CNN and BC-CNN) we choose the video 
the model predicts to have the highest likelihood of being 
human. For models that classify sub-sequences from a 
video (SYM-FF, SYM-GRU, VIS-FF and VIS-GRU) we 
predict the class of every non-overlapping sub-sequence, 
then pick the video with the highest percentage of human 

sub-sequence classifcations (i.e., we aggregate by the robust 
method of majority voting). This process gives us model 
responses to each question in the behavioral study that can 
then be compared to the participant responses. 

For questions in the behavioral study that compared one 
human and one agent video (questions 1 to 6 in both studies, 
but note that questions were presented to participants in 
randomized order) we calculate: 

Identity Accuracy: the accuracy of the model compared to 
the known origin of the video/trajectory (i.e., whether the 
trajectory was truly generated by a human player). 

Human-Agent Accuracy: the accuracy of the models com-
pared to the majority of study participants (i.e. we aggregate 
participant responses per question by majority vote.) 

Human-Agent Rank: the Spearman rank correlation co-
effcient (Croux & Dehon, 2010) between two lists, each 
with one entry per question in the behavioral study. The 
frst is ranked by the percentage of participants that agreed 
with the participants’ aggregated majority vote choice. The 
second is ranked by either the likelihood (for TD-CNN and 
BC-CNN) or percentage of sub-sequences classifed as hu-
man (for SYM-FF, SYM-GRU, VIS-FF and VIS-GRU) for 
the video chosen by the model as most likely to be human. 

For questions in the behavioral study that included two 
agents (questions 7 to 10 in both studies) we calculate 
Hybrid-Symbolic Accuracy and Hybrid-Symbolic Rank 
which are equivalent to the corresponding metric for the 
human-agent questions. For these questions, there is no 
equivalent metric to Identity Accuracy as both videos are 
from agents and so the only comparison possible is to the 
human ground truth data obtained through out HNTT. 

For each evaluation metric that we report in Figures 9 and 
10 of the main paper, the mean (and standard deviation) by 
averaging the value measured for each of the fve trained 
instances of a model on the fve folds of the training data 
with the best hyperparameters obtained by 5-fold cross val-
idation, as detailed in Section A.1. None of these models 
were trained on data from the test data set or other data from 
the same human players and agent checkpoints. For com-
pleteness, we include the raw data used to generate Figures 
9 and 10 in Table 2. 
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