
XOR-CD: Linearly Convergent Constrained Structure Generation

Supplementary Materials

A. XOR-Sampling for the Weighted Case
The text here provides a synopsis for the approach in (Ermon
et al., 2013b). We still encourage the readers to read the orig-
inal text for a better explanation. Let w(x) as defined before,
Z =

P
x2X w(x) and P (x) = w(x)/Z, the high-level idea

of XOR-Sampling is to first dicretize w(x) to w
0(x) as in

Definition 1, followed by embedding the weighted w
0(x)

to the unweighted space �w. Finally, XOR-sampling uses
hashing and randomization to sample uniformly from �w.
Definition 1. Assume w(x) has both upper and lower

bound, namely, M = maxx w(x) and m = minx w(x). Let

b � 1, ✏ > 0, r = 2b/(2b � 1) and l = dlogr(2n/✏)e. Par-

tition the configurations into the following weight based dis-

joint buckets: Bi = {x|w(x) 2 (M
ri+1 ,

M
ri]}, i = 0, . . . , l�1

and Bl = {x|w(x) 2 (0, M
rl]}. The discretized weight func-

tion w
0 : {0, 1}n ! R+

is defined as follows: w
0(x) =

M
ri+1 if x 2 Bi, i = 0, . . . , l � 1 and w

0(x) = 0 if x 2 Bl.

This leads to the corresponding discretized probability dis-

tribution p
0(x) = w

0(x)/Z 0
where Z

0
is the normalization

constant of w
0(x).

For the weighted case, the goal of XOR-sampling is to guar-
antee that the probability of sampling one x is proportional
to the unnormalized density (up to a multiplicative con-
stant). Using the discretization in Definition 1, we obtain a
distribution p

0(x) which satisfying 1
⇢p(x)  p

0(x)  ⇢p(x)

where ⇢ = r2

1�✏ . Then, XOR-sampling implements a hor-
izontal slice technique to transform a weighted problem
into an unweighted one. For the easiness of illustration,
we denote M

0 = maxx w0(x) and m
0 as the smallest non-

zero value of w0(x). Then consider a simple case where
b = 1 and r = 2. In this case we have M

0 = 2l�1
m

0.
Let y = (y0, . . . , yl�2)T 2 {0, 1}l�1 be a binary vector of
length l � 1, XOR-sampling samples (x, y) uniformly at
random from the following set �w using the unweighted
version of XOR-sampling based on hashing and randomiza-
tion:

�w = {(x, y) : w0(x)  2i+1
m

0) yi = 0}. (13)

Upon obtaining one sample (x, y) uniformly at random from
�w, we only return x. It can be proved that the probability
of sampling x from w

0(x) is proportional to m
02i�1 when

w
0(x) is sandwiched between m

02i�1 and m
02i. Therefore,

this technique leads to the constant approximation guarantee
of XOR-Sampling, which states formally as Theorem 5:
Theorem 5. (Ermon et al., 2013b) Let ✏ > 0, b > 1, P � 2,

0 < �0 < 1, and �0 = log((P+2
p
P + 1+2)/P). For any

↵ 2 Z, ↵ > �0, let c(↵, P) = 1�2�0�↵
/(1� 1

P �2�0�↵)2.

Let r = 2b/(2b�1), l = dlogr(2n/✏)e, ⇢ = r
2
/(1�✏), =

1/c(↵, P) and bucket Bl as in Definition 1 in the supple-

mentary materials. Denote Pr
0
s(x) as distribution of the

samples generated by XOR-Sampling(w, l, b, �, P,↵) and

let � : {0, 1}n ! R+
be one non-negative function. Then,

with probability at least (1 � �0)c(↵, P)2�(�0+↵+1) P
P�1 ,

XOR-Sampling succeeds and outputs a sample x0. Upon

success, each x0 is output with probability P
0(x0), which is

within a constant factor of the true P (x0). Furthermore, the

expectation of a non-negative function �(x), EP (x)[�(x)]
can be bounded by:

1

⇢
EP 0(x)[�(x)]� ✏⌘�  EP (✓)[�(x)]

 ⇢EP 0(x)[�(x)] + ✏⌘�.

(14)

Theorem 1 is a simplified representation of the previous
Theorem. Our new theoretic results can be stated simpler
and clearer building upon the statement in Theorem 1. As-
suming all the parameters of Theorem 5, we set � = ⇢, and
� = 1 � (1 � �0)c(↵, P)2�(�0+↵+1) P

P�1 and can obtain
the corresponding guarantee stated in Theorem 1.

B. Proofs
Theorem 2 states that the function value of the output of
XOR-CD, in expectation converges to the true optimum
within a small constant distance at a linear speed w.r.t. the
number of iterations T . To prove Theorem 2, we first prove
two lemmas.
Lemma 1. If the total variation max✓ V arP✓ (�(X))  �

2
2 ,

then l(✓) is �
2
2-smooth w.r.t. ✓.

B.1. Proof of Lemma 1

Proof. Since l(✓) = � 1
N

PN
i=1 logP✓(xi), L-smoothness

requires that

||rl(✓1)�rl(✓2)||2  L||✓1 � ✓2||2, 8✓1, ✓2 2 dom f,

where L is a constant. Because of the mean value theorem,
there exists a point ✓̃ 2 (✓1, ✓2) such that

rl(✓1)�rl(✓2) = r(rl(✓̃))(✓1 � ✓2).

Taking the L2 norm for both sides, we have

||rl(✓1)�rl(✓2)||2 =||r(rl(✓̃))(✓1 � ✓2)||2
||r(rl(✓̃))||2 ||✓1 � ✓2||2 (15)

Then, the problem is to bound the matrix 2-norm
||r(rl(✓̃))||2. Since we know the explicit form of l(✓),
we know

rl(✓) = r⇤(✓)� 1

N

NX

i=1

�(xi),

r(rl(✓)) =
X

x2X
[�(x)�r⇤(✓)][�(x)�r⇤(✓)]TP✓(x),

(16)

XOR-CD: Linearly Convergent Constrained Structure Generation

where r(rl(✓)) is the co-variance matrix. Denote
Cov✓[�(X)] = r(rl(✓)), which is both symmetric and
positive semi-definite. We have

||r(rl(✓̃))||2 = ||Cov✓[�(X)]||2 = �max,

where �max is the maximum eigenvalue of the ma-
trix Cov✓[�(X)]. Then, because of the positive semi-
definiteness of the co-variance matrix, all the eigenvalues
are non-negative, and we can bound �max as

�max 
X

i

�i = Tr(Cov✓[�(X)]),

where Tr(Cov✓[�(X)]) is the trace of matrix Cov✓[�(X)].
Using the definition in Equation 16, Tr(Cov✓[�(X)]) can
be further derived as:

Tr(Cov✓[�(X)]) = EP✓ [||�(X)||22]� ||EP✓ [�(X)]||22,

which is equal to the total variation V arP✓ (�(X)). There-
fore, we have

||r(rl(✓̃))||2  V arP✓ (�(X))  �
2
2 .

Combining this with Equation 15, we know

||rl(✓1)�rl(✓2)||2  �
2
2 ||✓1 � ✓2||2.

This completes the proof.

In addition, based on the constant approximation of
ED,P 0

✓
[gt], we can bound another two important terms

shown in Lemma 2.
Lemma 2. Let f : Rd ! R be a convex function and ✓

⇤ =
argmin✓f(✓). In iteration t, gt is the estimated gradient. If

there exists a constant c � 1 s.t.
1
c [rf(✓t)]+  E[g+t] 

c[rf(✓t)]+ and c[rf(✓t)]�  E[g�t]  1
c [rf(✓t)]�, then

we have

1

c
||E[gt]||22  hrf(✓t),E[gt]i  c||E[gt]||22.

1

c
hE[gt], ✓t � ✓

⇤i  hrf(✓t), ✓t � ✓
⇤i  chE[gt], ✓t � ✓

⇤i.

B.2. Proof of Lemma 2

Proof. (Lemma 2) Since we have the constant bound that

1

c
rf(✓t)

+  E[g+t]  crf(✓t)
+
. (17)

crf(✓t)
�  E[g�t] 

1

c
rf(✓t)

�
. (18)

and because of g+t � 0 and g
�
t  0 we can obtain

1

c
||E[g+t]||22 =

1

c
hE[g+t],E[g+t]i  hrf(✓t)

+
,E[g+t]i

 chE[g+t],E[g+t]i = c||E[g+t]||22.
1

c
||E[g�t]||22 =

1

c
hE[g�t],E[g�t]i  hrf(✓t)

�
,E[g�t]i

 chE[g�t],E[g�t]i = c||E[g�t]||22.

which exactly means

1

c
||E[gt]||22  hrf(✓t),E[gt]i  c||E[gt]||22.

To prove the second inequality, we need to take advantage of
the convexity of f . Denote [✓t � ✓

⇤]+ = max{✓t � ✓
⇤
, 0}

and [✓t � ✓
⇤]� = min{✓t � ✓

⇤
, 0}, we know ✓t � ✓

⇤ =
[✓t � ✓

⇤]+ + [✓t � ✓
⇤]�. In addition, because f is convex,

the index set of non-zero entries of [✓t � ✓
⇤]+ and rf(✓t)+

is the same. The index set of non-zero entries of [✓t �
✓
⇤]� and rf(✓t)� is also the same. In addition, because

of Equation 17 and 18, the index set of non-zero entries
of E[g+t] (E[g�t]) is the same with rf(✓t)+ (rf(✓t)�).
Combining these facts with Equations 17 and 18, we have

1

c
hE[g+t], [✓t � ✓

⇤]+i  hrf(✓t)
+
, [✓t � ✓

⇤]+i

 chE[g+t], [✓t � ✓
⇤]+i.

1

c
hE[g�t], [✓t � ✓

⇤]�i  hrf(✓t)
�
, [✓t � ✓

⇤]�i

 chE[g�t], [✓t � ✓
⇤]�i.

Combining these two equations, we have

1

c
hE[gt], ✓t � ✓

⇤i  hrf(✓t), ✓t � ✓
⇤i  chE[gt], ✓t � ✓

⇤i.

This completes the proof.

Lemma 2 gives the new bounds of two terms assuming the
constant bound on the gradient, which are essential to the
proof of convergence rate. Based on Lemma 2, we can prove
Theorem 3, which bounds the error of Stochastic Gradient
Descent (SGD) on a convex optimization problem when the
estimated gradient gt in the t-th step resides in a constant
bound of rf(✓t).

B.3. Proof of Theorem 3

Theorem 3 indicates that even the expectation of gradients
in each iteration only have a constant approximation, SGD
is still able to converge to the optimal solution within a
small constant gap at linear speed. The complete proof of
Theorem 3 is as follows:

Proof. (Theorem 3) By L-smooth of f , for the t-th iteration,

f(✓t+1)  f(✓t) + hrf(✓t), ✓t+1 � ✓ti+
L

2
||✓t+1 � ✓t||22,

= f(✓t)� ⌘hrf(✓t), gti+
Lt

2

2
||gt||2.

XOR-CD: Linearly Convergent Constrained Structure Generation

Because of the constant bound on gradient and ||E[gt]||22 =
E[||gt||22] � V ar(gt), by taking expectation on both sides
w.r.t gt we get from Lemma 2 that

E[f(✓t+1)]  f(✓t)�
⌘

c
||E[gt]||22 +

L⌘
2

2
E[||gt||22],

= f(✓t)�
⌘

c
(E[||gt||22]� V ar(gt)) +

L⌘
2

2
E[||gt||22],

 f(✓t)�
⌘(2� L⌘c)

2c
E[||gt||22] +

⌘

c
�
2
,

 f(✓t)�
⌘c

2
E[||gt||22] +

⌘

c
�
2
,

where the last inequality follows as L⌘c  2� c
2. Because

f is convex, still from Lemma 2 we get

E[f(✓t+1)]

 f(✓⇤) + hrf(✓t), ✓t � ✓
⇤i � ⌘c

2
E[||gt||22] +

⌘

c
�
2
,

 f(✓⇤) + chE[gt], ✓t � ✓
⇤i � ⌘c

2
E[||gt||22] +

⌘

c
�
2
,

= f(✓⇤) + cE[hgt, ✓t � ✓
⇤i � ⌘

2
||gt||22] +

⌘

c
�
2
.

We now repeat the calculations by completing the square
for the middle two terms to get

E[f(✓t+1)]

 f(✓⇤) +
c

2⌘
E[2⌘hgt, ✓t � ✓

⇤i � ⌘
2||gt||22] +

⌘

c
�
2
,

 f(✓⇤) +
c

2⌘
E[||✓t � ✓

⇤||22 � ||✓t � ✓
⇤ � ⌘gt||22] +

⌘

c
�
2
,

= f(✓⇤) +
c

2⌘
E[(||✓t � ✓

⇤||22 � ||✓t+1 � ✓
⇤||22)] +

⌘

c
�
2
.

Summing the above equations for t = 0, . . . , T � 1, we get

T�1X

t=0

E[f(✓t+1)� f(✓⇤)]

 c

2⌘
(||✓0 � ✓

⇤||22 � E[||✓T � ✓
⇤||22]) +

T⌘

c
�
2

 c||✓0 � ✓
⇤||22

2⌘
+

T⌘

c
�
2
.

Finally, by Jensen’s inequality, tf(✓T) 
PT

t=1 f(✓t),

T�1X

t=0

E[f(✓t+1)� f(✓⇤)] = E[
TX

t=1

f(✓t)]� Tf(✓⇤)

� TE[f(✓T)]� Tf(✓⇤).

Combining the above equations we get

E[f(✓T)]  f(✓⇤) +
c||✓0 � ✓

⇤||22
2⌘T

+
⌘

c
�
2
.

This completes the proof.

B.4. Proof of Theorem 2

Finally, we give the full proof of Theorem 2 as follows:

Proof. (Theorem 2) Since we use M samples from the train-
ing set {xi}Ni=1 and K samples x

0
1, . . . , x

0
K from P✓t(X)

using XOR-Sampling at each iteration, we have

gt =
1

M

MX

j=1

�(xj)�
1

K

KX

i=1

�(x0
i).

Denote git =
1
M

PM
j=1 �(xj)� �(x0

i), we have the expecta-
tion of gt as

ED,P 0
✓
[gt] = EP 0

✓
[ED[�(x)]� �(x0)] = ED,P 0

✓
[git].

In each iteration t we can adjust the parameters in XOR-
Sampling to make the tail ✏⌘� zero, then for each g

i
t we can

obtain from Theorem 1 that

1

�
[g(✓t)]

+  ED,P 0
✓
[gi+t]  �[g(✓t)]

+
. (19)

�[g(✓t)]
�  ED,P 0

✓
[gi�t]  1

�
[g(✓t)]

�
. (20)

where g(✓t) is the true gradient at t-th iteration. De-
note gt

+ = max{gt, 0} and gt
� = min{gt, 0}. Clearly,

g
i+
t � 0 and g

i�
t  0. Moreover, for a given dimen-

sion, either g
i+
t = 0 for that dimension or g

i�
t = 0.

Evaluating gt dimension by dimension, we can see that
gt

+ = 1
K

PK
i=1 g

i+
t and gt

� = 1
K

PK
i=1 g

i�
t . Combined

with Equation 19 and 20, we know

1

�
[g(✓t)]

+  ED,P 0
✓
[gt

+]  �[g(✓t)]
+
.

�[g(✓t)]
�  ED,P 0

✓
[gt

�]  1

�
[g(✓t)]

�
.

In terms of variance, the variance of each �(x0
i) can be

bounded by

V arP 0
✓
(�(x0

i)) = EP 0
✓
[||�(xi)||22]� ||EP 0

✓
[�(xi)]||22,

 �EP✓ [||�(xi)||22],
= �(V arP✓ (�(xi)) + ||EP✓ [�(xi)]||22),
 �(�2

2 + "
2).

Because ED,P 0
✓
[gt] = ED,P 0

✓
[git], the variance of gt, denoted

as V arD,P 0
✓
(gt), can then be bounded as

V arD,P 0
✓
(gt)

= V arD(
1

M

MX

j=1

�(Xj)) + V arP 0
✓
(
1

K

KX

i=1

�(x0
i))

=
1

M
V arD(�(Xj)) +

1

K
V arP 0

✓
(�(x0

i))

XOR-CD: Linearly Convergent Constrained Structure Generation

 1

M
�
2
1 +

�

K
(�2

2 + "
2)

Therefore, since l(✓) is convex and �
2
2�smooth from

Lemma 1, we can then apply Theorem 3 to get the result in
Theorem 2.

OPT � E[l(✓T)]

 �||✓0 � ✓
⇤||22

2⌘T
+

⌘max✓t{V arD,P 0
✓
(gt)}

�

 �||✓0 � ✓
⇤||22

2⌘T
+

⌘(�2
2 + "

2)

K
+

⌘�
2
1

�M
.

This completes the proof.

B.5. Proof of Theorem 4

Proof. (Theorem 4) From Theorem 1 we know that in each
iteration of XOR-CD, we need to access O(n ln n

�) queries
of NP oracles in order to generate one sample. However, as
specified also in Ermon et al. (2013b), only the first sample
needs those many queries. Once we have the first sample,
the number of XOR constraints to add (depends on the sizes
of the set �w stated in supplementary materials section A)
can be known in generating future samples for this SGD
iteration. Therefore, we fix the number of XOR constraints
added starting the generation of the second sample. As a
result, we only need one NP oracle query in generating each
of the following K � 1 samples. Therefore, total queries
in each iteration will be O(n ln n

� + K). To complete all
T SGD iterations, XOR-CD needs O(Tn ln n

� + TK) NP
oracle queries in total.

C. Additional Experimental Details
Here we show some additional experiments we have done
for this paper and additional details of the experiments dis-
cussed in the main text.

C.1. Maximum Likelihood Learning

Here we show XOR-CD is able to learn exponential fam-
ily models with higher likelihood compared to compet-
ing approaches. We consider a discrete exponential fam-
ily model with n binary variables x = (x1, . . . , xn)T ,
where each xi 2 {0, 1} for i 2 {1, . . . , n}. The expo-
nential family model we consider is in the form: Pr(x) /
exp(

PK
k=1 ✓

T
k �(x

k)). Here, each x
k is a subset of all n

variables, and is often referred to as a clique. Suppose x
k is

of size lk, � is the Cartetian product, i.e., it maps a vector of
lk binary variables to a vector of size 2lk , where each entry
in the vector evaluates to 1 if and only if xk takes a particu-
lar assignment (There are 2lk different value assignments to
lk binary variables).

We synthetically generate a few exponential family models
and test if learning algorithms can rediscover these mod-
els. In generating one model, we first draw the number of
cliques uniformly from [n, 2n]. The size of each clique is
chosen from the range of [1, 6] at random. Then, to generate
✓k = (✓k,1, . . . , ✓k,2lk)

T , each ✓k,i is generated in the form
of ✓k,i = vki1 + vki2vki3, where vki1 is uniformly drawn
from (0, 1), vki3 uniformly from (10, 1000) and binary vari-
able vki2 uniformly randomly drawn from {0, 1}. In the
experiment, we vary n from 10 to 31 in intervals of 3, and
generate 10 models for each n. For each model, we generate
1000 training data points from the ground-truth probabil-
ity distribution (possibly overlapping) and see if learning
algorithms can rediscover the exponential family models.

In learning exponential family models, we keep the structure
of the exponential family model to be learned the same
as the one that generates training data, and initialize all ✓
parameters to be the absolute values of samples drawn from
a Gaussian distribution N (10, 10). Learning rate is fixed
as 0.1 and parameters in XOR-Sampling are the same as in
(Ermon et al., 2013b). For comparison, in addition to Gibbs-
CD, we also compare with Belief Propagation equipped
Contrastive Divergence (Ping & Ihler, 2017), denoted as
BP-CD, and BPChain-CD (Fan & Xue, 2020). We allow the
competing methods to draw 10000 samples from the model
distribution while XOR-CD only draws 100 samples for a
fair comparison (because it takes less time to draw samples
using e.g., MCMC). When testing, we use ACE (Barton
et al., 2016) to sample exactly from a target distribution. We
implement XOR-CD using IBM ILOG CPLEX Optimizer
12.63 for queries to NP oracles. Experiments are carried
out on a cluster, where each node has 24 cores and 96GB
memory.

Likelihood Comparison Figure 3 shows the results of the
four algorithms. The x-axis is exponential family model
with different numbers of variables, and y-axis is the average
log-likelihood of 1000 randomly generated samples from
models learned by each of the learning algorithm. Here
we use ACE (Barton et al., 2016) to compute the exact log-
likelihood. We can see XOR-CD learns models that generate
samples with higher average log-likelihood compared to
competing approaches.

Time complexity We test the time complexity of different
methods and find XOR-CD runs faster than Gibbs-CD. In
particular, XOR-CD with 100 samples takes 1 minute 50
seconds per XOR iteration, while Gibbs-CD with 10,000
MCMC samples needs 2.5 minutes when learning models
with dimension n = 31. Notice that XOR-CD outperforms
Gibbs-CD in likelihood values also.

XOR-CD: Linearly Convergent Constrained Structure Generation

1 4 3 0 2
…
…
… xij
…

Binarized Latin square

…
 …

 …
 …

Latin square

Figure 6. This figure shows how to binarize a Latin square. For
each entry xi,j 2 {1, 2, ..., n} in the i�th row and j�th column
of a Latin square, we use n binary variables xi,j,k 2 {0, 1} to
represent its value where k 2 {1, 2, ..., n}. If the value of xi,j is
k, then only xi,j,k is equal to 1 and the other n� 1 variables are
equal to 0.

C.2. Dispatching Route Generation

Here is additional information regarding the dispatching
route generation experiment.

Models and experimental settings We learn an expo-
nential family model to capture the likelihood of different
permutations. Specifically, the exponential family model is
Pr(x) / exp(✓0 +

P
i,j ✓i,jxi,j +

P
i,j,k ✓i,j,kxi,jxi+1,k)

and the ✓’s are the parameters to learn. In generating train-
ing data, we assume the n locations are fully-connected, i.e.,
there is an edge between every two locations. Assuming
the locations are labeled from 1 to n, we assume the dis-
tance between two locations is the difference between its
two indices. For example, the distance between 1 and 3
is 2 (=3-1). The total travel distance d of a delivery route
is the sum of the distances of each edge traveled in a trip.
We randomly sample delivery routes according to the travel
distance distribution shown in the rightmost column of the
middle figure of Figure 4 to form the training dataset.

In learning the exponential family model, we initialize
each model parameter (e.g., ✓0, ✓i,j , ✓i,j,k) to be the ab-
solute value of samples drawn from a Gaussian distribution
N (10, 10). For XOR-CD, we set T = 500 and a time limit
of 10 hours. M = K = 100, and learning rate is 0.1. Pa-
rameters of XOR-Sampling are set the same as in Ermon
et al. (2013b) in order to ensure � =

p
2. For Gibbs-CD, we

let K = 10000 and the others are set the same as XOR-CD.
As for the structure of GAN, the generator takes the input of
random noise vector of dimension n (n is the number of lo-
cations), and has the structure fc{2n}� fc{5n}� fc{n2}.
Here, fc{.} denotes a fully connected layer of output di-
mension {.}. For example, the first fully connected layer
fc{2n} maps an input of dimension n to an output of di-
mension 2n. The output of the generator is of the shape
n
2 which represent variables xij . The discriminator has a

structure fc{n2}�fc{5n}�fc{2n}�fc{2}�softmax.
We use ReLU as the activation function between fc layers.
Number of training epochs is 1000, and the wall-time limit
is also 10 hours.

Hamilton Cycle Constraints In sampling from current
model distribution, XOR-CD has to sample the assignments
to variables xi,j which form valid Hamilton cycles; ie, the
locations to visit in a route form a permutation. We include
the following two constraints in the mixed integer program
of XOR-sampling to enforce this contraint:

nX

j=1

xi,j = 1, 8i 2 {1, ..., n}; (21)

nX

i=1

xi,j = 1, 8j 2 {1, ..., n}. (22)

C.3. Optimal Experiment Design

Models and experimental settings Let xi,j,k be
an indicator variable which is 1 if and only if
crop k is planted at the i, j-th entry. The ex-
ponential family model is: Pr(x) / exp(✓0 +P

i,j,k ✓i,j,kxi,j,k +
P

i,j,m,l ✓
1
i,j,m,l�(xi,j,m, xi+1,j,l) +

✓
2
i,j,m,l�(xi,j,m, xi,j+1,l), in which ✓i,j,k, ✓

1
i,j,m,l, ✓

2
i,j,m,l

are the parameters to learn. We define di(j, k) as the dis-
tance between symbols j and k in row i. This distance is
calculated as the absolute difference of the column indices
of where symbols j and k appear in row i. The total distance
d(j, k) is defined as d(j, k) =

Pn
i=1 di(j, k). The spatial

variance of a Latin square is defined as the variance of all
the total distances d(i, j), 8i 6= j. This spatial variance
is an important metric determining whether an experiment
design is good (Gomes et al., 2004; Smith et al.; Le Bras
et al., 2012). Notice that we can prove there are only three
possible variances for a 5x5 Latin square. In generating
training data, we randomly sample 5-by-5 Latin squares to
form a training set, the distribution of the spatial variance of
which is shown in the rightmost column of the right figure
of Figure 4.

We set hyper-parameters of both XOR-CD and Gibbs-CD
the same as in the dispatching route generation task. As
for the structure of GAN, the generator takes the input of
random noise vector of dimension n, and has the structure
fc{2n} � fc{n2} � fc{n3

/2} � fc{n3}. The output of
the generator is of the shape n

3 which represent the assign-
ments to variables xijk. The discriminator has a structure
fc{n3

/2}� fc{n2}� fc{n}� fc{2}� softmax. Here
fc denotes fully connected layer and the number denotes
the dimension of output of this layer. We use ReLU as the
activation function between each two fc layers. Number of
epochs is 1000, and the wall-time limit is also 10 hours.

Latin Square Constraints We can enforce the following

XOR-CD: Linearly Convergent Constrained Structure Generation

set of constraints to ensure the output forms a Latin square
in XOR-CD:

nX

k=1

xi,j,k = 1, 8i, j 2 {1, ..., n}; (23)

nX

j=1

xi,j,k = 1, 8i, k 2 {1, ..., n}; (24)

nX

i=1

xi,j,k = 1, 8j, k 2 {1, ..., n}. (25)

Constraints (23) indicate each cell in the Latin square must
be a valid integer between 1 and n. Constraints (24) indicate
cells in each row must be different, and constraints (25)
indicate cells in each column must be different.

C.4. Sequence-based Protein Homology Detection

As shown in Figure 1, the alignment matrix of sequence
S1 of size N1 and sequence S2 of size N2 is of size (N1 +
1)⇥ (N2 + 1). In the matrix, the rows represent the amino
acids in S1 and the columns represent the ones in S2. Each
alignment forms a path from the upper-left node to the
bottom-right node as shown in the right panel of Figure
1, where each transition in the path is either horizontal,
representing an insertion in S2, vertical, representing an
insertion in S1, or diagonal, representing a match. We use
symbol M, I1 and I2 to represent a match, an insertion in S1,
and an insertion in S2, respectively. The (i, j)-th node in the
alignment matrix is associated with three binary variables:
z
u
i,j , where u 2 {M, I1, I2}. zui,j is 1 if and only if the path

passes the (i, j)-th node with type u. Let Ap = {zui,j =

z
u(p)
i,j , 1  i  N1 + 1, 1  j  N2 + 1, u 2 {M, I1, I2}}

be one value assignment to all zui,j variables that form path p.
Notice A

p also represents one alignment between sequence
S1 and S2. Hence we will refer a path and an alignment
interchangeably. Let A = {Ap | p is a valid path} be the set
of all alignments. Our exponential family model formulation
estimates the probability of having the alignment Ap to be:

P✓(A
p|S1,S2) =

e

P
i,j,u ✓u

i,jz
u(p)
i,j +

P
i,j,u,k,l,v ✓uv

i,j,k,lz
u(p)
i,j zv(p)

k,l

Z(S1,S2)
,

where Z(S1,S2) =
P

Ap2A e

P
✓u
i,jz

u(p)
i,j +

P
✓uv
i,j,k,lz

u(p)
i,j zv(p)

k,l

is the normalization factor. Here, ✓ = {✓ui,j , ✓uvi,j,k,l} are the
set of variables to learn. In practice, we further parame-
terize ✓

u
i,j to be ✓

u
i,j = r

T�i,j(S1i,S2j , u), and parameter-
ize ✓

uv
i,j,k,l to be ✓

uv
i,j,k,l = s

T⌅i,j(S1i,S2j , u,S1k,S2l, v),
where both � and ⌅ are features extracted from data, and
we instead focus on learning parameters r and s. Features
are extracted based on profile conservation, secondary struc-
ture, and solvent accessibility of each protein.

Learning. Given a training set of (Ap
k,Sk

1,k,S2,k)Nk=1,
where S1,k,S2,k are a pair of sequences, and A

p
k is the

observed alignment between the two sequences. We want
to learn the exponential family model via maximizing the
likelihood, which translates to the following problem:

max
r,s

NY

k=1

Pr,s(A
p
k|S1,k,S2,k).

Inference. After learning P (Ap|S1,S2), we can use the
model to find the best alignment between two new sequences
by solving the following linear programming problem:

A
p⇤ = arg max

Ap2A
P (Ap|S1,S2)

= arg max
Ap2A

X

i,j,u

✓
u
i,jz

u(p)
i,j +

X

i,j,k,l,u,v

✓
uv
i,j,k,lz

u(p)
i,j z

v(p)
k,l .

Sequence Alignment Constraints In the task of sequence
alignment, each alignment must be a valid path in the align-
ment matrix as shown in Figure 1. Consider the alignment
matrix of size (N1 + 1) ⇥ (N2 + 1), and 3N1N2 binary
variables zui,j , where 1  i  N1 +1, 1  j  N2 +1, and
u 2 {M, I1, I2}. If we consider the alignment matrix as a
directed graph and each node (i, j) has three income edges,
i.e., zI2ij denotes the edge from node (i, j � 1), zI1ij denotes
the edge from node (i � 1, j) and z

M
ij denotes the edge

from node (i� 1, j � 1). zui,j = 1 means the corresponding
edge exists and z

u
i,j = 0 otherwise. Then, to form a valid

path (alignment), the following set of constraints C must be
satisfied:

z
M
1,1 = 1, zI11,1 = 0, zI21,1 = 0; (26)
X

u

z
u
N1+1,N2+1 = 1; (27)

for 8i 2 {1, ..., N1}, j 2 {1, ..., N2} :
X

u

z
u
i,j � z

I1
i+1,j � z

I2
i,j+1 � z

M
i+1,j+1 = 0; (28)

for 8i = N1 + 1, j 2 {1, ..., N2} :
X

u

z
u
i,j � z

I2
i,j+1 = 0; (29)

for 8i 2 {1, ..., N1}, j = N2 + 1, :
X

u

z
u
i,j � z

I1
i+1,j = 0; (30)

for 8i = 1, j 2 {2, ..., N2 + 1} :

z
M
i,j + z

I1
i,j = 0; (31)

for 8i 2 {2, ..., N1 + 1}, j = 1, :

z
M
i,j + z

I2
i,j = 0. (32)

Experiment Setup. To run XOR-CD in this experiment,
we set T = 500 and force each query of NP oracle in XOR-
CD to stop in 15 minutes. As a result, not all the queries to

XOR-CD: Linearly Convergent Constrained Structure Generation

NP oracles are solved up to optimality. We also enforce a
timeout of 10 hours for all algorithms. The learning rate is
0.1 for the first 100 epochs and 0.01 for the next 400 epochs
for both XOR-CD and Gibbs-CD. Both M and K are set
to 100 in XOR-CD and parameters in XOR-Sampling are
set the same as in (Ermon et al., 2013b). For Gibbs-CD,
we change K to 10000 for a fair comparison, which takes
approximately the same amount of time compared with
XOR-CD for each SGD iteration.

