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Supplementary Material for: Estimation and
Quantization of Expected Persistence
Diagrams

A. Proofs of Section 3
We let µ(f) denote the integral of some function f : Ω→ R
against the measure µ.

Lemma 3. Let P be a probability measure on Mp such
that EP [Persp(µ)] < ∞. Let (µn)n≥1 be a sequence of
i.i.d. variables of law P and let µn = 1

n (µ1 + · · · + µn).
Then,

OTp(µn,E(P )) −−−−→
n→∞

0 almost surely. (A.1)

Proof of Lemma 3. By the strong law of large numbers ap-
plied to the function ‖ · −∂Ω‖p, we have Persp(µn) →
Persp(E(P )) almost surely. Also, for any continuous
function f : Ω → R with compact support, we have
µn(f) → E(P )(f) almost surely. This convergence also
holds almost surely for any countable family (fi)i of func-
tions. Applying this result to a countable convergence-
determining class for the vague convergence, we obtain that
(µn)n converges vaguely towards E(P ) almost surely. We
conclude thanks to (Divol & Lacombe, 2020, Thm 3.7).

Before proving Theorem 1, we give a general upper bound
on the distance OTp between two measures inMp. The
bound is based on a classical multiscale approach to control
a transportation distance between two measures, appearing
for instance in (Singh & Póczos, 2018). Let J ∈ N. For k ≥
0, let Bk = {x ∈ AL, ‖x − ∂Ω‖ ∈ (L2−(k+1), L2−k]}.
The sets {Bk}k≥0 form a partition of AL. We then consider
a sequence of nested partitions {Sk,j}Jj=1 ofBk, where Sk,j
is made ofNk,j squares of side length εk,j = L2−(k+1)2−j .
See also Figure 7. Let µ|Bk be the measure µ restricted to
Bk and µk =

µ|Bk
µ(Bk) be the conditional probability on Bk.

If µ(Bk) = 0, we let µk be any fixed measure, for instance
the uniform distribution on Bk.

Lemma 4. Let µ, ν be two measures inMp, supported on
AL. Then, for any J ≥ 0, with cp = 2−p/2(1+1/(2p−1)),

OTpp(µ, ν) ≤ 2p/2Lp
∑
k≥0

2−kp
(

2−Jp(µ(Bk) ∧ ν(Bk))

+ cp|µ(Bk)− ν(Bk)|+
∑

1≤j≤J
S∈Sk,j−1

2−jp|µ(S)− ν(S)|
)
.

Proof. Denote bymk the quantity µ(Bk)∧ν(Bk). Let πk ∈
Π(µk, νk) be an optimal plan (in the sense of Wp) between
the probability measures µk and νk. If µ(Bk) ≤ ν(Bk),
then µ(Bk)πk transports mass between µ|Bk and µ(Bk)

ν(Bk)ν|Bk .

We then build an admissible plan between µ(Bk)
ν(Bk)ν|Bk and
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Figure 7. Partition of AL used in the proof of Theorem 1

ν|Bk by transporting
(

1− µ(Bk)
ν(Bk)

)
ν|Bk to the diagonal,

with cost bounded by
(

1− µ(Bk)
ν(Bk)

)
ν(Bk)(L2−k)p. Acting

in a similar way if ν(Bk) ≤ µ(Bk), we can upper bound
OTpp(µ, ν) by∑

k≥0

(
mkW

p
p (µk, νk) + Lp2−kp|µ(Bk)− ν(Bk)|

)
.

(A.2)
Lemma 6 in (Singh & Póczos, 2018) shows that

W p
p (µk, νk) ≤ 2p/2Lp2−(k+1)p

(
2−Jp

+
∑

1≤j≤J
S∈Sk,j−1

2−jp|µk(S)− νk(S)|
)
. (A.3)

Furthermore, one can check that for any S ⊂ Bk

mk|µk(S)− νk(S)| ≤

|µ(S)− ν(S)|+ ν(S) ∧ µ(S)

µ(Bk) ∨ ν(Bk)
|µ(Bk)− ν(Bk)|.

By summing over S ∈ Sk,j−1, we obtain that

mk

∑
S∈Sk,j−1

|µk(S)− νk(S)|

≤ |µ(Bk)− ν(Bk)|+
∑

S∈Sk,j−1

|µ(S)− ν(S)|.
(A.4)

Using
∑J
j=1 2−pj ≤ 2−p/(1− 2−p), and putting together

inequalities (A.2), (A.3) and (A.4), one obtains the inequal-
ity of Lemma 4.

Before proving Theorem 1, we state a useful inequality.
Let µ ∈ Mq

M,L and let B ⊂ Ω be at distance ` from the
diagonal ∂Ω. Then,

µ(B) =

∫
B

‖x− ∂Ω‖q
‖x− ∂Ω‖q dµ(x) ≤M`−q. (A.5)
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Proof of Theorem 1. Consider a distribution P ∈ PqM,L.
Remark first that for any measure µ ∈ Mq

M,L, we have
µ(Bk) ≤ ML−q2kq one by (A.5). Let µ be a random
persistence measure of law P and µn be the empirical EPD
associated to a n-sample of law P . By the Cauchy-Schwartz
inequality, given a Borel set A ⊂ Ω, we have

E|µn(A)−E(P )(A)| ≤
√

E[µ(A)2]

n
. (A.6)

The Cauchy-Schwartz inequality also yields, as |Sk,j−1| =
2k+14j−1,

∑
S∈Sk,j−1

E|µ̂n(S)−E(P )(S)| ≤
∑

S∈Sk,j−1

√
E[µ(S)2]

n

≤

√√√√E
[∑

S∈Sk,j−1
µ(S)2

]
n

|Sk,j−1|

≤
√

E [µ(Bk)2]

n
|Sk,j−1| ≤

ML−q2kq√
n

2
k+1
2 2j−1.

Note also that
∑
S∈Sk,j−1

E|µ̂n(S) − E(P )(S)| ≤
2E(P )(Bk) ≤ 2ML−q2kq and that µn(Bk) ∧
E(P )(Bk) ≤ ML−q2kq. By using those three previous
inequalities, Lemma 4 and inequality (A.6), we obtain that
E[OTpp(µn,E(P ))] is smaller than

2p/2MLp−q
∑
k≥0

2−kp
(

2−Jp2kq +
cp√
n

2kq

+

J∑
j=1

2−jp2kq

(
2 ∧ 2

k+1
2 2j−1

√
n

))
≤ cp,qMLp−q

(
2−Jp +

1√
n

+ U
)
,

where U =
∑
k≥0

∑J
j=1 2k(q−p)2−jp

(
1 ∧ 2

k
2 2j√
n

)
. To

bound U , we remark that if k ≥ log2(n), then the mini-
mum in the definition of U is equal to 1. Therefore, letting
bJ = 1 if p > 1 and bJ = J if p = 1, we find that U is
smaller than

log2(n)∑
k=0

J∑
j=1

2k(q−p+1/2)2(1−p)j
√
n

+
∑

k≥log2(n)

J∑
j=1

2−kp2−jp

≤ cpbJ
∑

k<log2(n)

2k(q+1/2−p)
√
n

+ cpn
−p

≤ cp,qbJ(n−1/2 ∨ nq−p).

Eventually, if p > 1, we may set J = +∞ and obtain
a bound of order MLp−q(n−1/2 + nq−p). If p = 1, we
choose J = (q − p)(log n)/(2p) to obtain a rate of order
n−1/2 + nq−p log n.
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L
2
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L
2

∂Ω

Figure 8. In the box UL, the distance ρ is equal to the Euclidean
distance.

Proof of Theorem 2. As Pq,sL,M,T ⊂ PqL,M , we have
Rn(PqL,M ) ≥ Rn(Pq,sL,M,T ). Therefore, Theorem 3, whose
proof is found below, directly implies Theorem 2.

Proof of Theorem 3. We first consider the case q = 0. If
µ, ν are two measures on Ω of mass smaller than M , then
OTp(µ, ν) = Wp,ρ(Φ(µ),Φ(ν)) (Divol & Lacombe, 2020,
Prop. 3.15), where ρ is the distance on Ω̃ := Ω ∪ {∂Ω}
defined by ∀x, y ∈ Ω̃,

ρ(x, y) = min(‖x− y‖, d(x, ∂Ω) + d(y, ∂Ω))

and Φ(µ) = µ + (2M − |µ|)δ∂Ω. Remark that ρ(x, y) =
‖x − y‖ if x, y ∈ UL, where UL ⊂ AL is any `1-ball of
radius L/

√
8 at distance L/2 from the diagonal, see Figure

8. As Φ is a bijection, the minimax rates for the estimation
of E(P ) is therefore equal to

inf
Φ(µ̂n)

sup
P∈P0,s

L,M,T

E[W p
p,ρ(Φ(µ̂n),Φ(E(P )))].

Let Q be the set of probability measures on UL whose
densities belong to Bsp′,q′ with associated norm smaller than
T/M . Then, P0,s

M,L,T contains in particular the set of all
distributions P for which µ ∼ P satisfies Φ(µ) = Mδx
and x is sampled according to some law τ ∈ Q. For such
a distribution P , one has Φ(E(P )) = Mτ , so that the
minimax rate is larger than

inf
ân

sup
τ∈Q

E[W p
p (ân,Mτ)],

where the infimum is taken on all measurable functions
based on K observations of the form Mδxi with x1, . . . , xn
a n-sample of law τ ∈ Q. Hence, we have shown that the
minimax rate for the estimation of E(P ) with respect to
OTp is larger up to a factor M than the minimax rate for
the estimation of τ ∈ Q given n i.i.d. observations of law τ .
As the minimax rate for this problem is known to be larger
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than Lp/
√
n (Weed & Berthet, 2019, Thm. 5), we obtain

the conclusion in the case q = 0.

For the general case q > 0, we remark that if M ′ = ML−q

then P0,s
M ′,L is included in Pq,sM,L,T . In particular, the min-

imax rate on Pq,sM,L,T is larger than the minimax rate on

P0,s
M ′,L,T , which is larger than cM

′Lp√
n

= cMLp−q√
n

for some
constant c > 0.

Remark 3 (Case p =∞). It can be shown that for p =∞,
the minimax rate is larger than can−a, ∀a > 0. This is a
consequence of an inequality between the OT∞ distance
and the distance between the support of the measures, for
which minimax rates are known (Hardle et al., 1995). This
means that no reasonable estimator exists on PL,M∞:
some additional conditions should be added, while stan-
dard assumptions in the support estimation literature seem
artificial in our context (as in Remark 1).

B. Delayed proofs from Section 4.1
Proof of Lemma 2. Fix a codebook c = (c1 . . . ck). Let
Tc : x 7→ cj if x ∈ Vj(c) (1 ≤ j ≤ k) and proj∂Ω(x)
if x ∈ Vk+1(c), where proj∂Ω(x) denotes the orthogonal
projection of a point x ∈ Ω on the diagonal ∂Ω. Let π be
the pushforward of µ by the map x 7→ (x, Tc(x)), extended
on Ω×Ω by π(U,Ω) = 0 for U ⊂ ∂Ω (intuitively, π pushes
the mass of µ on their nearest neighbor in {c1 . . . ck+1}).
One has, for A,B ⊂ Ω, π(A,Ω) = µ((id, Tc)

−1(A,Ω)) =
µ(A), and π(Ω, B) = µ(T−1

c (B)) =
∑
j µ(Vj(c))1{cj ∈

B}, that is π is an admissible between the measures µ and∑
j µ(Vj(c))δcj . Hence,

OTpp

µ,∑
j

µ(Vj(c))δcj

≤ ∫
Ω

min
1≤j≤k+1

‖x−cj‖pdµ(x).

Let (m1 . . .mk) be a vector of non-negative weights, let
ν =

∑k
j=1mjδcj , and π be an admissible transport plan

between µ and ν. One has

∫
Ω×Ω

‖x− y‖pdπ(x, y) =

k+1∑
j=1

∫
Ω

‖x− cj‖pdπ(x, cj)

≥
k+1∑
j=1

∫
Ω

min
j′
‖x− cj′‖pdπ(x, cj)

≥
∫

Ω

min
j′
‖x− cj′‖pdµ(x)

≥OTpp

µ, k∑
j=1

µ(Vj(c))δcj

 .

Taking the infimum over π gives the conclusion.

We now turn to the proof of Proposition 4. For technical
reasons, we extend the function Rk to Ω

k
, by noting that if

cj ∈ ∂Ω, then the Voronoï cell Vj(c) is empty by definition,
see (4.1).

Lemma 5. Let c ∈ Ω
k

be such that there exists 1 ≤ j ≤ k
with µ(Vj(c

∗)) = 0. Then, Rk(c) > R∗k.

In particular, if two centroids of a codebook c are equal or
if a centroid cj of c belongs to ∂Ω, then the condition of the
above lemma is satisfied, so that the c cannot be optimal.
This proves the second part of Proposition 4.

Proof of Lemma 5. Let c = (c1, . . . , ck) ∈ Ω
k
. Assume

without loss of generality that µ(V1(c)) = 0. Let c0 =

(c2, . . . , ck) ∈ Ω
k−1

(that is, c where we removed the first
centroid). Assume first that µ(Vk+1(c)) > 0, that is there
is some mass transported onto the diagonal. Consider a
compact subset A ⊂ Vk+1(c) such that µ(A) > 0 and
the diameter diam(A) of A is smaller than the distance
d(A, ∂Ω) between A and ∂Ω. Let c′ ∈ A and observe that,
for x ∈ A, ‖x− c′‖ < ‖x− ∂Ω‖. Therefore,∫

A

‖x− c′‖pdµ(x) <

∫
A

‖x− ∂Ω‖pdµ(x).

Consider the measure ν = µ̂(c0) + µ(A)δc′ . Then

OTpp(ν, µ) ≤
k∑
j=1

∫
Vj(c)

‖x− cj‖pdµ(x)

+

∫
Vk+1(c)\A

‖x− ∂Ω‖pdµ(x) +

∫
A

‖x− c′‖pdµ(A)

<Rk(c),

thus c cannot be optimal. We can thus assume that
µ(Vk+1(c)) = 0, in which case we can reproduce the proof
of (Graf & Luschgy, 2007, Thm 4.1), which gives that c
cannot be optimal either in that case, yielding the conclu-
sion.

Lemma 6. Rk is continuous.

Proof of Lemma 6. For a given x ∈ Ω, the map c 7→
mini ‖x− ci‖p is continuous and upper bounded by ‖x−
∂Ω‖p. Thus, Rk is continuous by dominated convergence
as we have finite Persp.

Lemma 7. Let 0 ≤ λ < R∗k−1. Then, the set {c ∈
Ω
k
, Rk(c) ≤ λ} is compact.

Proof of Lemma 7. Fix λ < R∗k−1. The set is closed by
continuity ofRk, so that it suffices to show that it is bounded.
Let c be such that Rk(c) ≤ λ. Pick L such that

∫
AL
‖x−

∂Ω‖pdµ(x) ≥ λ and
∫
AcL
‖x − ∂Ω‖pdµ(x) < R∗k−1 − λ.
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Such a L exists since
∫

Ω
‖x − ∂Ω‖pdµ(x) = Persp(µ) =

R∗0 ≥ R∗k−1. Then, all the cjs must be in A2L. Indeed,
assume without loss of generality that c1 ∈ Ac2L. Then
V1(c) ⊂ AcL, as any point in AL is closer to the diagonal
than to c1. Therefore,

R∗k−1 ≤
k+1∑
j=2

∫
Vj(c)

‖x− cj‖pdµ(x)

+

∫
V1(c)

min
j∈{2...k+1}

‖x− cj‖pdµ(x)

≤Rk(c) +

∫
V1(c)

‖x− ∂Ω‖pdµ(x)

≤Rk(c) +

∫
AcL

‖x− ∂Ω‖pdµ(x)

<λ+R∗k−1 − λ = R∗k−1,

leading to a contradiction.

Proof of Proposition 4. We show by recursion on 0 ≤ m ≤
k that R∗m < R∗m−1 and that Cm is a non-empty com-
pact set (with the convention R∗−1 = +∞. The ini-
tialization holds as R∗0 = Persp(µ) < +∞ with the
empty codebook being optimal. We now prove the induc-
tion step. Let c = (c1, . . . , cm−1) ∈ Cm−1. Consider
c′ = (c1, c1, c2, . . . , cm−1). Then, µ(V1(c′)) = 0, so that
R∗m−1 = Rm−1(c) = Rm(c′) > R∗m by Lemma 5. Fur-
thermore, pick λ ∈ (R∗m, R

∗
m−1). Then, R∗m is equal to the

infimum of Rm on the set {c ∈ Ω
k
, Rm(c) ≤ λ}, which is

compact according to Lemma 7. As the function Rk is con-
tinuous, the set of minimizers Cm is a non-empty compact
set, concluding the induction step.

Proof of Corollary 1. The quantities being minimized in
the definitions of Dmin and mmin are both continuous func-
tions of c∗. As the set Ck is compact, the minima are
attained, and cannot be equal to 0 according to Proposi-
tion 4.

C. Proof of Theorem 5.
In the following, we fix a distribution P supported on
Mp

L,M and we consider c∗ be an optimal codebook of
E(P ). The different constants encountered in this section
all depend on the parameters p, L,M, k,Dmin and mmin.
In particular, we introduce the quantity

mmax := sup
µ∈Mp

L,M

sup
1≤j≤k

µ(Vj(c
∗)).

Note that mmax ≤ 2pM
Dpmin

as
∫
Vj(c∗)

dµ(x) ≤
2p

Dpmin

∫
Vj(c∗)

‖x− ∂Ω‖pdµ(x).

The proof of Theorem 5 follows the proof of (Chazal et al.,
2021, Thm. 5). As a first step, we show that it is enough
to prove the following lemma, which relates the loss of c(t)

and the loss of c(t+1).

Lemma 8. There exists R0 > 0 such that, if ‖c(0)
j − c∗j‖ ≤

R0 for 1 ≤ j ≤ k, then

E‖c(t+1)−c∗‖2 ≤
(

1− C0

t+ 1

)
E‖c(t)−c∗‖2+

C1

(t+ 1)2
,

for some constants C0 > 1, C1 > 0.

Proof of Theorem 5. From Lemma 8, we show by induc-
tion that ut := E‖c(t) − c∗‖2 satisfies ut ≤ α

t+1 for
α = C1/(C0 − 1). This concludes the proof as T is of
order n/ log(n). The initialization holds by assumption as
long as R0 ≤ α, whereas we have by induction

ut+1 ≤
(

1− C0

t+ 1

)
α

t+ 1
+

C1

(t+ 1)2

≤ α

(t+ 1)2
(t+ 1− C0 + C1/α) =

αt

(t+ 1)2
,

which is smaller than α/(t+ 2).

The proof of Lemma 8 is a close adaptation of (Chazal et al.,
2021, Lemma 21). The proof of the latter contains tedious
computations (that we do not reproduce here) which can
be adapted mutatis mutandis to our setting once the two
following key results are shown. Given a codebook c, we
let pj(c) = E(P )(Vj(c)) and similarly, given a n-sample
µ1, . . . , µn of law P , we let p̂j(c) = µn(Vj(c)). Note that
if ‖c− c∗‖ is small enough, one has pj(c) ≤ 2mmax. Also,
we let wp(c, µ)j := µ(Vj(c))vp(c, µ)j for µ ∈ Mp and
1 ≤ j ≤ k. Recall that we assume that the EPD E(P )
satisfies the margin condition (Definition 2) with parameters
λ and r0 around the optimal codebook c∗.

Lemma 9 (Lemma 22 in (Chazal et al., 2021)). Let R0 be
small enough respect to r0D

2
min/L

2 and let c be such that
‖c− c∗‖ ≤ R0. Then, we have

k∑
j=1

|pj(c)− pj(c∗)| ≤ 2λr0,

and

‖w2(c,E(P ))− w2(c∗,E(P ))‖ ≤ 7
√

2λ
L3

D2
min

‖c− c∗‖.

As w2(c∗,E(P ))j = pj(c
∗)c∗j , Lemma 9 indicates that the

application w2(·,E(P )) is Lipschitz continuous around an
optimal codebook c∗, a key property to show the conver-
gence of the sequence (c(t))t.
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Lemma 10 (Lemma 24 in (Chazal et al., 2021)). Let c
be a codebook such that p̂j(c) ≤ 2mmax (which is always
possible if ‖c−c∗‖ is small enough). Then, with probability
larger than 1− 2ke−x, we have, for all 1 ≤ j ≤ k,

|p̂j(c)− pj(c)| ≤
√

4mmaxpj(c)x

n
+

2mmaxx

3n
. (C.1)

Moreover, with probability larger than 1− e−x, we have

‖w2(c, µn)−w2(c,E(P ))‖ ≤ 2mmaxL

√
2k

n

(
1 +

√
x

2

)
.

(C.2)

The proof of this lemma follows from standard concentra-
tion inequalities.

Proof of Lemma 10. Equation (C.1) follows from Bern-
stein inequality applied to the real-valued random vari-
able 0 ≤ p̂j(c) ≤ 2mmax, with variance bounded by
E[µ(Vj(c))2]/n ≤ mmaxpj(c)/n.

For equation (C.2), we introduce the function fj : x 7→
x1{x ∈ Vj(c)}, so that w2(c, µ)j = µ(fj), the integral
of fj against µ. We have w2(c, µn)j − w2(c,E(P ))j =
n−1

∑n
i=1(µi(fj) − E(P )(fj)). Note that ‖µi(fj)‖ ≤√

2L · 2mmax. We write

E

∥∥∥∥∥ 1

n

n∑
i=1

(µi(fj)−E(P )(fj))j

∥∥∥∥∥
≤

√√√√E

∥∥∥∥∥ 1

n

n∑
i=1

(µi(fj)−E(P )(fj))j

∥∥∥∥∥
2

≤
√

1

n
E ‖(µ1(fj))j‖2 ≤ 2

√
k

n

√
2Lmmax.

Also, note that F (µ1, . . . , µn) = ‖w2(c, µn) −
w2(c,E(P ))‖ satisfies a bounded difference condition of
parameter 4

√
2Lmmax (Boucheron et al., 2013, Sec. 6.1).

A bounded difference inequality (Boucheron et al., 2013,
Thm. 6.2) yields the result.

The proof of Lemma 9 relies on the following lemma, that
essentially tells that the area of misclassified points when
using a codebook c instead of an optimal one c∗ can be
controlled linearly in terms of ‖c∗ − c‖. Note that this
result is well-known when boundaries between the cells are
hyperplanes (as it is the case in standard quantization), it
remains to treat the case when the boundary is a parabola.
Let d(x,A) be the distance from a point x ∈ Ω to A ⊂ Ω.
Lemma 11. Let c∗ be an optimal codebook, and c ∈ AkL.
Let x ∈ AL and 1 ≤ j ≤ k. Assume that x ∈ Vj(c∗) ∩
Vk+1(c). Then, d(x, ∂Vj(c

∗)) ≤ 7L2

2D2
min
‖c∗−c‖. Symmetri-

cally, if x ∈ Vk+1(c∗)∩Vj(c), one has d(x, ∂Vk+1(c∗)) ≤
7L2

2D2
min
‖c∗ − c‖.

∂Ω

c∗
c

t

xu

Pc∗

Pc

Figure 9. Illustration of the proof of Lemma 9

Proof of Lemma 11. For convenience, we write in this
proof the coordinates of points in the basis (∂Ω, ∂Ω⊥), that
x ∈ Ω will have coordinates (a, b) where a is the projection
of x on ∂Ω and b = ‖x− ∂Ω‖. Also, given y = (a, b) ∈ Ω,
we let Py be the parabola with focus y and directrix ∂Ω. To
put it another way, if y = (a, b), then Py is the image of ∂Ω
by the map

f(a, b, ·) : t 7→ (t− a)2

2b
+
b

2
.

One can check that for all t ∈ [−L/2, L/2], if b = ‖y −
∂Ω‖ ≥ Dmin, we have

∣∣∣∂f∂a ∣∣∣ ≤ L
Dmin

and
∣∣∣∂f∂b ∣∣∣ ≤ 1

2 +

(t−a)2

b
1
b ≤ 1

2 + 2L2

D2
min

.

Let c∗j = (a∗, b∗) and cj = (a, b). Let x = (t, u) ∈
Vj(c

∗) ∩ Vk+1(c). Then, u ≥ f(a∗, b∗, t), whereas
u ≤ f(a, b, t). The distance d(x, ∂Vj(c

∗)) is smaller than
u− f(a∗, b∗, t)

u− f(a∗, b∗, t) ≤ f(a, b, t)− f(a∗, b∗, t)

≤ |f(a∗, b∗, t)− f(a, b∗, t)|+ |f(a, b∗, t)− f(a, b, t)|

≤
∫ a∨a∗

a∧a∗

∣∣∣∣∂f∂a (α, b∗, t)

∣∣∣∣dα+

∫ b∨b∗

b∧b∗

∣∣∣∣∂f∂b (a, β, t)

∣∣∣∣dβ
≤ L

Dmin
|a− a∗|+

(
1

2
+

2L2

D2
min

)
|b− b∗|

≤
(

1

2
+

L

Dmin
+

2L2

D2
min

)
‖c− c∗‖ ≤ 7

2

L2

D2
min

‖c− c∗‖,

which proves the claim.

Proof of Lemma 9. This proof is inspired from (Levrard
et al., 2015, Appendix A.3). Let us prove the first point.
One has, with t = 7L2

2D2
min
‖c− c∗‖ ≤ r0,

k∑
j=1

|pj(c)− pj(c∗)| =
k∑
j=1

|E(P )(Vj(c))−E(P )(Vj(c
∗)|

≤ 2
∑
j

∑
j′ 6=j

E(P )(Vj(c) ∩ Vj′(c∗))

≤ 2E(P )[N(c∗)t] ≤ 2λt ≤ 2λr0.
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where we applied Lemma 11 and the margin condition. To
prove the second inequality, remark that w2(c,E(P ))j =∫
Vj(c)

xdE(P )(x). Therefore,

‖w2(c,E(P ))− w2(c∗,E(P ))‖

≤
k∑
j=1

‖w2(c,E(P ))j − w2(c∗,E(P ))j‖

≤
k∑
j=1

∥∥∥∥∥
∫
Vj(c)

xdE(P )(x)−
∫
Vj(c∗)

xdE(P )(x)

∥∥∥∥∥
≤ 2

∑
j

∑
j′ 6=j

∫
Vj(c)∩Vj′ (c∗)

‖x‖dE(P )(x)

≤ 2
√

2Lλt ≤ 7
√

2λ
L3

D2
min

‖c− c∗‖. �


