
How rotational invariance of common kernels prevents generalization in high dimensions

A. Experiments
This section contains additional experiments not shown in the main text. 4

A.1. Polynomial Barrier
In this section, we provide additional experiments that discuss Theorem 3.1. In particular, we investigate kernels beyond the
Laplace kernel and study the behaviour of the bias with respect to β when d is fixed and n varies. The experimental setting
is the same as the one in Section 4.2.

(a) P1 (b) P2 (c) P3

Figure 5: The bias of the minimum norm interpolant B(f̂0) normalized by B(0) as a function of β for the α-exponential kernel with
different choices of α and with n = 4000 i.i.d. samples drawn from (a) P1, (b) P2 and (c) P3.

Instead of comparing the bias curves for different input distribution as in Figure 2a, Figure 5 shows the bias with respect to
β for the α-exponential kernel, i.e. k(x, x′) = exp(−‖x − x′‖α2 ), for different choices of α and hence, for kernels with
distinct eigenvalue decays (α = 2 results in an exponential eigenvalue decay while α < 2 in a polynomial eigenvalue decay).
Clearly, we can see that the curves transition at a similar value for β, which confirms the the discussion of Theorem 3.1 in
Section 3.3 where we argue that the polynomial approximation barrier occurs independently of the eigenvalue decay.
Figure 6 shows the bias of the minimum norm interpolant B(f̂0) normalized by B(0) for the ground truth function
f?(x) = 2x3

(1) and the Laplace kernel as in Section 4.2 with τ = deff. We observe that the asymptotics already kick in for
d ≈ 40 since all curves for d ≥ 40 resemble each other. This confirms the the trend in Figure 2b.

Figure 6: The bias of the minimum norm interpolant B(f̂0) normalized by R(0) as a function of β for different choices of d and samples
generated from an isotropic Gaussian (as in Model P1) with n = bd1/βc.

A.2. Feature selection - Synthetic
The goal of this experiment is to compare the bias variance trade-off of ridge regression and minimum norm interpolation.
We use the same experimental setting as the ones used for Figure 4a (see Section 4.3). We set the bandwidth to τ = deff and
choose the ridge parameter λ using 5-fold cross validation. While for small dimensions d, ridge regularization is crucial
to achieve good performance, the bias becomes dominant as the dimension grows and the difference of the risks of both
methods shrinks. This aligns well with Theorem 3.1, which predicts that the bias starts to increase with d for fixed n once
we enter the asymptotic regime.

4Our code is publicly available at https://www.github.com/DonhauserK/High-dim-kernel-paper/

https://www.github.com/DonhauserK/High-dim-kernel-paper/
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(a) Ridge regression (b) Minimum norm interpolation

Figure 7: The bias-variance trade-off of the (a) ridge estimate and (b) minimum norm interpolant normalized by B(0) as a function of
selected features for the synthetic experiment described in Section 4.3. Figure (b) is exactly the same as Figure 4a.

A.3. Feature selection - Real world
We now present details for our real world experiments to emphasize the relevance of feature selection when using kernel
regression for practical applications, as discussed in Section 4.3.
We consider the following data sets:

1. The residential housing regression data set from the UCI website (Dua and Graff, 2017) where we predict the sales
prices and construction costs given a variety of features including the floor area of the building or the duration of
construction.

2. The ALLAML classification data set from the ASU feature selection website (Li et al., 2018) where we classify patients
with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) based on features gained from gene
expression monitoring via DNA microarrays.

3. The CLL SUB 111 classification dataset from the ASU feature selection web-page (Li et al., 2018) where we classify
genetically and clinically distinct subgroups of B-cell chronic lymphocytic leukemia (B-CLL) based on features
consisting of gene expressions from high density oligonucleotide arrays. While the original dataset contains three
different classes, we only use the classes 2 and 3 for our experiment to obtain a binary classification problem.

Because the number of features in the ALLAML and CLL SUB 111 datasets massively exceed the number of samples, we
run the feature selection algorithm in (Chen et al., 2017) and pre-select the best 100 features chosen by the algorithm. In
order to reduce the computational expenses, we run the algorithm in batches of 2000 features and iteratively remove all
features except for the best 200 features chosen by the algorithm. We do this until we reduce the total number of features to
2000 and then select, in a last round, the final 100 features used for the further procedure. Reducing the amount of features
to 100 is important for the computational feasibility of greedy forward features selection in our experiments. The properties
of the datasets are summarized in Table 2.

Data set Binary CLL SUB 111 ALLAML Residential Building Data Set
Features 11,340 (100) 7129 (100) 107
Samples 100 72 372

Type Binary classification Binary classification Regression

Table 2: Real world datasets used for the experiments. The value in the brackets shows the number of features after a
pre-selection using the algorithm presented in (Chen et al., 2017).

Experimental setting: As a first step, we normalise both the vectors containing the single input features and the observations
separately using `1 normalization. We use the Laplace kernel for computing the ridge and ridgeless estimate in all
experiments. For each setting, we pick the bandwidth τ and the penalty coefficient λ (for the ridge estimator) using cross
validation. We increase the number of features by greedily adding the feature that results in the lowest 5-fold cross validation
risk. In addition, in order to study the effect of noise, we generate additional data sets where we add synthetic i.i.d. noise
drawn from the uniform distribution on [−1/2, 1/2] to the observations for the regression tasks and flip 20% of the label for
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(a) ALLAML - original (b) ALLAML - 20% label noise

Figure 8: The classification error of the minimum norm interpolator and ridge estimator for the ALLAML dataset.

(a) CLL SUB 111 - original (b) CLL SUB 111 - 20% label noise

Figure 9: The classification error of the minimum norm interpolator and ridge estimator for the CLL SUB 111 dataset.

(a) Residential housing - original (b) Residential housing - add. noise

Figure 10: The risk R(f̂0) of the minimum norm interpolant respectively R(f̂λ) of the ridge estimate normalized by R(0) for the
residential housing dataset with target construction costs.

the classification tasks.

Results of the experiments: The following figures present the results of our experiments on all datasets except for the
ones predicting the sales prices in the residential housing dataset, which we presented in Figures 4b, 4c in the main text.
Similar to the observations made in Section 4.3, Figures 8,9,10 show that the risk reaches its minimum around d ≈ 25, with
significant differences to the right at d ≈ 100. In particular, this holds for both ridge regression and interpolation, which
again shows that the bias becomes dominant as the dimension increases. Surprisingly, we also note that the relevance of
ridge regularization seems to be much smaller for classification tasks than regression tasks.
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B. Bounded Hilbert norm assumption
This section gives a formal statement of Lemma 2.1. We begin with the conditions under which the lemma holds. We
consider tensor product kernels of the form

k(x, x′) =

d∏
j=1

q(x(j), x
′
(j))

with inputs x, x′ ∈ X⊗d ⊂ Rd with X compact and ⊗d denotes the product space, for some kernel function q on X which
may change with d (e.g. the scaling). In order to prevent the sequence of kernels k to diverge as d → ∞, assume that
there exists some probability measure on X with full support such that the trace of the kernel operator is bounded by 1, i.e.∫
q(x, x)dµ(x) ≤ 1. Let ‖.‖Hk be the Hilbert norm induced by k. Then,

Lemma B.1 (Formal statement of Lemma 2.1). Let k satisfy the above conditions. Then, for any f that is a non-constant
sparsely parameterized product function f(x) =

∏m
j=1 fj(x(j)) for some fixed m ∈ N,

‖f‖Hk
d→∞→ ∞.

Proof. For any j > m, define fj = 1. First, we note that the proof follows trivially if any of the fj is not contained in
the RKHS induced by q since this implies that the Hilbert norm ‖f‖Hk =∞. Hence, we can assume that for all j, fj is
contained in the RKHS for all d. Furthermore, because k is a product kernel, we can write ‖f‖Hk =

∏d
j=1 ‖fj‖Hq where

‖.‖Hq is the Hilbert norm induced by q on X . Because we are only interested to see whether the sequence of Hilbert norms
diverge, without loss of generality we can assume that m = 1, and hence,

‖f‖Hk = ‖f1‖Hq (‖1‖Hq )d−1. (9)

Next, by Mercer’s theorem there exists an orthonormal eigenbasis {φi}∞i=1 in L2(X , µ) with corresponding eigenvalues
{λi}∞i=1 such that for any g ∈ Hq, ‖g‖Hq =

∑∞
i=1

(〈f,φi〉)2
λi

, where 〈f, φi〉 =
∫
φi(x)f(x)dµ(x). Note that because the

kernel q depends on d, λi and φi also depend on d. Next, because by assumption f(x) = 1 is contained in the RKHS, there
exists αi such that for every x ∈ X , 1 =

∑∞
i=1 αiφi(x) and

∑∞
i=1 α

2
i = 1. Furthermore,

1 ≥
∫
q(x, x)dµ(x) =

∫ ∞∑
i=1

λiφi(x)φi(x)dµ(x) =

∞∑
i=1

λi.

Combining these results, we get that

‖1‖Hq =

∞∑
i=1

α2
i

λi
≥ 1.

Furthermore, there exists βi such that f1(x) =
∑∞
i=1 βiφi(x). Again, because we are only interested to see whether the

sequence of Hilbert norms diverge, without loss of generality we can assume that
∑∞
i=1 β

2
i = 1 and hence also ‖fj‖Hq ≥ 1.

First, assume that there exists a subsequence such that ‖1‖Hq → 1. This implies that there exists a sequence jd ∈ N such
that α2

jd
→ 1 and λjd → 1. Next, because by assumption f1 6= 1, there exists some constant c1 > 0 such that for all d,

c1 ≤
∫

(1− f1(x))2dµ(x) =

∞∑
i=1

(αi − βi)2.

Together with the fact that α2
jd
→ 1 it then follows that

∑
i6=jd β

2
i has to be asymptotically lower bounded by some positive

non-zero constant c2 and hence

‖f1‖Hq ≥
c2

(1− λjd)
→∞.

This contradicts the assumption that ‖f1‖Hq is upper bounded by some constant for every d. Hence, we are only left with
the case where ‖1‖Hq ≥ c > 1, however, this case diverges due to Equation 9. Hence, the proof is complete.
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C. Proof of Theorem 3.1
Before presenting the proof of the (generalized) theorem, we first state the key concentration inequalities used throughout
the proof. It is an extension of Lemma A.2 in the paper (El Karoui et al., 2010), which iteself is a consequence of the
concentration of Lipschitz continuous functions of i.i.d random vectors.

Lemma C.1. For any PX ∈ Q or QSd−1 , let X ∈ Rd×n consists of i.i.d. vectors xi ∼ PX and X ∼ PX be independent of
xi. For any constants ε > 0, define the events

EX :=

{
X |max

i,j

∣∣x>i xj/ tr(Σd)− δi,j
∣∣ ≤ n−β/2(log(n))(1+ε)/2

}
(10)

EX|X :=
{
X |

∣∣ ‖X‖22/ tr(Σd)− 1
∣∣ ≤ n−β/2(log n)(1+ε)/2 and max

i
|x>i X|/ tr(Σd) ≤ n−β/2(log n)(1+ε)/2

}
(11)

Then, there exists some constant C > 0 such that for n sufficiently large,

P(EX) ≥ 1− n2 exp(−C(log(n))(1+ε)) (12)

and P(EX|X|EX) ≥ 1− (n+ 1)2 exp(−C(log(n))(1+ε)) (13)

In particular, the event EX holds almost surely with respect to the sequence of data sets X as n→∞, that is the probability
that for infinitely many n, EX does not hold, is zero.

The proof of the lemma can be found in Section E.1.

Proof of Theorem 3.1. The proof of the theorem is primarily separated into two parts

• We first state Theorem C.2 which shows under the weaker Assumption C.1 that the results of 3.1 hold for the ridge
estimate f̂λ for non-vanishing λ > 0 or the ridgeless estimate whenever the eigenvalues of K are asymptotically lower
bounded.

• We finish the proof for the ridgeless estimate by invoking Theorem C.2 and showing that K indeed has asymptotically
lower bounded eigenvalues under the stricter assumptions A.1-A.3 imposed in Theorem 3.1.

For the clarity we denote with A.3 the β-dependent assumptions in Theorem 3.1

(A.3) β-dependent assumptions: gi is (b2/βc + 1 − i)-times continuously differentiable in a neighborhood of (1, 1) and
there exists j′ > b2/βc such that gj′(1, 1) > 0.

We start by introducing the following weaker assumptions that allows us to jointly treat α-exponential kernels and kernels
satisfying Assumption A.1-A.3 when the kernel eigenvalues are lower bounded in Theorem C.2. Note that this assumption
implies that the kernel is rotationally invariant.

(C.1) Relaxation of Assumption A.1-A.3: Define the neighborhood N(δ, δ′) ⊂ Rd × Rd as

N(δ, δ′) := {(x, x′) ∈ Rd × Rd | (‖x‖22, ‖x′‖22) ∈ [1− δ, 1 + δ]× [1− δ, 1 + δ], x>x′ ∈ [−δ′, δ′]}.

The kernel function k is rotationally invariant and there exists a function g such that k(x.x′) = g(‖x‖22, ‖x′‖22, x>x′).
Furthermore, g can be expanded as a power series of the form

k(x, x′) = g(‖x‖22, ‖x′‖22, x>x′) =

m∑
j=0

gj(‖x‖22, ‖x′‖22)(x>x′)j + (x>x′)m+1r(‖x‖22, ‖x′‖22, x>x′) (14)

with m = b2/βc that converges in a neighborhood N(δ, δ′) of the sphere for some δ, δ′ > 0 and where gi is
(b2/βc+ 1− i)-times continuously differentiable in an neighborhood of (1, 1) and the remainder term r is a continuous
function in a neighborhood of (1, 1, 0).

Theorem C.2 (Polynomial approximation barrier). Assume that the kernel k, respectively its restriction onto the unit sphere,
satisfies Assumption C.1 and that the eigenvalues of K + λIn are almost surely lower bounded by a positive constant with
respect to the sequence of datasets X as n→∞. Furthermore, assume that the ground truth f? is bounded and the input
distribution satisfies B.1-B.2. Then, for m = 2b2/βc for PX ∈ Q and m = b2/βc for PX ∈ QSd−1 , the following results
hold for both the ridge (1) and ridgeless estimator (2) f̂λ wiht λ ≥ 0.
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1. The bias of the kernel estimators f̂λ is asymptotically lower bounded, for any ε > 0,

B(f̂λ) ≥ inf
p∈P≤m

‖f? − p‖L2(PX) − ε a.s. as n→∞. (15)

2. We can find a polynomial p such that for any ε′ > 0, there exists C > 0, such that for any ε > 0 asymptotically with
probability ≥ 1− n2 exp(−C(log(n))1+ε′) over the draws of X ,∣∣∣EY f̂λ(X)− p(X)

∣∣∣ ≤ ε a.s. as n→∞. (16)

Furthermore, for bounded kernel functions on the support of PX the averaged estimator EY f̂λ converges in L2(PX) to
a polynomial p ∈ P≤m, ∥∥∥EY f̂λ − p

∥∥∥
L2(PX)

→ 0 a.s. as n→∞. (17)

The proof of this theorem can be found in Section C.1. Theorem C.2 states Theorem 3.1 under the assumption that (K +λI)
has asymptotically lower bounded eigenvalues and the weaker Assumption C.1. For the proof of Theorem 3.1, it remains to
show that Assumptions A.1-A.3 of Theorem 3.1 and the α-exponential kernel both

(a) satisfy Assumption C.1 and

(b) induce kernel matrices with almost surely asymptotically positive lower bounded eigenvalues

Point (a) is relatively simple to prove and deferred to Section E.6. The bulk of the work in fact lies in showing (b) separately
for the case for A.1-A.3 and α-exponential kernels with α ∈ (0, 2) in the following two propositions, as these two cases
require two different proof techniques.

Proposition C.3. Assume that the kernel k, respectively its restriction onto the unit sphere, satisfies Assumption A.1-A.3 and
the distribution PX satisfies B.1-B.2. Then, for any γ > 0 and m = b2/βc, conditioned on EX,

λmin(K) ≥ g(1, 1, 1)−
m∑
i=0

gi(1, 1)− γ > 0 (18)

where λmin(K) is the minimum eigenvalue of the kernel matrix K.

Proposition C.4. Assume that the Assumptions B.1-B.2 hold true. Then, the minimum eigenvalue of the kernel matrix of the
α-exponential kernel with α ∈ (0, 2) is lower bounded by some positive constant almost surely as n→∞.

The proof of the Propositions C.3 and C.4 can be found in the Sections C.2.1 and C.2.2 respectively which concludes the
proof of the theorem.

Remark C.5. The almost sure statement in Proposition C.4 can also be replaced with an in probability statement as in
Lemma C.1. Hence the statements in Theorem 3.1 can also be replaced with an in probability statement.

C.1. Proof of Theorem C.2
As a result of Lemma C.1 it is sufficient to condition throughout the rest of this proof on the intersection of the events EX
and the event where the eigenvalues of the kernel matrix K are lower bounded by a positive constant.
For simplicity of notation, we define zi = xi√

τ
and let Z be the d× n matrix with column vectors zi. Define the random

variable Z = X/
√
τ with X ∼ PX and denote with PZ the probability distribution of Z. Define the event EZ|Z in the same

way as EX|X for the normalised inputs zi, Z and EZ like EX. In the latter, we denote with a . b that there exists a constant
C > 0 such that a ≤ Cb with C independent of n, d. Furthermore, we make heavily use of the closed form solution for the
estimator f̂λ,

EY f̂λ(X) = f?(X)>(K + λIn)−1kZ

with kZ ∈ Rn the vector with entries (kZ)i = kτ (xi, X) = k(zi, Z) and f?(X) the vector with entries f?(X)i = f?(xi).
This equation holds true for any λ ≥ 0 and is a well known consequence of the representer theorem.
The idea of the proof is to decompose the analysis into the term emerging from the error in the high probability region EZ|Z
and the error emerging from the low probability region EcZ|Z. The proof essentially relies on the following lemma.
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Lemma C.6. We can construct a polynomial p of degree ≤ m such that for n→∞,

1. |p(Z)− EY f̂λ(
√
τZ)| → 0, uniformly for all Z ∈ EZ|Z

2. ‖1Z∈Ec
Z|Z
p‖L2

→ 0

The proof of the lemma can be found in Section E.2. As a result, Equation (16) follows immediately and Equation (17) is a
consequence of ∥∥∥EY f̂λ − p

∥∥∥2

L2(PZ)

The first two terms vanish due to Lemma C.6. To see that the third term vanishes, note that for n sufficiently large,

EZ1Z/∈EZ|Z(EY f̂λ(
√
τZ))2 = EZ1Z/∈EZ|Z(y>(K + λIn)−1kZ)2

.
n2

c2λmin

EZ1Z/∈EZ|Z max
i
|k(zi, Z)|2 . n2P (EcZ|Z)→ 0

where we have used in the first inequality that by assumption |f?| is bounded on the support of PX and that λmin(K+λIn) ≥
cmin > 0 and in the second inequality that |k| is bounded. Finally, the convergence to zero is due Lemma C.1.
Next, the lower bound for the bias. Due to Lemma C.8, we have that

max
Z∈EZ|Z

∣∣∣p(Z)− EY f̂λ(
√
τZ)

∣∣∣ = max
Z∈EZ|Z

∣∣p(Z)− f?(
√
τZ)>(K + λIn)−1kZ

∣∣→ 0,

and hence, for any γ1 > 0 and n sufficiently large,

EZ1Z∈EZ|Z
(
f?(
√
τZ)>(K + λIn)−1kZ − f?(

√
τZ)

)2 ≥ EZ1Z∈EZ|Z
(
p(Z)− f?(

√
τZ)

)2 − γ1,

Furthermore, due to the second statement in Lemma C.6, we know that EZ1Z/∈EZ|Z(p(Z))2 → 0 and because f? is bounded
by assumption, we can see that EZ1Z/∈EZ|Z(p(Z)− f?(

√
τZ))2 → 0. Since f̂λ only depends linearly on the observations

y, we have B(f̂) = EZ(f?(
√
τZ)>(K + λIn)−1kZ − f?(

√
τZ))2. Thus, as a result, for any γ2 > 0,

B(f̂) ≥ EZ1Z∈EZ|Z
(
p(Z)− f?(

√
τZ)

)2 − γ1

≥ EZ1Z∈EZ|Z
(
p(Z)− f?(

√
τZ)

)2
+ EZ1Z/∈EZ|Z

(
p(Z)− f?(

√
τZ)

)2 − γ1 − γ2

= EZ
(
p(Z)− f?(

√
τZ)

)2 − γ1 − γ2.

Thus, the result follows from the definition of the infimum.

C.2. Proofs for the lower bound of the eigenvalues
C.2.1. PROOF OF PROPOSITION C.3
We use the same notaiton as used in the proof of Theorem C.2. As a result of Lemma C.1 it is sufficent to condition on
EX throughout the rest of this proof. The proof follows straight forwardly from the following Lemma C.7 which gives an
asymptotic description of the kernel matrix K based on a similar analysis as the one used in the proof of Theorem 2.1 and
2.2 in the paper (El Karoui et al., 2010). In essence, it is again a consequence of the concentration inequality from Lemma
C.1 and the stronger Assumption A.1-A.3 and in particular the power series expansion of g. We denote with ◦i the i-times
Hadamard product.

Lemma C.7. Given that the assumption in Proposition C.3 hold. For m = b2/βc,

||K −M ||op → 0

with

M = I

(
g(1, 1, 1)−

m∑
q=0

gq(1, 1)

)
+

m∑
q=0

(Z>Z)◦q ◦Ggq , (19)

where Ggq is the positive semi-definite matrix with entries (Ggq )i,j = gq(‖zi‖22, ‖zj‖22).
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The proof of the lemma can be found in Section E.3. The proof of Proposition C.3 then follows straight forwardly when
using Schur’s product theorem which shows that

I

(
g(1, 1, 1)−

m∑
q=0

gq(1, 1)

)
+

m∑
q=0

(Z>Z)◦q ◦Ggq � I

(
g(1, 1, 1)−

m∑
q=0

gq(1, 1)

)

where we use that gq are positive semi-definite by Assumption A.1. To see that the eigenvalues are lower bounded, we
thus simply need to show that g(1, 1, 1) −

∑m
q=0 gq(1, 1) > 0. This holds because the positive semi-definiteness of gq

implies that gq(1, 1) ≥ 0 and hence g(1, 1, 1) =
∑∞
q=0 gq(1, 1) is a sum of positive coefficients and because by Assumption

A.3 there exists j′ > b2/βc such that gj′(1, 1) > 0. Hence, there exists a positive constant c > 0 such that λmin(M) ≥ c.
We can conclude the proof when applying Lemma C.7, which implies that λmin(K)→ λmin(M) as n→∞.

C.2.2. PROOF OF PROPOSITION C.4
We use the same notaiton as used in the proof of Theorem C.2 and define Dα to be the n× n matrix with entries (Dα)i,j =
dα(zi, zj) := ‖zi − zj‖α2 . We separate the proof into two steps. In a first step, we decompose the k(x, x′) = dα(x, x′) in
the terms

exp(−||x− x′||α2 ) = exp(k̃(x, x′)) exp(−||x− x′||α2 − k̃(x, x′))

such that exp(−||x − x′||α2 − k̃(x, x′)) and exp(k̃(x, x′)) are both positive semi-definite kernel functions. In particular,
we construct k̃ such that the eigenvalues of the kernel matrix A of exp(k̃(x, x′)) evaluated at Z are almost surely lower
bounded by a positive constant. The proposition is then a straight forward consequence and shown in the last step.

Step 1: A matrix M is conditionally negative semi-definite if for every v ∈ Rn with 1>v = 0, v>Mv ≤ 0. We
can see from Chapter 3 Theorem 2.2 in (Berg et al., 1984) that dα is a conditionally negative semi-definite function, that is
that for any m ∈ N \ 0 and any {x1, ..., xm}, the corresponding kernel matrix M is conditionally negative semi-definite. As
shown in Chapter 3 Lemma 2.1 in (Berg et al., 1984), a kernel function φ(x, x′) is conditionally negative semi-definite, if
and only if for any z0, (x, x′)→ φ(x, z0) + φ(z0, x

′)− φ(x, x′)− φ(z0, z0) is a positive semi-definite function. Hence, for
any z0 ∈ Rn, the kernel defined by

k̃(x, x′) = dα(x, z0) + dα(z0, x
′)− dα(x, x′)− dα(z0, z0) (20)

is positive semi-definite.
The goal of the first step is now to show that we can find a vector z0 such that the kernel matrix A of k̃ evaluated at Z has
eigenvalues almost surely lower bounded by some positive constant. Essentially, the statement is a consequence of the
following lemma, bounding the eigenvalues of Dα.

Lemma C.8. Assume that PX satisfies the Assumption B.1-B.2. Conditioned on EX, for any n sufficiently large, all
eigenvalues of the matrix Dα are bounded away from zero by a positive constant c > 0, i.e. min

i≤n
|λi(Dα)| ≥ c.

The proof of the lemma can be found in Section E.4. We can see from Lemma C.1 that there exists almost surely over the
draws of Z as n→∞ an additional vector z0, such that for any two vectors z, z′ ∈ Z ∪ {z0},

|z>z′ − δz=z′ | . n−β/2(log(n))(1+ε)/2. (21)

In particular, Lemma C.8 then also implies that the eigenvalues of the matrix

Dα(Z, z0) =

(
Dα dα(Z, z0)

dα(Z, z0)> dα(z0, z0),

)
are bounded away from zero and since this matrix is conditionally negative semi-definite, we have that for any v ∈ Rn,

(
vT −1>v

)
Dα(Z, z0)

(
vT

−1>v

)
≤ −c̃‖

(
vT

1>v

)
‖22, (22)

where c̃ > 0 is a positive constant and we have used that 1T
(

vT

−1>v

)
= 0. Throughout the rest of this proof, we conditioned

on the event EX and the additional event that Equation (21) holds, and remark that the intersection of these two events holds
true almost surely as n→∞.
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As a result, we can see that

(
vT −1>v

)
Dα(Z, z0)

(
vT

−1>v

)
=v>Dαv − v>

[
1

n
11>dα(z0,Z)

]
v − v>

[
1

n
dα(z0,Z)>11>

]
v + v>

[
1

n2
11>dα(z0, z0)11>

]
v.

=v>
[
Dα −

1

n
11>dα(z0,Z)− 1

n
dα(z0,Z)>11> +

1

n2
11>dα(z0, z0)11>

]
︸ ︷︷ ︸

=−A

v,

(23)

where A is exactly the kernel matrix of k̃ evaluated at Z. Hence, combining Equation (22) and (23) gives

vTAv ≥ c̃ (vT v + vT 11T v) ≥ c̃ vT v.

We can conclude the first step of the proof when applying the Courant–Fischer–Weyl min-max principle which shows that A
has lower bounded eigenvalues ≥ c̃.

Step 2: We can write exp(−dα(x, x′)) = exp(k̃(x, x′)) exp(φ(x, x′)) with φ(x, x′) := −dα(x, x′) − k̃(x, x′) =
dα(z0, z0)− dα(x, z0)− dα(z0, x

′). It is straight forward to verify that exp(φ(x, x′)) is a positive semi-definite function.
Hence, due to Schur’s product theorem, the following sum is a sum of positive semi-definite functions

exp(−dα(x, x′)) = exp(k̃(x, x′)) exp(φ(x, x′)) =

∞∑
l=0

1

l!
k̃(x, x′)l exp(φ(x, x′)).

It is sufficient to show that the eigenvalues of the kernel matrix M of k̃(x, x′) exp(φ(x, x′)), evaluated at Z, are lower
bounded. Let B be the kernel matrix of exp(φ(x, x′)) evaluated at Z, we have that M = A ◦B, where ◦ is the Hadamard
product and A the kernel matrix of k̃ from the previous step. We make the following claim from which the proof follows
trivially using that the eigenvalues of A are lower bounded by a positive constant.

Claim: B = 1
2e4 11> + B̃ with B̃ a positive semi-definite matrix.

Proof of the claim: Let ψ be the vector with entries ψi = exp(−dα(zi, z0)). Furthermore, let γ = exp(dα(z0, z0)). We
can write

B = γ
(
1ψ>

)
◦
(
ψ1>

)
= γψψ>.

Next, using Lemma C.1 and the fact that dα(x, x′) = 2α/2 +O(
||x−x′||22

2 −1), we can see that γ ≥ exp(2α/2/2) > 1. Hence,
it is sufficient to show that ψψ> − 1

2e4 11> is positive semi-definite. This is true if and only if 1>ψψ>1 ≥ 1
2e4 1>11>1,

which is equivalent to saying that (
∑n
i=1 exp(−dα(zi, z0)))

2 ≥ n2

2e4 . Using again the same argument as for γ, we can see
that max

i

∣∣2α/2 − dα(zi, z0)
∣∣→ 0 for any i, which completes the proof.

C.3. Proof of Corollary 3.2
First, note that the Assumption A.1-A.3 straight forwardly hold true for the exponential inner product kernel with k(x, x′) =
exp(x>x′) =

∑∞
j=0

1
j! (x

>x′)j and for the Gaussian kernel with

k(x, x′) = exp(−‖x− x′‖22) =

∞∑
j=0

2j

j!
(x>x′)j exp(−‖x‖22) exp(−‖x′‖22).

Next, note that the α-exponential kernel with α < 2 is already explicitly covered in Theorem 3.1. Hence, the only thing left
to show is that Theorem 3.1 also applies to ReLU-NTK.
We use the definition of the Neural Tangent Kernel presented in (Arora et al., 2019; Lee et al., 2018). Let L be the depth of
the NTK and σ : R→ R the activation function which is assumed to be almost everywhere differentiable. For any i > 0,
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define the recursion

Σ(0)(x, x′) := x>x′

Λ(i)(x, x′) :=

(
Σ(i−1)(x, x) Σ(i−1)(x, x′)
Σ(i−1)(x, x′) Σ(i−1)(x′, x′)

)
Σ(i)(x, x′) := cσ E

(u,v)∼N (0,Λ(i))
[σ(u)σ(v)]

with cσ :=

[
E

v∼N (0,1)

[
σ(v)2

]]−1

. Furthermore, define

Σ̇(i) := cσ̇ E
(u,v)∼N (0,Λ(i))

[σ̇(u)σ̇(v)]

with cσ̇ :=

[
E

v∼N (0,1)

[
σ̇(v)2

]]−1

where σ̇ is the derivative of σ. The NTK kNTK of depth L ≥ 1 is then defined as

kNTK(x, x′) :=
L+1∑
i=1

Σ(i−1)(x, x′)
L+1∏
j=i

Σ̇(j)(x, x′).

We call a function σ k-homogeneous, if for any x ∈ R and any a > 0, σ(ax) = akσ(x). We can now show the following
result from which the corollary follows.

Proposition C.9. Assume that the activation function σ is k-homogeneous and both the activation function and its derivative
possess a Hermite-polynomial series expansion (see (Daniely et al., 2016)) where there exits j′ ≥ b2/βc such that the j′-th
coefficient aj′ 6= 0. Then, the NTK satisfies the Assumption A.1-A.3 and hence Theorem 3.1 applies.

In fact, we can easily see that any non-polynomial activation function which is homogeneous and both the activation function
and its derivative possesses a Hermite polynomial extension satisfies the assumptions in Proposition C.9. In particular,
this includes the popular ReLU activation function σ(x) = max(x, 0). We refer to (Daniely et al., 2016) for the explicit
expression of the Hermite polynomial extension.

C.3.1. PROOF OF PROPOSITION C.9
Essentially, the proof follows from the power series expression of the NTK kNTK given in the following lemma.

Lemma C.10. The NTK kNTK possesses a power series expansion

kNTK(x, x′) =

∞∑
j=0

(x, x′)jgj(||x||22, ||x′||22),

which converges for any x, x′ ∈ Rd with x, x′ 6= 0. Furthermore, for any u, u′ ∈ R+,

gj(u, u
′) =

∞∑
i=−∞

ηj,i(uu
′)i/2

and ηj,i ≥ 0.

The proof of the lemma can be found in Section E.5. It is straight forward to verify from the proof of Lemma C.10 that Σ(i)

and Σ̇(i) are compositions of continuous functions and thus kNTK is also continuous for any x, x′ 6= 0. Next, note that the
Lipschitz continuity (Assumption A.2) follows straight forwardly from Equation (31) in the proof of Lemma C.10. In order
to show that any gj from Lemma C.10 is smooth, recall that

gj(u, u
′) =

∞∑
l=−∞

η
(i+1)
j,l (uu′)l/2 =: hj(xy).

Therefore, hj is a Puiseux power series with divisor 2. Furthermore, the function h̃j(t) := hj(t
2) =

∑∞
l=−∞ η

(i+1)
j,l (t)l

is a Laurent series which converges for every t 6= 0. Hence, we can conclude that h̃j is smooth for any t 6= 0 and thus
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also hj . Finally, because (u, u′) → uu′ is also a smooth function, we can conclude that any gj is a smooth function for
any u, u′ 6= 0. Next, since for any l ∈ Z, (u, u′)→ α(uu′)l/2 is trivially a positive semi-definite (PSD) function whenever
α ≥ 0 and sums of PSD functions are again PSD, we can conclude that the gj(u, u′) =

∑∞
l=−∞ η

(i+1)
j,l (uu′)l/2 is PSD for

any j. Therefore, we can conclude that Assumption A.1 holds as well.
The only thing left to show is Assumption A.3. While we have already shown that gj are smooth in a neighborhood of
(1, 1), we still need to show that there exists j′ > b2/βc such that gj′(1, 1) > 0. However, this follows from the fact that by
assumption there exists j′ > b2/βc such that aj′ 6= 0 where aj are the Hermite coefficients of the activation function σ.

D. Different scalings τ
In this section, we present results for different choices of the scaling beyond the standard choice τ � deff. In Subsection D.1,
we give a proof of Theorem 3.3 describing the flat limit, i.e. the limit of the interpolant where for any fixed n, d, τ →∞.
Furthermore, in order to get a more comprehensive picture, we additionally present straight forward results for other choices
of τ in Section D.2.

D.1. Proof of Theorem 3.3
We use again the same notation as used for the proof of Theorem C.2 where we set zi = xi/

√
deff and let Z = X/

√
deff be

the random variable with X ∼ PX . We can again condition throughout the proof on the event EX. In particular, we assume
throughout the proof that n is sufficiently large since we are only interested in the asymptotic behaviour. Furthermore, recall
the definition of Dα, which is the n × n matrix with entries (Dα)i,j = ‖zi − zj‖α2 and denote with D−1

α its inverse. In
addition, denote with dαZ the vector with entries (dαZ)i = ‖zi − Z‖α2 and with dα the function dα(z, z′) = ‖z − z′‖α2 .
First, although the limit limτ→∞K−1 does not exists, we can apply Theorem 3.12 in (Lee et al., 2014) to show that the flat
limit interpolator fFL := limτ→∞ f̂0 of any kernel satisfying the assumption in Theorem 3.3 exists and has the form

fFL(Z) =
(
y> 0

)(−Dα 1
1T 0

)−1(
dαZ
1

)
.

Furthermore, for the α-exponential kernel, we use Theorem 2.1 in (Blumenthal and Getoor, 1960) to show that it satisfies
the assumptions imposed on the eigenvalue decay in Theorem 3.3.

Remark D.1. The estimator fFL is also called the polyharmonic spline interpolator. This estimator is invariant under
rescalings of the input data which is also the reason why we can rescale the input data by

√
deff, i.e. consider zi = xi/

√
deff

as input data points.

We already know from lemma C.8 that the matrix Dα has n − 1 negative eigenvalues and one positive eigenvalue. In
particular, we have shown that |λi(Dα)| ≥ c̃ > 0, for every i, where c̃ is some positive constant. Next, note that because

Dα has full rank, we can conclude from Theorem 3.1 in (Ikramov and Savel’eva, 2000) that the matrix
(
−Dα 1
1T 0

)
has n

positive eigenvalues and one negative. Hence,

det

(
−Dα 1
1T 0

)
= det(−Dα)(1TD−1

α 1) 6= 0

and 1TD−1
α 1 > 0. In particular, this allows us to use the block matrix inverse to show that(

−Dα 1
1T 0

)−1

=

(
−D−1

α +
D−1
α 11TD−1

α

1TD−1
α 1

D−1
α 1 1

1TD−1
α 1

(D−1
α 1 1

1TD−1
α 1

)T 1
1TD−1

α 1

)

and therefore,

fFL(Z) = yT
[
−D−1

α +
D−1
α 11TD−1

α

1TD−1
α 1

]
︸ ︷︷ ︸

=:A

dαZ +
yTD−1

α 1

1TD−1
α 1

.

Next, using the Binomial series expansion, we can see that for any q ∈ N,

dα(zi, Z) =

q∑
j=0

(
j

α/2

)
2α/2

(
1

2
‖zi − Z‖22 − 1

)j
+O

((
1

2
‖zi − Z‖22 − 1

)q+1
)
.
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Furthermore, by Lemma C.1 and the fact that ‖zi − Z‖22 = z>i zi + Z>Z − 2z>i Z, we can see that for q = b2/βc,
nO
((

1
2‖zi − Z‖

2
2 − 1

)q+1
)
→ 0. Hence, assuming that the absolute eigenvalues |λi(A)| of A are all upper bounded by a

non-zero positive constant, we can use exactly the same argument as used in the proof of Theorem C.2 to conclude the proof.
We already know from Lemma C.8 that there exists some constant c > 0 independent of n, such that

∣∣∣∣D−1
α

∣∣∣∣
op ≤ c. Thus,

we only need to show that
∣∣∣∣∣∣D−1

α 11TD−1
α

1TD−1
α 1

∣∣∣∣∣∣
op

is almost surely upper bounded. Because D−1
α 11TD−1

α

1TD−1
α 1

is a rank one matrix, we

know that ∣∣∣∣∣∣∣∣D−1
α 11TD−1

α

1TD−1
α 1

∣∣∣∣∣∣∣∣
op

=
1TD−2

α 1

1TD−1
α 1

.

Step 1: We show that
1TD−2

α 1 = O(1)

Let λ2, ..., λn be the n − 1 negative eigenvalues of D−1
α and λ1 the only positive eigenvalue. Furthermore, let vi be the

corresponding orthonormal eigenvectors. Next, let αi ∈ R be such that 1 =
∑n
i=1 αivi. Since ‖1‖2 =

√
n, we know that

αi ≤
√
n. We have

1TD−1
α 1 = α2

1

1

λ1
−

n∑
i=2

α2
i

1

|λi|
> 0

and 1TD−2
α 1 = α2

1

1

λ2
1

+

n∑
i=2

α2
i

1

λ2
i

,

where we use that 1TD−1
α 1 > 0 which we already know from the discussion above. Because by the binomial expansion,

dα(zi, zj) = 2α/2 +O( 1
2‖zi − zj‖

2
2 − 1), Lemma C.1 implies that max

i 6=j
dα(zi, zj)→ 2α/2 and hence, 1

n1TDα1 & n, for

any n sufficiently large. Therefore, λ1 & n. Hence, there exists some constant c > 0 independent of n, such that α2
1

1
λ1
≤ c.

As a consequence,

c ≥ α2
1

1

λ1
≥
n−1∑
i=1

α2
i

1

|λi|
≥ c̃

n−1∑
i=1

α2
i

1

λ2
i

,

where we use in the last inequality that |λi| ≥ c̃. Furthermore, α2
1

1
λ2
1

= O( 1
n ). Thus, we conclude that 1TD−2

α 1 = O(1).

Step 2: In order to prove the result, we are only left to study the case where 1TD−2
α 1 ≥ 1TD−1

α 1 → 0. We prove by
contradiction and assume that 1TD−2

α 1

1TD−1
α 1
→ ∞ and 1TD−1

α 1 → 0. Let γ = 1TD−1
α 1 and v = D−1

α 1. Furthermore, let

ṽ = (−γ, 0, · · · , 0)>. We know that 1T (v + ṽ) = 0 and hence,

(v + ṽ)TDα(v + ṽ) ≤ −c̃(v + ṽ)T (v + ṽ)

Next, note that our assumption imply that for n sufficiently large, v>v − γ2 ≥ 1/2v>v . Therefore,

− c̃
2
vT v ≥ (v + ṽ)TDα(v + ṽ) = vTDαv + 2ṽTDαv + ṽTDαṽ = 1TD−1

α 1 + 2ṽT 1 + γ2dα(X1, X1) = γ − 2γ,

and using the fact that γ = 1TD−1
α 1 is positive, we get that 1 ≥ c̃

2
vT v
γ . However, this contradicts the assumption that

vT v
γ →∞ and hence we can conclude the proof.

D.2. Additional results
In this section, we present some additional results for different choices of the scaling. The results presented in this section
are straight forward but provide a more complete picture for different choices of the scaling τ . We use again the same
notation as used in Appendix C.1.
First, we show the case where τ → 0. We assume that k is the α-exponential kernel with α ∈ (0, 2], i.e. k(x, x′) =
exp(−‖x− x′‖α2 ).
Lemma D.2. Let PX satisfy Assumption B.1-B.2 and assume that the bandwidth τ/deff = O(n−θ) with θ > 0. Furthermore,
assume that the ground truth function f? is bounded. Then, conditioned on the event EX, for any λ ≥ 0, with probability
≥ 1− (n+ 1)2 exp(−C(log(n))1+ε) over the draws of X ∼ PX ,

EY f̂λ(X)→ 0 .
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Proof. Let τ̃ = τ/deff and define zi = xi/
√
deff and Z = X/

√
deff. Lemma C.1 shows that ‖zi − zj‖22 concentrates around

2(1 − δi,j). Hence, kτ (xi, xj) = exp(−τ̃−α/2‖zi − zj‖α2 ) → δi,j because τ̃ → 0. In fact, due to the assumption that
τ̃ = O(n−θ) with θ > 0, we can see that

||K − In||op ≤ n max
i 6=j
| exp(−nθα/2‖zi − zj‖α2 )| → 0 ,

and with probability ≥ 1− (n+ 1)2 exp(−C(log(n))1+ε) over the draws of X ,

‖kZ‖1 ≤ n max
i
| exp(−nθα/2‖zi − Z‖α2 )| → 0.

Hence, the result follows immediately from f̂λ(X) = yT (K + λI)−1kτ (X, X).

We can also show a similar result for the case where τ →∞ and λ does not vanish.
Lemma D.3. Let PX satisfy Assumption B.1-B.2 and assume that the bandwidth τ/deff = O(nθ) with θ > 2

α . Furthermore,
assume that λ = Ω(1) and that the ground truth function f? is bounded. Then, conditioned on the event EX, for any λ ≥ 0,
with probability ≥ 1− (n+ 1)2 exp(−C(log(n))1+ε) over the draws of X ∼ PX ,

EY f̂λ(X)→ c,

with c = f(X)T (11T + λIn)−11

Proof. We use the same notation as in Lemma D.3. Again due to Lemma C.1, we find that∣∣∣∣K − 11T
∣∣∣∣

op . n max
i 6=j
| exp(−n−θα/2‖zi − zj‖)− 1| → 0 .

As a result, we observe that the kernel matrix K converges asymptotically to the rank one matrix 11T . We remark that
such a phenomenon can also be observed in Theorem 2.1 and 2.2 in (El Karoui et al., 2010) when tr(Σd)/d → 0. As a
consequence, we observe that the eigenvalues of K−1 diverge as n→∞. However, because by assumption, λ = Ω(1), we
can still conclude that the eigenvalues of (K + λIn)−1 are upper bounded by a constant independent of n. Hence, with
probability ≥ 1− (n+ 1)2 exp(−C(log(n))1+ε) over the draws of X ∼ PX ,

‖(K + λIn)−1kZ − (11T + λIn)−11‖1 . n max
i
| exp(−n−θα/2c)− 1|

. n−θα/2+1 +O(n−θα+1)→ 0,

where we have used that θα/2 > 1.
The only thing left to show is that f(X)T (11T + λIn)−11 does not diverge. For this, let aIn + b11T be the inverse of
11T + λIn. As a result of a simple computation we find that a = λ(λ+1+(n−1))+(n−1)

λ(λ+1+(n−1)) and b = −1
λ(λ+1+(n−1)) . Hence,

‖(11T + λIn)−11‖1 = n|a+ (n− 1)b| =
√
n|λb| = n

(λ+ 1 + (n− 1))
→ 1,

which completes the proof.

E. Technical lemmas
E.1. Proof of Lemma C.1
We begin with the following Lemma which is a direct consequence of the results in Appendix A in (El Karoui et al., 2010).
Lemma E.1 (Concentration of quadratic forms). Suppose the vector x ∈ Rd, of some dimension d ∈ N+, is a random
vector with either

1. i.i.d entries x(i) almost surely bounded |x(i)| ≤ c by some constant c > 0 and with zero mean and unit variance.

2. standard normal distributed i.i.d entries.

Let M be any symmetric matrix with ||M ||op = 1 and let M = M+ −M− be the decomposition of M into two positive
semi-definite matrices M+ and M− with ||M+||op , ||M−||op ≤ 1. Then, there exists some positive constants C1, C2, C3

independent of M such that for any r > ζ = C1/ tr(M+),

P (|xTMx/ tr(M+)− tr(M)/ tr(M+)| > r) . exp(−C2 tr(M+)(r/2− ζ)2) + exp(−C3 tr(M+)).
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Case 1: Distribution PX ∈ Q Following the same argument as the one used in Corollary A.2 in (El Karoui et al., 2010),
we can use Lemma E.1 to show that there exists constants C2, C3 > 0 such that for n, deff →∞,

P (|xTi xj/ tr(Σd)− δi,j | > r) ≤ C3[exp(−C2 tr(Σd)(r/2− ζ)2) + exp(−C2 tr(Σd)].

We now make us of the Borel-Cantelli Lemma. For any ε > 0, let r(n) = 1√
2
n−β/2 (log(n))(1+ε)/2 and note that because

tr(Σd) � nβ , ζ decays at rate n−β and in particular, for any n sufficiently large, r(n)/2 > ζ → 0. Hence, we can see that
there exists some constant C > 0 such that for any n sufficiently large

P (|xTi xj/ tr(Σd)− δi,j | > r(n)) ≤ exp(−C (log(n))1+ε).

Next, using the union bound, we get

P (max
i,j
|xTi xj/ tr(Σd)− δi,j | > r(n)) ≤ n2 exp(−C (log(n))1+ε).

And because ε > 0, for any N ∈ N+, we have that
∞∑
n=N

n2 exp(−C (log(n))1+ε) <∞.

which allows us to apply the Borel-Cantelli Lemma. Hence,

max
i,j

∣∣xTi xj/ tr(Σd)− δi,j
∣∣ ≤ 1√

2
n−β/2(log(n))(1+ε)/2 a.s. as n→∞, (24)

which concludes the first step of the proof.
Next, we already know from the previous discussion that for any n sufficiently large,
P (EX) ≥ 1− n2 exp(−C (log(n))(1+ε)/2). Furthermore, because X is independently drawn from the same distribution as
xi, P (EX ∪ EX|X) ≥ 1− (n+ 1)2 exp(−C (log(n))(1+ε)/2). Hence, for any n sufficiently large,

P (EX,X |EX) =
P (EX ∪ EX|X)

P (EX)
≥
[
1− (n+ 1)2 exp(−C (log(n))(1+ε))

]
This completes the first case of the proof, i.e. where PX ∈ Q.

Case 2: Distribution PX ∈ QSd−1 First, note that the case where i = j is clear. Let si = xi
‖xi‖2 and zi = xi√

tr(Σd)
. Since

we are in the Euclidean space, the inner product is given by

(sTi sj)
2 =

(zTi zj)
2

‖zi‖22‖zj‖22
.

Due to Equation (24), we have that | ‖zi‖22 − 1| ≤ n−β/2(log(n))(1+ε)/2 a.s. as n→∞ and
(zTi zj)

2 ≤ (n−β/2(log(n))(1+ε)/2)2a.s. as n→∞. Therefore,

(sTi sj)
2 ≤ (n−β/2(log(n))(1+ε)/2)2 a.s. as n→∞.

The rest of the proof then follows straight forwardly.

Proof of Lemma E.1. Let

f : Rd → R, x→
√
xTM+x/ tr(M+) =

1√
tr(M+)

‖M1/2
+ x‖2.

We know that f is λmax(M+)/
√

tr(M+)-Lipschitz continuous and hence also a
√
||M ||op/

√
tr(M+)-Lipschitz continuous.

For the case where the entries x are bounded i.i.d. random variables, we can use the simple fact that the norm is convex in
order to apply Corollary 4.10 in (Ledoux, 2001) and Proposition 1.8 in in (Ledoux, 2001). For the case where the entries are
normally distributed we can apply Theorem V.I in (Milman and Schechtman, 1986). As a result, we can see that there exists
a constant C4 > 0 independent of M , such that

P

(∣∣∣∣√xTMx/ tr(M+)−
√

tr(M)/ tr(M+)

∣∣∣∣ > r

)
≤ 4 exp(4π) exp(−C4 tr(M+)r2).

The proof then follows straight forwardly following line by line the proof of Lemma A.2 in (El Karoui et al., 2010).
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E.2. Proof of Lemma C.6
For any j ≤ m+ 1, α = (i1, i2), let g(α)

j denote the partial derivatives g(α)
j (x, y) = ∂|α|

∂t
i1
1 t

i2
2

gj(t1, t2)|x,y . Define s = b2/βc
First of all, note that due to Lemma C.1, for any δ, δ′ > 0 and n sufficiently large, it holds that for any Z ∈ EZ|Z,

for all i 6= j : (zi, zj) ∈ N(δ, δ′),

for all i : (zi, Z) ∈ N(δ, δ′).

As a result, we can make use of Assumption C.1. The proof is separated into two steps where we separately show the two
statements in Lemma C.6.

Proof of the first statement We construct a polynomial p(Z) using the power series expansion of k from As-
sumption A.1 and in addition the Taylor series approximation of gl around the point (1, 1). For any n sufficiently large, we
can write

for all i k(zi, Z) =

s∑
l=0

(z>i Z)lgl(‖zi‖22, ‖zj‖22) + (z>i Z)s+1r(‖zi‖22, ‖Z‖22, z>i Z)

=

s∑
l=0

(z>i Z)l
∑

l1+l2≤s−l

g
(l1,l2)
l (1, 1)

l1!l2!
(z>i zi − 1)l1(Z>Z − 1)l2︸ ︷︷ ︸

=:(vZ)i

+

s∑
l=0

(z>i Z)l
∑

l1+l2=s+1−l

g
(l1,l2)
l (ηl,il1,l2)

l1!l2!
(z>i zi − 1)l1(Z>Z − 1)l2

+ (z>i Z)s+1r(‖zi‖22, ‖Z‖22, z>i Z).

(25)

where ηl,il1,l2 ∈ Br(1, 1) are points contained in the closed ball around the point (1, 1) with radius
r2 = (‖zi‖22 − 1)2 + (‖Z‖22 − 1)2 → 0. Hence, using the fact that gi is s+ 1− i-times continuously differentiable, we can
see that any ‖g(l1,l2)

l (ηl,il1,l2)‖ is almost surely upper bounded by some constant.
Let vZ be the vector defined in Equation (25) We define the polynomial p as

p(Z) := f?(X)>(K + λIn)−1vZ

Note that p is a linear combination of the terms (Z>Z)p1(z>i Z)p2 with p1 + p2 ≤ s, and hence a polynomial of Z of degree
at most 2s. If gl are constant, i.e. the kernel is an inner product kernel, vZ contains only the terms (z>i Z)l and hence p(Z)
is a polynomial of Z of degree at most s.
Next, because by assumption |f?| ≤ Cf? is bounded on the support of PX by some constant Cf? , all entries of f?(X) are
bounded, and hence,∣∣∣EY f̂λ(

√
τZ)− p(Z)

∣∣∣ =
∣∣f?(X)>(K + λIn)−1(kZ − vZ)

∣∣ ≤ Cf?‖(K + λIn)−1(kZ − vZ)‖1, (26)

where we have used that EY f̂λ(
√
τZ) = f?(X)>(K + λIn)−1kZ . Further, by assumption λmin(K + λIn) ≥ cmin > 0,

and hence,

‖(K + λIn)−1(kZ − vZ)‖1 ≤
√
n‖(K + λIn)−1(kZ − vZ)‖2 ≤

√
n

cmin
‖kZ − vZ‖2 ≤

n

cmin
max
i
|(vZ)i − (kZ)i|.

Equation (25) yields

nmax
i
|(vZ)i − (kZ)i| ≤ nmax

i

∣∣∣∣∣∣
s∑
q=0

(z>i Z)q
∑

l1+l2=s+1−q

g
(l1,l2)
q (ηq,il1,l2)

l1!l2!
(z>i zi − 1)l1(Z>Z − 1)l2

∣∣∣∣∣∣︸ ︷︷ ︸
=:Bi1

+ nmax
i 6=j

∣∣(z>i Z)s+1r(‖zi‖22, ‖Z‖22, z>i Z)
∣∣︸ ︷︷ ︸

=:Bi2

.
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In order to conclude the first step of the proof, we only need to show that both terms go to zero. First, we show that the term
nmax

i
Bi1 → 0. Recall that

∣∣∣g(l1,l2)
q (ηq,il1,l2)

∣∣∣ is upper bounded as n→∞ independent of i. Hence, we can apply Lemma

C.1 which shows that for any integers q, l1 and l2 such that q + l1 + l2 = s+ 1,∣∣(z>i zi − 1)l1(Z>Z − 1)l2(z>i Z)q
∣∣ . (n−β/2(log(n))(1+ε)/2)s+1

which holds true for any positive constant ε > 0. Finally, because s = b2/βc, (β/2)(s+ 1) > 1, and hence

nmax
i
Bi1 . n(n−β/2(log(n))(1+ε)/2)s+1 → 0.

Furthermore, because r is a continuous function and zi, Z are contained in a closed neighborhood around of (1, 1, 0),
r(‖zi‖, ‖Z‖, z>i Z) is upper bounded by some constant independent of i as n→∞. Therefore, we also have that

nmax
i
Bi2 . nmax

i

∣∣(z>i Z)q+1
∣∣ . n

(
n−β/2(log(n))(1+ε)/2

)s+1

→ 0,

where we have used again Lemma C.1. Hence, we can conclude the first step of the proof when observing that we have only
assumed that Z ∈ EZ|Z and hence the convergence is uniformly.

Proof of the second statement We can see from the definition of p and the subsequent discussion that∥∥∥p1Z∈Ec
Z|Z

∥∥∥
L2(PZ)

=
∥∥∥f?(X)>(K + λIn)−1vZ1Z∈Ec

Z|Z

∥∥∥
L2(PZ)

. n max
i

∥∥∥(vZ)i1Z∈Ec
Z|Z

∥∥∥
L2(PZ)

,

and furthermore,

max
i

∥∥∥(vZ)i1Z∈Ec
Z|Z

∥∥∥
L2(PZ)

.
∑

q+l1+l2≤s

∥∥∥(z>i Z)q(z>i zi − 1)l1(Z>Z − 1)l21Z∈Ec
Z|Z

∥∥∥
L2(PZ)

.

We can decompose for n sufficiently large,∥∥∥∥(z>i Z)q(‖zi‖22 − 1)l1
(
‖Z‖22 − 1

)l2
1Z∈Ec

Z|Z

∥∥∥∥
L2(PZ)

≤
∥∥∥∥((‖zi‖22 − 1) + 1)

q
2 ‖Z‖q2 (‖zi‖22 − 1)l1

(
‖Z‖2 − 1

)l2
1Z∈Ec

Z|Z

∥∥∥∥
L2(PZ)

.

∥∥∥∥‖Z‖q2 (‖Z‖22 − 1
)l2

1Z∈Ec
Z|Z

1‖Z‖22≤2

∥∥∥∥
L2(PZ)

+

∥∥∥∥‖Z‖q2 (‖Z‖22 − 1
)l2

1‖Z‖22>2

∥∥∥∥
L2(PZ)

,

where we have used Lemma C.1 in the second inequality. The first term vanishes trivially from the concentration inequality.
Indeed, for n sufficiently large, we have that∥∥∥∥‖Z‖q2 (‖Z‖22 − 1

)l2
1Z∈Ec

Z|Z
1{‖Z‖22≤2}

∥∥∥∥
L2(PZ)

. P (EcZ|Z|EZ) . (n+ 1)2 exp(−C(log(n))1+ε).

For the second term, note that we can see from the proof of Lemma E.1 that there exists some constant c > 0, such that for
n sufficiently large,

P
(
‖Z‖22 > r

)
≤ exp(−cnβr).

We can now apply integration by parts to show that∥∥∥∥‖Z‖q2 (‖Z‖22 − 1
)l2

1{‖Z‖22>2}

∥∥∥∥2

L2(PZ)

≤
∫
‖Z‖q+2l2

2 1{‖Z‖22>2}dP

.
[
rq+2l2P (‖Z‖22 > r)

]∞
2
−
∫ ∞

2

rq+2l2−1P
(
‖Z‖22 > r

)
dr . exp(−2cnβ)

Hence, combining these terms, we get the desired result

n max
i

∥∥∥(vZ)i1Z∈Ec
Z|Z

∥∥∥
L2(PZ)

. n(n+ 1)2 exp(−C(log(n))1+ε)→ 0 as n→∞. (27)
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E.3. Proof of Lemma C.7
As in (El Karoui et al., 2010), we separately analyze the off and on diagonal terms of K. Let A be the off-diagonal matrix of
K, with diagonal entries Ai,j = (1− δi,j)Ki,j and let D be the diagonal matrix of K with entries Di,j = δi,jKi,j . We have

for all i : Di,i := Ki,i = g(‖zi‖22, ‖zi‖22, z>i zi),
for all i 6= j : Ai,j := Ki,j = g(‖zi‖22, ‖zj‖22, z>i zj).

Similarily, decompose M into its off-diagonal, MA, and its diagonal MD. We have

||K −M ||op ≤ ||A−MA||op + ||D −MD||op (28)

We begin with the first term. Note that MA has off-diangoal entries (MA)i,j :=
∑m
q=0(z>i zj)

qgq(‖zi‖22, ‖zj‖22), and hence,

||MA −A||op ≤ ‖MA −A‖F ≤ nmax
i,j
|(MA)i,j −Ai,j | . nmax

i,j
|(z>j zj − 1)m+1| → 0,

where we have used the same argument as used in the proof of Lemma C.6 and the fact that the Assumptions A.1-A.3 imply
Assumption C.1, as shown in Lemma E.2.
Next, note that we can write

MD :=

[
g(1, 1, 1)−

m∑
q=0

gq(1, 1) +

m∑
q=0

‖zi‖2q2 gq(‖zi‖22, ‖zi‖22)

]
In

Because D −MD is a diagonal matrix, for n sufficiently large,

||D −MD||op = max
i

∣∣∣∣∣g(‖zi‖22, ‖zi‖22, z>i zi)− g(1, 1, 1) +

m∑
q=0

gq(1, 1) −
m∑
q=0

‖zi‖2q2 gq(‖zi‖22, ‖zi‖22)

∣∣∣∣∣
≤ δL

√
3(‖zi‖22 − 1)︸ ︷︷ ︸

T1

+

m∑
q=0

[‖zi‖2q2 − 1]gq(‖zi‖22, ‖zi‖22)︸ ︷︷ ︸
T2

+ [gq(‖zi‖22, ‖zi‖22)− gq(1, 1)]︸ ︷︷ ︸
T3

where we have used that by assumption g is δL-Lipschitz continuous on the restriction
{(x, x, x)|x ∈ [1− δL, 1 + δL]} ⊂ Ω for some δL > 0. Clearly T1 → 0 due to Lemma C.1. Furthermore, by Assumption
C.1, for any q ≤ m, gq is continuously differentiable and hence also Lipschitz continuous in a closed ball around (1, 1).
Thus, T3 → 0. Hence, it is only left to show that T2 → 0, which is a consequence of the following claim.

Claim: For any ε > 0 and any q > 0,

max
i

∣∣∣∣ (x>i xi)
q

(tr(Σd))q
− 1

∣∣∣∣ ≤ cq max[n−β/2(log(n))(1+ε)/2, n−qβ/2(log(n))q((1+ε)/2)]

where cq is a constant only depending on q.

Proof of the claim: In order to prove the claim, recall that due to Lemma C.1, for every q > 0

max
i

∣∣∣∣[ (x>i xi)

tr(Σd)
− 1

]q∣∣∣∣ ≤ (n−β/2(log(n))(1+ε)/2)q.

We prove the claim by induction. The case where q = 1 holds trivially with c1 = 1. For q > 1,

max
i

∣∣∣∣[ (x>i xi)

tr(Σd)
− 1

]q∣∣∣∣ = max
i

∣∣∣∣∣∣ (x>i xi)
q

(tr(Σd))q
+

q∑
j=1

(−1)j
(
q

j

)(
x>i xi

tr(Σd)

)q−j∣∣∣∣∣∣ ≤ (n−β/2(log(n))(1+ε)/2)q.
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Next, by induction, max
i

∣∣∣ (x>i xi)
j

(tr(Σd))j − 1
∣∣∣ ≤ c1 max

[
n−β/2(log(n))(1+ε)/2, n−jβ/2(log(n))j((1+ε)/2)

]
for any j < q.

Furthermore,
∑q
j=1(−1)j

(
q
j

)
= −1. Hence,

max
i

∣∣∣∣ (x>i xi)
j

(tr(Σd))q
− 1

∣∣∣∣ = max
i

∣∣∣∣∣∣ (x>i xi)
q

(tr(Σd))q
+

q∑
j=1

(−1)j
(
q

j

)(
(x>i xi)

q

(tr(Σd))q

)q−j∣∣∣∣∣∣
= max

i

∣∣∣∣∣∣ (x>i xi)
q

(tr(Σd))q
+

q∑
j=1

(−1)j
(
q

j

)( (x>i xi)
q

(tr(Σd))q

)q−j
− 1

+

q∑
j=1

(−1)j
(
q

j

)∣∣∣∣∣∣
≥ max

i

∣∣∣∣ (x>i xi)
q

(tr(Σd))q
− 1

∣∣∣∣− q∑
j=1

(
q

j

)
cj max

[
n−β/2(log(n))(1+ε)/2, n−jβ/2(log(n))j((1+ε)/2)

]
.

As a result, we have

max
i

∣∣∣∣ (x>i xi)
q

(tr(Σd))q
− 1

∣∣∣∣ ≤ (n−β/2(log(n))(1+ε)/2)q+

q∑
j=1

(
q

j

)
cj max

[
n−β/2(log(n))(1+ε)/2, n−jβ/2(log(n))j((1+ε)/2)

]
,

which completes the induction and thus the proof

E.4. Proof of Lemma C.8
We use the well known formula

tα = cα

∫ ∞
0

(1− e−t
2x2

)x−1−α dx

with

cα :=

(∫ ∞
0

(1− e−x
2

)x−1−α dx

)−1

> 0,

which holds for all t ≥ 0. Hence, for t := ‖zi − zj‖α2 > 0, we can write

‖zi − zj‖α2 = cα

∫ ∞
0

(1− e−x
2‖zi−zj‖22)x−1−α dx.

We first study µ ∈ Rn with
∑

16i6n µi = 0. We have

µ>Dαµ =
∑

16i,j6n

‖zi − zj‖α2µiµj =
∑

16i,j6n

µiµjcα

∫ ∞
0

(1− e−x
2‖zi−zj‖22)x−1−α dx

= −cα
∫ ∞

0

x−1−α
∑

16i,j6n

µiµje
−x2‖zi−zj‖22 dx.

Next, note that the Gaussian kernel satisfies Assumptions A.1-A.3 since
exp(−‖x− x′‖22) =

∑∞
j=0

2j

j! (x>x′)j exp(−‖x‖22 − ‖x′‖22). Hence, we can conclude from Proposition C.3 that for every

x ∈ R+ there exists a constant cG,x, such that
∑

16i,j6n µiµje
−x2‖zi−zj‖22 ≥ ‖µ‖22cG,x > 0 almost surely as n → ∞.

Thus, we can conclude that there exists a constant c̃ > 0 independent of n, such that

µ>Dαµ ≤ −c̃‖µ‖22 a.s. as n→∞. (29)

Because the nullspace of the vector 1 spans a n−1 dimensional subspace, we can apply the Courant–Fischer–Weyl min-max
principle from which we can see that the second largest eigenvalue of the matrix Dα satisfies λ2 ≤ −c̃ almost surely as
n → ∞. Since the sum of the eigenvalues

∑n
i=1 λi = tr(Dα) = 0, λ1 > (n − 1)c̃ almost surely as n → ∞, which

concludes the proof.



How rotational invariance of common kernels prevents generalization in high dimensions

E.5. Proof of Lemma C.10
We start the proof with a discussion of existing results in the literature. As shown in Appendix E.1 in (Arora et al., 2019),
the homogeneity of σ allows us to write

Σ(i)(x, x′) = cσ

(
Σ(i−1)(x, x)Σ(i−1)(x′, x′)

)k/2
tσ

(
Σ(i−1)(x, x′)√

Σ(i−1)(x, x)Σ(i−1)(x′, x′)

)
, (30)

with

tσ(ρ) = E
(u,v)∼N (0,Λ̃(ρ))

[σ(u)σ(v)]

and Λ̃(ρ) =

(
1 ρ
ρ 1

)
. Furthermore, because σ̇ is a k − 1-homogeneous, we can analogously write

Σ̇(i) = cσ̇

(
Σ(i−1)(x, x)Σ(i−1)(x′, x′)

)(k−1)/2

tσ̇

(
Σ(i−1)(x, x′)√

Σ(i−1)(x, x)Σ(i−1)(x′, x′)

)
,

with tσ̇(ρ) = E
(u,v)∼N (0,Λ̃(ρ))

[σ̇(u)σ̇(v)]. The function tσ is called the dual of the activation function (Definition 4 in

(Daniely et al., 2016)). In particular, since by assumption σ and σ̇ have a Hermite polynomial extension, Lemma 11 in
(Daniely et al., 2016) provides some useful properties which hold for both tσ and tσ̇ . We only state them for tσ:

1. Let ai ∈ R be the coefficients of the Hermite polynomial extension of σ, then tσ(ρ) =
∑∞
i=0 a

2
i ρ
i

2. The function tσ is continuous in [−1, 1] and smooth in (−1, 1)

3. The image of tσ is [−γ, γ] with γ = E
v∼N (0,1)

[
σ(v)2

]
= 1/cσ

4. We have that tσ(1) = E
v∼N (0,1)

[
σ(v)2

]
= c−1

σ

Based on this discussion, we now prove the lemma. In a first step, we derive a closed form expression for Σ(i)(x, x). Based
on the discussion above and particularly Equation (30) we can see that

Σ(i)(x, x) =
(

Σ(i−1)(x, x)
)k
,

and by induction, we get that

Σ(i)(x, x) = (x>x)k
i

. (31)

Therefore, Equation (30) becomes

Σ(i)(x, x′) = cσ(x>x)
ki

2 (x′>x′)
ki

2 tσ

(
Σ(i−1)(x, x′)

(x>x)
ki−1

2 (x′>x′)
ki−1

2

)
.

The goal is now to show that whenever x, x′ 6= 0, Σ(i)(x, x′) can be expressed as a sum of the form

Σ(i)(x, x′) =

∞∑
j=0

(x>x′)j
∞∑

l=−∞

η
(i)
j,l (||x||

2
2||x′||22)l/2 (32)

with η(i)
j,l ≥ 0. We prove by induction. In a first step, note that the case where i = 0 holds trivially true. Next, assume that

Equation (32) holds true for Σ(i−1). Due to the above discussion, tσ can be expressed as a Taylor series around 0 with
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positive coefficients a2
i . Thus,

Σ(i)(x, x′) = cσ(x>x)
ki

2 (x′>x′)
ki

2

∞∑
m=0

a2
m

(
Σ(i−1)(x, x′)

(||x||22||x′||22)
ki−1

2

)m

= cσ(||x||22)
ki

2 (||x′||22)
ki

2

∞∑
m=0

a2
m

(∑∞
j=0(x>x′)j

∑∞
l=−∞ η

(i−1)
j,l (||x||22||x′||22)l/2

(||x||22||x′||22)
ki−1

2

)m

= cσ(||x||22)
ki

2 (||x′||22)
ki

2

∞∑
m=0

a2
m

 ∞∑
j=0

(x>x′)j
∞∑

l=−∞

η
(i−1)
j,l (||x||22||x′||22)l/2−k

i−1/2

m

=

∞∑
j=0

(x>x′)j
∞∑

l=−∞

η
(i)
j,l (||x||

2
2||x′||22)l/2.

In order to guarantee that the last equation holds true, we need to show that the above multi-sum converges absolutely. To
see this, first of all note that η(i)

j,l ≥ 0 because by assumption η(i−1)
j,l ≥ 0. Furthermore, given that d > 1, for any x, x′ we

can find x̃, x̃′ such that ||x||22 = ||x̃||22, ||x′||22 = ||x̃′||22 and x̃>x̃′ = |x>x′|. Hence, the above multi-sum only consists of
positive coefficients when evaluating at x̃, x̃′ and thus converges absolutely which completes the induction.
Next, note that any of the properties 1-4 from the above discussion also hold true for tσ̇ . Therefore, we can use exactly the
same argument for Σ̇(i) to show that for any x, x′ 6= 0,

Σ̇(i)(x, x′) =

∞∑
j=0

(x>x′)j
∞∑

l=−∞

η̇
(i)
j,l (||x||

2
2||x′||22)l/2.

with η̇(i+1)
j,l ≥ 0. Finally, we can conclude the proof because

kNTK(x, x′) :=

L+1∑
i=1

Σ(i−1)(x, x′)

L+1∏
j=i

Σ̇(j)(x, x′)

and when using the same argument as used in the induction step above to show that the resulting multi-sum converges
absolutely.

E.6. Additional lemmas
Lemma E.2. Any kernel which satisfies Assumption A.1 and A.3 also satisfies Assumption C.1.

Proof. The only point which does not follow immediately is to show that r is a continuous function. For this, write g as a
function of the variables x, y, z, i.e.

g(x, y, z) =

∞∑
j=0

gj(x, y)zj .

For every x, y, define the function gx,y(z) = g(x, y, z). Due to the series expansion, we can make use of the theory on the
Taylor expansion which implies that for any x, y, gx,y is a smooth function in the interior of N(δ) (using the definition from
Assumption A.1). Hence, we can conclude that there exists a function rx,y such that

gx,y(z) =

m∑
j=0

gj(x, y)zj + (z)m+1rx,y(z)

In particular, the smoothness of gx,y(z) implies that rx,y is continuous in the interior of {z : (x, y, z) ∈ N(δ)}. Next, define
r(x, y, z) = rx,y(z) and note that that the continuity of g implies that r is continuous everywhere except for the plane z = 0.
Finally, because rx,y(0) exists point wise, we conclude that r exists and is a continuous function in the interior of N(δ).

Lemma E.3. Any RBF kernel k(x, x′) = h(‖x− x′‖22) with h locally analytic around 2 satisfies Assumption C.1.
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Proof. Because by assumption h has a local Taylor series around 2, we can write

h(‖x− x′‖22) =

∞∑
j=0

hj (‖x− x′‖22 − 2)j ,

which converges absolutely for any
∣∣‖x− x′‖22 − 2

∣∣ ≤ δ̃ where δ̃ > 0 is the convergence radius of the Taylor series
approximation. Next, using ‖x − x′‖22 − 2 = ‖x‖22 − 1 + ‖x′‖22 − 1 − 2x>x′, we can make use of the Binomial series,
which gives

h(‖x− x′‖22) =

∞∑
j=0

hj

j∑
i=0

i∑
l=0

(
j

i

)(
i

l

)
(‖x‖22 − 1)l(‖x′‖22 − 1)i−l(−2x>x′)j−i. (33)

The goal is now to show that this multi series converges absolutely. Whenever d > 1, we can choose x̃, x̃′ from the set of
convergent points such that ‖x̃‖22 − 1 > 0 , ‖x̃′‖22 − 1 > 0 and x̃>x̃′ < 0. As a result, we can see that for any j, the sum

j∑
i=0

i∑
l=0

(
j

i

)(
i

l

)
(‖x̃‖22 − 1)l(‖x̃′‖22 − 1)i−l(−2x̃>x̃′)j−i

is a sum of non negative summands. Hence, we get that the sum

∞∑
j=0

j∑
i=0

i∑
l=0

hj

(
j

i

)(
i

l

)
(‖x̃‖22 − 1)l(‖x̃′‖22 − 1)i−l(−2x̃>x̃′)j−i

converges absolutely. Thus, we can arbitrarily reorder the summands:

h(‖x̃− x̃′‖22) =

∞∑
j=0

(x̃>x̃′)j
∞∑
i=j

i−j∑
l=0

hi(−2)j
(
i

j

)(
i− j
l

)
(‖x̃‖22 − 1)l(‖x̃′‖22 − 1)i−l−j

=:

∞∑
j=0

(x̃>x̃′)jgj(‖x̃‖22, ‖x̃′‖22)

(34)

In particular, we obtain that the sum from Equation (34) converges absolutely for any x, x′ with
‖x̃‖22 − 1 >

∣∣‖x‖22 − 1
∣∣ , ‖x̃′‖22 − 1 >

∣∣‖x′‖22 − 1
∣∣ and −x̃>x̃′ >

∣∣x>x′∣∣. In fact, we can always find δ, δ′ > 0 such that
any (x, x′) ∈ Rd × Rd, with (‖x‖22, ‖x′‖22) ∈ [1− δ, 1 + δ]× [1− δ, 1 + δ] and x>x′ ∈ [−δ′, δ′] satisfies these constraints
and hence the sum from Equation (33) converges absolutely. We can then conclude the proof when noting that the functions
gi are implicitly defined using the Taylor series expansion. Therefore, we can conclude that gi are smooth functions in a
neighborhood of (1, 1). The rest of the proof follows then trivially.
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