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Abstract
This work introduces Bilinear Classes, a new
structural framework, which permit generaliza-
tion in reinforcement learning in a wide variety
of settings through the use of function approxi-
mation. The framework incorporates nearly all
existing models in which a polynomial sample
complexity is achievable, and, notably, also in-
cludes new models, such as the Linear Q∗/V ∗

model in which both the optimal Q-function and
the optimal V -function are linear in some known
feature space. Our main result provides an RL
algorithm which has polynomial sample complex-
ity for Bilinear Classes; notably, this sample com-
plexity is stated in terms of a reduction to the
generalization error of an underlying supervised
learning sub-problem. These bounds nearly match
the best known sample complexity bounds for
existing models. Furthermore, this framework
also extends to the infinite dimensional (RKHS)
setting: for the the Linear Q∗/V ∗ model, linear
MDPs, and linear mixture MDPs, we provide sam-
ple complexities that have no explicit dependence
on the explicit feature dimension (which could be
infinite), but instead depends only on information
theoretic quantities.

1. Introduction
Tackling large state-action spaces is a central challenge in
reinforcement learning (RL). Here, function approximation
and supervised learning schemes are often employed for
generalization across large state-action spaces. While there
have been a number of successful applications (Mnih et al.,
2013; Kober et al., 2013; Silver et al., 2017; Wu et al., 2017).
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there is also a realization that practical RL approaches are
quite sample inefficient.

Theoretically, there is a growing body of results show-
ing how sample efficiency is possible in RL for particular
model classes (often with restrictions on the model dynam-
ics though in some cases on the class of value functions),
e.g. State Aggregation (Li, 2009; Dong et al., 2020), Lin-
ear MDPs (Yang and Wang, 2019; Jin et al., 2020), Linear
Mixture MDPs (Modi et al., 2020a; Ayoub et al., 2020), Re-
active POMDPs (Krishnamurthy et al., 2016), Block MDPs
(Du et al., 2019a), FLAMBE (Agarwal et al., 2020b), Reac-
tive PSRs (Littman et al., 2001), Linear Bellman Complete
(Munos, 2005; Zanette et al., 2020).

More generally, there are also a few lines of work which
propose more general frameworks, consisting of structural
conditions which permit sample efficient RL; these include
the low-rankness structure (e.g. the Bellman rank (Jiang
et al., 2017) and Witness rank (Sun et al., 2019)) or under
a complete condition (Munos, 2005; Zanette et al., 2020).
The goal in these latter works is to develop a unified theory
of generalization in RL, analogous to more classical notions
of statistical complexity (e.g. VC-theory and Rademacher
complexity) relevant for supervised learning. These latter
frameworks are not contained in each other (see Table 1),
and, furthermore, there are a number of natural RL models
that cannot be incorporated into each of these frameworks
(see Table 2).

Motivated by this latter line of work, we aim to understand
if there are simple and natural structural conditions which
capture the learnability in a general class of RL models.

Our Contributions. This work1 provides a simple struc-
tural condition on the hypothesis class (which may be either
model-based or value-based), where the Bellman error has a
particular bilinear form, under which sample efficient learn-
ing is possible; we refer such a framework as a Bilinear
Class. This structural assumption can be seen as generaliz-
ing the Bellman rank (Jiang et al., 2017); furthermore, it not
only contains existing frameworks, it also covers a number

1Full version appears as [arXiv:2103.10897].
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Framework B-Rank B-Complete W-Rank Bilinear Class (this work)
B-Rank X 7 X X

B-Complete 7 X 7 X
W-Rank 7 7 X X

Bilinear Class (this work) 7 7 7 X

Table 1. Relations between frameworks. X: the column framework contains the row framework. 7: the column framework does not
contains the row framework. B-Rank: Bellman Rank (Jiang et al., 2017), which is defined in terms of the roll-in distribution and
the function approximation class for Q∗. B-Complete: Bellman Complete (Munos, 2005) (Zanette et al. (2020) proposed a sample
efficient algorithm), which assumes the function class is closed under the Bellman operator. W-Rank: Witness Rank (Sun et al., 2019): a
model-based analogue of Bellman Rank. Bilinear Class: our proposed framework.

B-Rank B-Complete W-Rank Bilinear Class (this work)
Tabular MDP X X X X

Reactive POMDP (Krishnamurthy et al., 2016) X 7 X X
Block MDP (Du et al., 2019a) X 7 X X

Flambe / Feature Selection (Agarwal et al., 2020b) X 7 X X
Reactive PSR (Littman and Sutton, 2002) X 7 X X
Linear Bellman Complete (Munos, 2005) 7 X 7 X

Linear MDPs (Yang and Wang, 2019; Jin et al., 2020) X! X X! X
Linear Mixture Model (Modi et al., 2020b) 7 7 7 X

Linear Quadratic Regulator 7 X 7 X
Kernelized Nonlinear Regulator (Kakade et al., 2020) 7 7 X X

Factored MDP (Kearns and Koller, 1999) 7 7 7 X
Q? “irrelevant” State Aggregation (Li, 2009) X 7 7 X

Linear Q?/V ? (this work) 7 7 7 X
RKHS Linear MDP (this work) 7 7 7 X

RKHS Linear Mixture MDP (this work) 7 7 7 X
Low Occupancy Complexity (this work) 7 7 7 X

Q? State-action Aggregation (Dong et al., 2020) 7 7 7 7

Deterministic linear Q? (Wen and Van Roy, 2013) 7 7 7 7

Linear Q? (Weisz et al., 2020) Sample efficiency is not possible

Table 2. Whether a framework includes a model that permits a sample efficient algorithm. Xmeans the framework includes the model,
7 means not, and X! means the sample complexity using that framework needs to scale with the number of action (which is not necessary).
“Sample efficient is not possible” means the sample complexity needs to scale exponentially with at least one problem parameter. See
Section 3.3, Appendix A and full version of the paper (link) for detailed descriptions of the models.

of new settings that are not easily incorporated in previous
frameworks (see Tables 1 and 2).

Our main result presents an optimization-based algorithm,
BiLin-UCB, which provably enjoys a polynomial sample
complexity guarantee for Bilinear Classes (cf. Theorem 4.2).
Although our framework is more general than existing ones,
our proof is substantially simpler – we give a unified analysis
based on the elliptical potential lemma, developed for the
theory of linear bandits (Dani et al., 2008; Srinivas et al.,
2009).

Furthermore, as a point of emphasis, our results are non-
parametric in nature (stated in terms of an information gain
quantity (Srinivas et al., 2009)), as opposed to finite dimen-
sional as in prior work. From a technical point of view, it
is not evident how to extend prior approaches to this non-
parametric setting. Notably, the non-parametric regime is
particularly relevant to RL due to that, in RL, performance
bounds do not degrade gracefully with approximation error
or model mis-specification (e.g. see Du et al. (2020a) for dis-

cussion of these issues); the relevance of the non-parametric
regime is that it may provide additional flexibility to avoid
the catastrophic quality degradation due to approximation
error or model mis-specification.

A few further notable contributions are:

• Definition of Bilinear Class: Our key conceptual con-
tribution is the definition of the Bilinear Class, which
isolates two key critical properties. The first property
is that the Bellman error can be upper bounded by a
bilinear form depending on the hypothesis. The second
property is that the corresponding bilinear form for all
hypothesis in the hypothesis class can be estimated
with the same dataset. Analogous to supervised learn-
ing, this allows for efficient data reuse to estimate the
Bellman error for all hypothesis simultaneously and
eliminate those with high error.

• A reduction to supervised learning: One appealing
aspect of this framework is that the our main sample
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complexity result for RL is quantified via a reduction
to the generalization error of a supervised learning
problem, where we have a far better understanding of
the latter. This is particularly important due to that we
make no explicit assumptions on the hypothesis class
H itself, thus allowing for neural hypothesis classes
in some cases (the Bilinear Class posits an implicit
relationship betweenH and the underlying MDPM).

• New models: We show our Bilinear Class framework
incorporates new natural models, that are not eas-
ily incorporated into existing frameworks, e.g. lin-
ear Q∗/V ∗, Low Occupancy Complexity, along with
(infinite-dimensional) RKHS versions of linear MDPs
and linear mixture MDPs. The linear Q∗/V ∗ result
is particularly notable due to a recent and remarkable
lower bound which showed that if we only assume Q∗

is linear in some given set of features, then sample effi-
cient learning is information theoretically not possible
(Weisz et al., 2020). In perhaps a surprising contrast,
our works shows that if we assume that both Q? and
V ? are linear in some given features then sample effi-
cient learning is in fact possible.

• Non-parametric rates: Our work is applicable to the
non-parametric setting, where we develop new analy-
sis tools to handle a number of technical challenges.
This is notable as non-parametric rates for RL are few
and far between. Our results are stated in terms of
the critical information gain which can viewed as an
analogous quantity to the critical radius, a quantity
which is used to obtain sharp rates in non-parametric
statistical settings (Wainwright, 2019).

Organization Section 2 introduce some technical back-
ground and notation. Section 3 introduces our Bilinear Class
framework, where we instantiate it on the several RL mod-
els, and Section 4 describes our algorithm and provides our
main theoretical results.

2. Setting
We denote an episodic finite horizon, non-stationary MDP
with horizon H , by M =

{
S,A, r,H, {Ph}H−1

h=0 , s0

}
,

where S is the state space, A is the action space, r :
S ×A 7→ [0, 1] is the expected reward function with the cor-
responding random variable R(s, a), Ph : S ×A 7→ 4(S)
(where4(S) denotes the probability simplex over S) is the
transition kernel for all h, H ∈ Z+ is the planning horizon
and s0 is a fixed initial state2. For ease of exposition, we
use the notation oh for “observed transition info at timestep
h” i.e. oh = (rh, sh, ah, sh+1) where rh is the observed
reward rh = R(sh, ah) and sh, ah, sh+1 is the observed

2Our results generalizes to any fixed initial state distribution

state transition at timestep h.

A deterministic, stationary policy π : S 7→ A specifies a
decision-making strategy in which the agent chooses actions
adaptively based on the current state, i.e. ah ∼ π(sh). We
denote a non-stationary policy π = {π0, . . . , πH−1} as a
sequence of stationary policies where πh : S 7→ A.

Given a policy π and a state-action pair (s, a) ∈ S ×A, the
Q-function at time step h is defined as

Qπh(s, a) = E

[
H−1∑
h′=h

R(sh′ , ah′) | sh = s, ah = a, π

]
,

and, similarly, a value function time step h of a given state
s under a policy π is defined as

V πh (s) = E

[
H−1∑
h′=h

R(sh′ , ah′) | sh = s, π

]
,

where both expectations are with respect to
s0, a0, . . . sH−1, aH−1 ∼ dπ. We use Q?h and V ?h to
denote the Q and V -functions of the optimal policy.

Sample Efficient Algorithms. Throughout the paper, we
will consider an algorithm as sample-efficient, if it uses
number of trajectories polynomial in the problem horizon
H , inherent dimension d, accuracy parameter 1/ε and poly-
logarithmic in the number of candidate value-functions.

Notation. For any two vectors x, y, we denote [x, y] as the
vector that concatenates x, y, i.e., [x, y] := [x>, y>]>. For
any set S, we write4(S) to denote the probability simplex.
We often use U(S) as the uniform distribution over set S.
We will let V denote a Hilbert space (which we assume is
either finite dimensional or separable).

We let [H] denote the set {0, . . . H − 1}. We slightly
abuse notation (overloading dπ with its marginal distribu-
tions), where sh ∼ dπ, (sh, ah) ∼ dπ, (rh, sh, ah, sh+1) ∼
dπ and most frequently oh ∼ dπ denotes the marginal
distributions at timestep h. We also use the shorthand
notation s0, a0, . . . sH−1, aH−1 ∼ π, sh, ah ∼ π for
s0, a0, . . . sH−1, aH−1 ∼ dπ , sh, ah ∼ dπ .

3. Bilinear Classes
Before, we define our structural framework – Bilinear Class,
we first define our hypothesis class.

Hypothesis Classes. We assume access to a hypothesis
classH = H0× . . .×HH−1, which can be abstract sets that
permit for both model-based and value-based hypotheses.
The only restriction we make is that for all f ∈ H, we have
an associated state-action value function Qh,f and a value
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function Vh,f . Furthermore, we assume the hypothesis
class is constrained so that Vh,f (s) = maxaQh,f (s, a) for
all f ∈ H, h ∈ [H], and s ∈ S, which is always possible
as we can remove hypothesis for which this is not true.
We let πh,f be the greedy policy with respect to Qh,f , i.e.,
πh,f (s) = argmaxa∈AQh,f (s, a), and πf as the sequence
of time-dependent policies {πh,f}H−1

h=0 .

3.1. Warmup: Bellman rank, the Q and V versions.

As a motivation for our structural framework, we next dis-
cuss Bellman rank framework considered in (Jiang et al.,
2017). In this case, the hypothesis class Hh contains Q
value functions, i.e.,

Hh ⊂ {Qh | Qh is a function from S ×A 7→ [0, H]} .

In this case, for any hypothesis f :=
(Q0, Q1, . . . , QH−1) ∈ H, we take the associated
state-action value function Qh,f = Qh and the associated
state value Vh,f function to be greedy with respect to the
Qh,f function i.e. Vh,f (·) = maxa∈AQh,f (·, a).

Definition 3.1 (V -Bellman Rank). A MDP has a V -
Bellman rank of dimension d if for all h ∈ [H], there exist
functions Wh : H → Rd and Xh : H → Rd, such that for
all f, g ∈ H:

E
[
Vh,g(sh)− r(sh, ah)− Vh+1,g(sh+1)

]
= 〈Wh(g)−Wh(f?), Xh(f)〉.

where a0:h−1 ∼ dπf , ah = πg(sh) and sh+1 ∼ P (sh, ah)

Even though (Jiang et al., 2017) only considered V -Bellman
Rank, as a natural extension of this definition, we can also
consider the Q-Bellman Rank.

Definition 3.2 (Q-Bellman Rank). For a given MDP M,
we say that our state-action value hypothesis class H has
a Q-Bellman rank of dimension d if for all h ∈ [H], there
exist functions Wh : H → Rd and Xh : H → Rd, such that
for all f, g ∈ H

E
[
Qh,g(sh, ah)− r(sh, ah)− Vh+1,g(sh+1)

]
= 〈Wh(g)−Wh(f?), Xh(f)〉.

where a0:h ∼ dπf and sh+1 ∼ P (sh, ah)

Let us interpret how the two definitions differ in the usage
of functions Vh,f vs Qh,f (along with the usage of the “esti-
mation” policies a0:h ∼ πf vs a0:h−1 ∼ πf and ah ∼ πg).
Recall that the Bellman equations can be written in terms
of the value functions or the state-action values; here, the
intuition is that the former definition corresponds to enforc-
ing Bellman consistency of the value functions while the

latter definition corresponds to enforcing Bellman consis-
tency of the state-action value functions. Our more general
structural framework, Bilinear Classes, will cover both these
definitions for infinite dimensional hypothesis class (note
that (Jiang et al., 2017) only considered finite dimensional
hypothesis class).

3.2. Bilinear Classes

We now introduce a new structural framework – the Bilinear
Class.

Realizability. We say that H is realizable for an MDP
M if, for all h ∈ [H], there exists a hypothesis f? ∈ H
such that Q?h(s, a) = Qh,f?(s, a), where Q?h is the optimal
state-action value at time step h in the ground truth MDP
M. For instance, for the model-based perspective, the real-
izability assumption is implied if the ground truth transition
P belongs to our hypothesis classH.

Now we are ready to introduce the Bilinear Class.

Definition 3.3 (Bilinear Class). Consider an MDPM, a
hypothesis classH, a discrepancy function `f : (R× S ×
A × S) × H → R (defined for each f ∈ H), and a set
of estimation policies Πest = {πest(f) : f ∈ H}. We
say (H, `f ,Πest,M) is (implicitly) a Bilinear Class ifH is
realizable inM and if there exist functions Wh : H → V
and Xh : H → V for some Hilbert space V , such that the
following two properties hold for all f ∈ H and h ∈ [H]:

1. We have:∣∣Ea0:h∼πf [Qh,f (sh, ah)− r(sh, ah)− Vh+1,f (sh+1)
]∣∣

≤ |〈Wh(f)−Wh(f?), Xh(f)〉| (1)

2. The policy πest(f) and discrepancy measure `f (oh, g)
can be used for estimation in the following sense: for
any g ∈ H, we have that (here oh = (rh, sh, ah, sh+1)
is the “observed transition info”)∣∣Ea0:h−1∼πfEah∼πest(f)

[
`f (oh, g)

]∣∣
= |〈Wh(g)−Wh(f?), Xh(f)〉| . (2)

Typically, πest(f) will be either the uniform distribution
on A or πf itself; in the latter case, we refer to the
estimation strategy as being on-policy.

We also define Xh := {Xh(f) : f ∈ H} and X := {Xh :
h ∈ [H]}.

We emphasize the above definition only assumes the ex-
istence of W and X functions. Particularly, our algo-
rithm only uses the discrepancy function `f , and does
not need to know W or X . A typical example of dis-
crepancy function `f (oh, g) would be the bellman error
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Qh,g(sh, ah) − rh − Vh+1,g(sh+1), but we would often
need to use a different discrepancy function see for e.g.
Linear Mixture Models (Section 3.3.1).

We now provide some intuition for definition of Bi-
linear Class. The first part of the definition (Equa-
tion (1)) basically relates the Bellman error for hypoth-
esis f (and hence sub-optimality) to the sum of bilinear
forms |〈Wh(f)−Wh(f?), Xh(f)〉| (see for example proof
of Lemma C.5). Crucially, the second part of the definition
(Equation (2)), allows us to “reuse” data from hypothesis f
to estimate the bilinear form |〈Wh(g)−Wh(f?), Xh(f)〉|
for all hypothesis g in our hypothesis class! This is rem-
iniscent of uniform convergence guarantees in supervised
learning, where data can be reused to simultaneously esti-
mate the loss for all hypothesis and eliminate those with
high loss.

3.2.1. FINITE BELLMAN RANK =⇒ BILINEAR CLASS

Here we show our framework naturally generalizes the Bell-
man rank framework (Section 3.1). For Q-bellman rank
case, we define the discrepancy function `f for observed
transition info oh = (rh, sh, ah, sh+1) as:

`f (oh, g) = Qh,g(sh, ah)− rh − Vh+1,g(sh+1).

Lemma 3.1 (Finite Q-Bellman Rank =⇒ Bilinear
Class). For given MDPM, suppose our hypothesis classH
has a Q-Bellman rank of dimension d. Then, for on-policy
estimation policies πest = πf , and the discrepancy function
`f defined above, (H, `f ,Πest,M) is (implicitly) a Bilinear
Class.

In the V -Bellman rank setting, we define the discrep-
ancy function `f (oh, g) for observed transition info oh =
(rh, sh, ah, sh+1) as:

1{ah = πg(sh)}
1/|A|

(Vh,g(sh)− rh − Vh+1,g(sh+1)) .

Lemma 3.2 (Finite V -Bellman Rank =⇒ Bilinear
Class). For given MDPM, suppose our hypothesis class
H has a V -Bellman rank of dimension d. Then, for uni-
form estimation policies πest = U(A), and the discrepancy
function `f defined above, (H, `f ,Πest,M) is (implicitly)
a Bilinear Class.

3.3. Examples

We now provide examples of Bilinear Classes: two known
models (Linear Bellman Complete and Linear Mixture Mod-
els) and two new models that we propose (Linear Q?/V ?

and Low Occupancy Complexity). We return to these ex-
amples to give non-parametric sample complexities in Sec-
tion 4.2.

3.3.1. LINEAR MIXTURE MDP.

First, we show our definition naturally captures model-based
hypothesis class.

Definition 3.4 (Linear Mixture Model). We say that a
MDPM is a Linear Mixture Model if there exists (known)
features φ : S × A × S 7→ V and ψ : S × A 7→ V; and
(unknown) θ? ∈ V for some Hilbert space V such that for
all h ∈ [H] and (s, a, s′) ∈ S ×A× S

Ph(s′ | s, a) = 〈θ?h, φ(s, a, s′)〉 and r(s, a) = 〈θ?h, ψ(s, a)〉.

We denote hypothesis in our hypothesis class H as tuples
(θ0, . . . θH−1), where θh ∈ V . Recall that given a model
f ∈ H (i.e. f is the time-dependent transitions, i.e., fh : S×
A 7→ ∆(S)), we denote Vh,f as the optimal value function
under model f and corresponding reward function (in this
case defined by ψ). Specifically, for any hypothesis g =
{θ0, . . . , θH−1} ∈ H, Vh,g and Qh,g satisfy the following
Bellman optimality equation:

Qh,g(sh, ah) = θ>h

(
ψ(sh, ah) +

∑
s̄∈S

φ(sh, ah, s̄)Vh+1,g(s̄)

)
Note that in this example, discrepancy function will explic-
itly depend on f . For hypothesis g = {θ0, . . . , θH−1} ∈ H
and observed transition info oh = (rh, sh, ah, sh+1), we
define

`f (oh, g) = θ>h

(
ψ(sh, ah) +

∑
s̄∈S

φ(sh, ah, s̄)Vh+1,f (s̄)

)
−
(
Vh+1,f (sh+1) + rh

)
.

Lemma 3.3 (Linear Mixture Model =⇒ Bilinear
Class). Consider a MDP M which is a Linear Mixture
Model. Then, for the hypothesis classH, discrepancy func-
tion `f defined above and on-policy estimation policies
πest(f) = πf , (H, `f ,Πest,M) is (implicitly) a Bilinear
Class.

3.3.2. LINEAR Q?/V ? (NEW MODEL)

We introduce a new model: linearQ?/V ? where we assume
both the optimal Q? and V ? are linear functions in features
that lie in (possibly infinite dimensional) Hilbert space.

Definition 3.5 (Linear Q?/V ?). We say that a MDP M
is a linear Q?/V ? model if there exist (known) features
φ : S × A 7→ V1, ψ : S 7→ V2 and (unknown) (w?, θ?) ∈
V1 × V2 for some Hilbert spaces V1,V2 such that for all
h ∈ [H] and for all (s, a, s′) ∈ S ×A× S ,

Q?h(s, a) = 〈w?h, φ(s, a)〉 and V ?h (s′) = 〈θ?h, ψ(s′)〉 .
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Here, our hypothesis classH = H0× . . . ,HH−1 is a set of
linear functions i.e. for all h ∈ [H], the set Hh is defined
as:{

(w, θ) ∈ V1 × V2 : max
a∈A

w>φ(s, a) = θ>ψ(s) , ∀s ∈ S
}
.

We define the following discrepancy function `f (in this
case the discrepancy function does not depend on f ), for
hypothesis g = {(wh, θh)}H−1

h=0 and observed transition info
oh = (rh, sh, ah, sh+1):

`f (oh, g) = Qh,g(sh, ah)− rh − Vh+1,g(sh+1)

= w>h φ(sh, ah)− rh − θ>h+1ψ(sh+1) .

Lemma 3.4 (Linear Q?/V ? =⇒ Bilinear Class). Con-
sider a MDP M which is a linear Q?/V ? model. Then,
for the hypothesis classH, the discrepancy function `f de-
fined above and on-policy estimation policies πest(f) = πf ,
(H, `f ,Πest,M) is (implicitly) a Bilinear Class.

3.3.3. BELLMAN COMPLETE AND LINEAR MDPS

We now consider Bellman Complete which captures the
linear MDP model (see the full paper for more detail on
linear MDP model). Here, our hypothesis class H is set
of linear functions with respect to some (known) feature
φ : S ×A 7→ V , where V is a Hilbert space. We denote hy-
pothesis in our hypothesis classH as tuples (θ0, . . . θH−1),
where θh ∈ V .

Definition 3.6 (Linear Bellman Complete). We say our
hypothesis classH is Linear Bellman Complete with respect
toM if H is realizable and there exists Th : V → V such
that for all (θ0, . . . θH−1) ∈ H and h ∈ [H],

Th(θh+1)>φ(s, a) = r(s, a)+Es′∼Ph(s,a) max
a′∈A

θ>h+1φ(s′, a′).

for all (s, a) ∈ S ×A.

We define the following discrepancy function `f (in this
case the discrepancy function does not depend on f ), for
hypothesis g = (θ0, . . . , θH−1) and observed transition info
oh = (rh, sh, ah, sh+1):

`f (oh, g) = Qh,g(sh, ah)− rh − Vh+1,g(sh+1)

= θ>h φ(sh, ah)− rh −max
a′∈A

θ>h+1φ(sh+1, a
′) .

Lemma 3.5 (Linear Bellman Complete =⇒ Bilinear
Class). Consider an MDPM and hypothesis classH such
that H is Linear Bellman Complete with respect to M.
Then, for on-policy estimation policies πest(f) = πf and
the discrepancy function `f defined above, (H, `f ,Πest,M)
is (implicitly) a Bilinear Class.

3.3.4. LOW OCCUPANCY COMPLEXITY (NEW MODEL).

We introduce another new model: Low Occupancy Com-
plexity.

Definition 3.7 (Low Occupancy Complexity). We say that
a MDP M and hypothesis class H has low occupancy
complexity with respect to a (possibly unknown) feature
mapping φh : S × A → V (where V is a Hilbert space)
if H is realizable and there exists a (possibly unknown)
βh : H 7→ V for h ∈ [H] such that for all f ∈ H and
(sh, ah) ∈ S ×A we have that:

dπf (sh, ah) = 〈βh(f), φh(sh, ah)〉.

It is important to emphasize that for this hypothesis class, we
are only assuming realizability, but it is otherwise arbitrary
(e.g. it could be a neural state-action value class) and the
algorithm does not need to know the features φh nor βh. It
is straight forward to see that such a class is Bilinear Class
with discrepancy function `f defined for hypothesis g ∈ H
and observed transition info oh = (rh, sh, ah, sh+1) as,

`f (oh, g) = Qh,g(sh, ah)− rh − Vh+1,g(sh+1)

Lemma 3.6 (Low Occupancy Complexity =⇒ Bilinear
Class). Consider a MDPM and hypothesis classH which
has low occupancy complexity. Then, for the the discrepancy
function `f defined above and on-policy estimation policies
πest(f) = πf , (H, `f ,Πest,M) is (implicitly) a Bilinear
Class.

Note that as such the hypothesis classH could be arbitrary
and unlike other models where we assume linearity, here it
could be a neural state-action value class. Our model can
also capture the setting where the state-only occupancy has
low complexity, i.e., dπf (sh) = βh(f)µh(sh), for some
µh : S → V . In this case, we will use πest = U(A).

4. The Algorithm and Theory
Our algorithm, BiLin-UCB, is described in Algorithm 1,
which takes three parameters as inputs, the number of it-
erations T , the trajectory batch size m per iteration and a
confidence radius R. The key component of the algorithm
is a constrained optimization in Line 1. For each time step
h, we use all previously collected data to form a single con-
straint using `f . The constraint refines the original version
space H to be a restricted version space containing only
hypothesis that are consistent with the current batch data.
We then perform an optimistic optimization: we search for
a feasible hypothesis g that achieves the maximum total
reward Vg(s0).

There are two ways to collect batch samples. For the case
where πest = πft , then for data collection in Line 1, we can
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Algorithm 1 BiLin-UCB
1: Input: number of iterations T , estimator function `,

batch size m, confidence radius R
2: for iteration t = 0, 1, 2, . . . , T − 1 do
3: Set ft as the solution of the following program:

argmax
g∈H

Vg(s0) subject to

t−1∑
i=0

(LDi;h,fi(g))2 ≤ R2 ∀h ∈ [H]

4: For all h ∈ [H], create batch datasets Dt;h =
{(rih, sih, aih, sih+1)}m−1

i=0 sampled from distribution
induced by a0:h−1 ∼ dπft and ah ∼ πest.

5: end for
6: return maxt∈[T ] V

πft .

generate m length-H trajectories by executing πft starting
from s0. For the general case (e.g. consider setting πest
to be a uniform distribution over A), we gather the data
for each h ∈ [H] independently. For h ∈ [H], we first
roll-in with πft to generate sh; then execute ah ∼ πest;
and then continue to generate sh+1 ∼ Ph(·|sh, ah) and
rh ∼ R(·|sh, ah). Repeating this process for all h, we need
Hm trajectories to form the batch datasets {Dt;h}H−1

h=0 .

4.1. Main Theory: Generalization in Bilinear Classes

We now present our main result. We first define some no-
tations. We denote the expectation of the function `f (·, g)
under distribution µ over R× S ×A× S by

Lµ,f (g) = Eo∼µ[`f (o, g)]

For a set D ⊂ S ×A× S, we will also use D to represent
the uniform distribution over this set.

Assumption 4.1 (Ability to Generalize). We assume there
exists functions εgen(m,H) and conf(δ) such that for any
distribution µ over R×S×A×S and for any δ ∈ (0, 1/2),
with probability of at least 1 − δ over choice of an i.i.d.
sample D ∼ µm of size m,

sup
g∈H
|LD,f (g)− Lµ,f (g)| ≤ εgen(m,H) · conf(δ)

Remark 4.1. It is helpful to separate the dependence of gen-
eralization error on failure probability δ and number of sam-
ples m in order to state Theorem 4.2 concisely. εgen(m,H)
is related to uniform convergence and measures the gen-
eralization error of hypothesis class H and for the hy-
pothesis classes discussed in this paper, εgen(m,H) → 0
as m → ∞. One example is when πest = πf , and H
is a discrete function class, then we have εgen(m,H) =

O
(√

(1 + ln(|H|))/m.
)

. In Appendix F, we also discuss

uniform convergence via a novel covering argument for
infinite dimensional RKHS.

Recall the definitions Xh := {Xh(f) : f ∈ H} and X :=
{Xh : h ∈ [H]}. We first present our main theorem for the
finite dimensional case i.e. when Xh ⊂ Rd for all timesteps
h.

Theorem 4.1. (Finite-dimensional case) Suppose
(H, `,Πest,M) is a Bilinear Class with Xh ⊂ Rd
for all timesteps h and Assumption 4.1 holds.
Assume supf∈H,h∈[H]‖Wh(f)‖2 ≤ BW and
supf∈H,h∈[H]‖Xh(f)‖2 ≤ BX . Fix δ ∈ (0, 1/3)
and batch sample size m and define:

d̃m = H
⌈
3d ln

(
1 +

3B2
XB

2
W

ε2
gen(m,H)

)⌉
.

Set the parameters as: number of iterations T = d̃m and
confidence radius R =

√
Tεgen(m,H) · conf(δ/(TH)).

With probability at least 1− δ, Algorithm 1 uses at most
mHT trajectories and returns a hypothesis f such that:

V ?(s0)−V πf (s0) ≤ 3Hεgen(m,H)·
(

1+

√
d̃m·conf

( δ

d̃mH

))
.

As discussed in the Remark 4.1, εgen(m,H) and conf(δ)
measure the uniform convergence of discrepancy functions
`f for the hypothesis class H. Therefore, if εgen(m,H)
decays at least as fast as m−α for any constant α, we will
get efficient reinforcement learning. In fact, we will see in
our examples (Section 4.2), that this is true for all known
models where efficient reinforcement learning is possible.
One such example is finite hypothesis classes where we
immediately get the following sample complexity bound
showing only a logarithmic dependence on the size of the
hypothesis space.

Corollary 4.1. (Finite-dimensional, Finite Hypothesis
Case) Suppose (H, `,Πest,M) is a Bilinear Class with
Xh ⊂ Rd for all timesteps h, |H| > 1 and Assump-
tion 4.1 holds. Assume supf∈H,h∈[H]‖Wh(f)‖2 ≤ BW
and supf∈H,h∈[H]‖Xh(f)‖2 ≤ BX for some BX , BW ≥
1. Assume the discrepancy function `f is bounded i.e.
supf∈H |`f (·)| ≤ H + 1. Fix δ ∈ (0, 1/3) and ε ∈ (0, 1).
Then there exists absolute constants c1, c2, c3, c4 such that
setting the parameters: batch sample size

m =
c1νdH

5 ln(dH2) ln(|H|) ln(1/δ)

ε2
,

number of iterations T = c2dH ln
(
BXBWm

)
and confi-

dence radius R = c3
√
T ·H

√
ln(|H|)/m · ln(TH/δ), with

probability at least 1−δ,Algorithm 1 returns a hypothesis
f such that V ?(s0)− V πf (s0) ≤ ε using at most

c4ν
2d2H7 ln(dH2) ln(|H|) ln(1/δ)

ε2
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trajectories where

ν = ln
(dHBXBW ln(|H|) ln(1/δ)

ε

)
.

The proof for this corollary follows from bounds on
εgen(m,H) and conf(δ) using Hoeffding’s inequality
(Lemma G.1). We present the complete proof in Ap-
pendix D.

Our next results will be non-parametric in nature and there-
fore it is helpful to introduce the maximum information gain
(Srinivas et al., 2009), which captures an important notion
of the effective dimension of a set. Let X ⊂ V , where V is
a Hilbert space. For λ > 0 and integer n > 0, the maximum
information gain γn(λ;X ) is defined as:

γn(λ;X ) := max
x0...xn−1∈X

ln det

(
I +

1

λ

n−1∑
t=0

xtx
>
t

)
. (3)

If X is of the form X = {Xh : h ∈ [H]}, we use the
notation

γn(λ;X ) :=
∑
h∈[H]

γn(λ;Xh) . (4)

Define critical information gain, denoted by γ̃(λ;X ), as the
smallest integer k > 0 s.t. k ≥ γk(λ;X ), i.e.

γ̃(λ;X ) := min
k≥γk(λ;X )

k, (5)

(where k is an integer). Note that such a γ̃(λ;X ) exists pro-
vided that the information gain γn(λ;X ) has a sufficiently
mild growth condition in both n and 1/λ. The critical in-
formation gain can viewed as an analogous quantity to the
critical radius, a quantity which arises in non-parametric
statistics (Wainwright, 2019).

Remark 4.2. For finite dimension setting where X ⊂ Rd
and ‖x‖ ≤ BX for any x ∈ X , we have: γn(λ;X ) ≤
d ln

(
1 + nB2

X/dλ
)

and γ̃(λ;X ) ≤ 3d ln
(
1 + 3B2

X/λ
)

(see Lemma G.3 for a proof). Note that 1/λ, n, and the
norm bound BX only appear inside the log. Furthermore,
it is possible that γn(λ;X ) is much smaller than the dimen-
sion of X (or V), when the eigenspectrum of the covariance
matrices concentrates in a low-dimension subspace. In
fact when X belongs to some infinite dimensional RKHS,
γn(λ;X ) could still be small (Srinivas et al., 2009).

We now present our main theorem. Recall the definitions
Xh := {Xh(f) : f ∈ H} and X := {Xh : h ∈ [H]}.

Theorem 4.2. (RKHS case) Suppose (H, `,Πest,M) is
a Bilinear Class and Assumption 4.1 holds. Assume
supf∈H,h∈[H]‖Wh(f)‖2 ≤ BW . Fix δ ∈ (0, 1/3), batch
sample size m, and define:

d̃m = γ̃
(
ε2

gen(m,H)/B2
W ;X

)
.

Set the parameters as: number of iterations T = d̃m and

confidence radius R =

√
d̃mεgen(m,H) · conf(δ/(d̃mH)).

With probability at least 1− δ, Algorithm 1 uses at most
mHd̃m trajectories and returns a hypothesis f such that:

V ?(s0)−V πf (s0) ≤ 3Hεgen(m,H)·
(

1+

√
d̃m·conf

( δ

d̃mH

))
.

Next, we provide an elementary and detailed proof for our
main theorem using an elliptical potential argument.

4.2. Corollaries for Particular Models

In this section, we apply our main theorem to special models:
linear Q?/V ?, bellman complete, linear mixture model, and
low occupancy complexity model. While linear bellman
complete and linear mixture model have been studied, our
results extends to infinite dimensional RKHS setting. Due to
space constraints, we present the finite dimensional results
in this section and defer the infinite dimensional results to
Appendix D.

4.2.1. LINEAR Q?/V ?

In this subsection, we provide the sample complexity result
for the linear Q?/V ? model (Definition 3.5). To state our
results for linear Q?/V ?, we define the following sets:

Φ =
{
φ(s, a) : (s, a) ∈ S ×A

}
, Ψ =

{
ψ(s′) : s′ ∈ S

}
.

and define the concatenation set3

Φ ◦Ψ =
{

[x, y] : x ∈ Φ, y ∈ Ψ
}

Corollary 4.2 (Finite Dimensional Linear Q?/V ?). Sup-
pose MDP M is a linear Q?/V ? model with Φ ◦ Ψ ⊂
Rd. Assume sup(w,θ)∈Hh,h∈[H]‖[w, θ]‖2 ≤ BW and
supx∈Φ◦Ψ‖x‖2 ≤ BX for some BX , BW ≥ 1. Fix
δ ∈ (0, 1/3) and ε ∈ (0, H). There exists an appropri-
ate setting of batch sample size m, number of iteration
T and confidence radius R such that with probability at
least 1− δ, Algorithm 1 returns a hypothesis f such that
V ?(s0)− V πf (s0) ≤ ε using at most

c1
d3H6 ln(1/δ)

ε2
·
(

ln
(d3H7B2

XB
2
W ln(1/δ)

ε2
))5

trajectories for some absolute constant c1.

4.2.2. BELLMAN COMPLETE.

In this subsection, we provide the sample complexity result
for the Linear Bellman Complete model (Definition 3.6). To
state our results, we define

Φ = {φ(s, a) : s, a ∈ S ×A} .
3For infinite dimensional Φ and Ψ, we consider the natural in-

ner product space where 〈[x1, y1], [x2, y2]〉 = 〈x1, x2〉+〈y1, y2〉.
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We first provide the result for the finite dimensional case i.e.
when Φ ⊂ V ⊂ Rd.

Corollary 4.3 (Finite Dimensional Linear Bellman Com-
plete). Suppose H is Bellman Complete with respect to
MDP M for some Hilbert space V ⊂ Rd. Assume
supθ∈Hh,h∈[H]‖θ‖2 ≤ BW and supx∈Φ‖x‖2 ≤ BX for
some BX , BW ≥ 1. Fix δ ∈ (0, 1/3) and ε ∈ (0, H).
There exists an appropriate setting of batch sample size
m, number of iteration T and confidence radius R such
that with probability at least 1 − δ, Algorithm 1 returns
a hypothesis f such that V ?(s0) − V πf (s0) ≤ ε using at
most

c1
d3H6 ln(1/δ)

ε2
·
(

ln
(d3H7B2

XB
2
W ln(1/δ)

ε2
))5

trajectories for some absolute constant c1.

In comparison, (Jin et al., 2020) has sample complex-
ity Õ(d3H3/ε2 log(1/δ)) and (Zanette et al., 2020) has
Õ(d2H3/ε2 log(1/δ)). We prove the sample complexity
result (Corollary D.2) for the RKHS case in Appendix D.
Note that RKHS Linear MDP is a special instance of RKHS
Bellman Complete. Prior works that studied RKHS Linear
MDP either achieves worse rate (Agarwal et al., 2020a) or
further assumes finite covering dimension of the space of
all possible upper confidence bound Q functions which are
algorithm dependent quantities (Yang et al., 2020).

4.2.3. LINEAR MIXTURE MODEL

In this subsection, we provide the sample complexity result
for the Linear Mixture model (Definition 3.4). To present
our sample complexity results, we define:

Φh =
{
ψ(s, a) +

∑
s′∈S

φ(s, a, s′)Vf ;h+1(s′)

: (s, a) ∈ S ×A, f ∈ H
}
.

We first provide the result for the finite dimensional case i.e.
when Φh ⊂ V ⊂ Rd for all h ∈ [H].

Corollary 4.4 (Finite Dimensional Linear Mix-
ture Model). Suppose MDP M is a linear Mixture
Model for some Hilbert space V ⊂ Rd. Assume
supθ∈Hh,h∈[H]‖θ‖2 ≤ BW and supx∈Φh,h∈[H]‖x‖2 ≤
BX for some BX , BW ≥ 1. Fix δ ∈ (0, 1/3) and
ε ∈ (0, H). There exists an appropriate setting of batch
sample size m, number of iteration T and confidence radius
R such that with probability at least 1 − δ, Algorithm 1
returns a hypothesis f such that V ?(s0) − V πf (s0) ≤ ε
using at most

c1
d3H6 ln(1/δ)

ε2
·
(

ln
(d3H7B2

XB
2
W ln(1/δ)

ε2
))5

trajectories for some absolute constant c1.

In comparison, (Modi et al., 2020a) has sample complexity
Õ(d2H2/ε2 log(1/δ)). We will present the sample com-
plexity result (Corollary D.3) for the infinite dimensional
RKHS case in Appendix D.

4.2.4. LOW OCCUPANCY COMPLEXITY

In this section, we will prove sample complexity bounds for
low occupancy complexity model (Definition 3.7).

Corollary 4.5 (Low Occupancy Complexity). Sup-
pose H has low occupancy complexity. Assume
supf∈Hh,h∈[H]‖Wh(f)‖2 ≤ BW . Fix δ ∈ (0, 1/3), batch
sample size m, and define:

d̃m(X ) = γ̃
(8H2

(
1 + ln(|H|)

)
mB2

W

;X
)
.

Set T = d̃m(X ) and R = (2
√

2H/
√
m) ·

√
d̃m(X ) ·√

1 + ln
(
|H|
)
·
√

ln
(
d̃m(X )H

)
+ ln

(
1/δ
)
. With prob-

ability greater than 1 − δ, Algorithm 1 uses at most
mHd̃m(X ) trajectories and returns a hypothesis f such
that V ?(s0)− V πf (s0) is at most:

12
√

2H2

√
d̃m(X ) ·

√
1 + ln

(
|H|
)

√
m

· v,

where v =
√

ln
(
d̃m(X )H

)
+ ln

(
1/δ
)
.

4.2.5. FINITE BELLMAN RANK

In this section, we will prove sample complexity bounds for
MDPs with finite Bellman Rank (Section 3.1).

Corollary 4.6 (Bellman Rank). For a given MDP
M, suppose a hypothesis class H has Bellman rank
d. Assume supf∈Hh,h∈[H]‖Wh(f)‖2 ≤ BW and
supf∈H,h∈[H]‖Xh(f)‖ ≤ BX for some BW , BX ≥ 1.
Fix δ ∈ (0, 1/3) and ε ∈ (0, H). There exists an appro-
priate setting of batch sample size m, number of iteration
T and confidence radius R such that with probability at
least 1− δ, Algorithm 1 returns a hypothesis f such that
V ?(s0)− V πf (s0) ≤ ε using at most

Õ

(
d2H7|A|(1 + ln(|H|))

ε2
ln3
(B2

WB
2
X(1 + ln(|H|))

δ

))
trajectories.

Note that in comparison, (Jiang et al., 2016) has sample
complexity Õ(d2H5|A|/ε2 log(1/δ)). We present the proof
in Appendix D.
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nential lower bounds for planning in mdps with linearly-
realizable optimal action-value functions, 2020.

Zheng Wen and Benjamin Van Roy. Efficient exploration
and value function generalization in deterministic sys-
tems. In Advances in Neural Information Processing
Systems, 2013.

Cathy Wu, Kanaad Parvate, Nishant Kheterpal, Leah Dick-
stein, Ankur Mehta, Eugene Vinitsky, and Alexandre M
Bayen. Framework for control and deep reinforcement
learning in traffic. In 2017 IEEE 20th International
Conference on Intelligent Transportation Systems (ITSC),
pages 1–8. IEEE, 2017.

Lin Yang and Mengdi Wang. Sample-optimal parametric Q-
learning using linearly additive features. In International
Conference on Machine Learning, 2019.

Zhuoran Yang, Chi Jin, Zhaoran Wang, Mengdi Wang, and
Michael I Jordan. Bridging exploration and general func-
tion approximation in reinforcement learning: Provably
efficient kernel and neural value iterations. arXiv preprint
arXiv:2011.04622, 2020.

Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer,
and Emma Brunskill. Learning near optimal policies with
low inherent bellman error, 2020.



Bilinear Classes: A Structural Framework for Provable Generalization in RL

A. Related Work: Frameworks and Models
Relations Among Frameworks. We first review existing frameworks and the relations among them. See Table 1 for a
summary.

Jiang et al. (2017) defines a notion, Bellman Rank (B-Rank in Tables), in terms of the roll-in distribution and the function
approximation class for Q∗, and give an algorithm with a polynomial sample complexity in terms of the Bellman Rank.
They also showed a class of models, including tabular MDP, LQR, Reactive POMDP (Krishnamurthy et al., 2016), and
Reactive PSR (Littman and Sutton, 2002) admit a low Bellman Rank, and thus they can be solved efficiently. Some recently
proposed models, such as Block MDP (Du et al., 2019a), linear MDP (Yang and Wang, 2019; Jin et al., 2020) can also
be shown to have a low Bellman rank. One caveat is that their algorithm requires a finite number of actions, so cannot
be directly applied to (infinite-action) linear MDP and LQR. Subsequently, Sun et al. (2019) proposed a new framework,
Witness Rank (W-Rank in tables), which generalizes Bellman Rank to model-based setting.

Bellman Complete (B-Complete in tables) is a framework of another style, which assumes that the class used for approxi-
mating the Q-function is closed under the Bellman operator. As shown in Table 1, neither the low-rank-style framework
(Bellman Rank and Witness Rank) nor the complete-style framework (B-Complete) contains the other (See e.g., (Zanette
et al., 2020)).

Reinforcement Learning Models. Now we discuss existing RL models. A summary on whether a model can be
incorporated into a framework is provided in Table 2.

Tabular MDP is the most basic model, which has a finite number of states and actions, and all frameworks incorporate this
model. When the state-action space is large, different RL models have been proposed to study when one can generalize
across the state-action pairs.

Reactive POMDP (Krishnamurthy et al., 2016) assumes there is a small number of hidden states and the Q∗-function
belongs to a pre-specified function class. Block MDP (Du et al., 2019a) also assumes there is a small number of hidden
states and further assumes the hidden states are decodable. Reactive PSR (Littman et al., 2001) considers partial observable
systems whose parameters are grounded in observable quantities. FLAMBE (Agarwal et al., 2020b) considers the feature
selection and removes the assumption of known feature in linear MDP. These models all admit a low-rank structure, and
thus can be incorporated into the Bellman Rank or Witness Rank and our Bilinear Classes.

The Linear Bellman Complete model (Munos, 2005) uses linear functions to approximate the Q-function, and assumes the
linear function class is closed under the Bellman operator. Zanette et al. (2020) presented a statistically efficient algorithm
for this model. This model does not have a low Bellman Rank or Witness Rank but can be incorporated into the Bellman
Complete framework and ours.

Linear MDP (Yang and Wang, 2019; Jin et al., 2020) assumes the transition probability and the reward are linear in given
features. This model not only admits a low-rank structure, but also satisfies the complete condition. Therefore, this model
belongs in all frameworks. However, when the number of action is infinite, the algorithms for Bellman Rank and Witness
Rank are not applicable because their sample complexity scales with the number of actions. Linear mixture MDP (Modi
et al., 2020a; Ayoub et al., 2020) assumes the transition probability is a linear mixture of some base models. This model
cannot be included in Bellman Rank, Witness Rank, or Bellman Complete, but our Bilinear Classes includes this model.

LQR is a fundamental model for continuous control that can be efficiently solvable (Dean et al., 2019). While LQR has a
low Bellman Rank and low Witness Rank, since the algorithms for Bellman Rank and Witness Rank scale with the number
of actions and LQR’s action set is uncountable, these two frameworks cannot incorporate LQR.

There is a line of work on state-action aggregation. Q∗ “irrelevance” state aggregation assumes one can aggregate states to a
meta-state if these states share the same Q∗ value, and the number of meta-states is small (Li, 2009; Jiang et al., 2015). Q∗

state-action aggregation aggregates state-action pairs to a meta-state-action pair if these pairs have the same Q∗-value (Dong
et al., 2020; Li, 2009).

Lastly, when only assuming Q∗ is linear, there exists an exponential lower bound (Weisz et al., 2020), but with the
additional assumption that the MDP is (nearly) deterministic and has large sub-optimality gap, there exists sample efficient
algorithms (Wen and Van Roy, 2013; Du et al., 2019b; 2020b).
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B. Proofs for Section 3
B.1. Bellman Rank

Proof of Lemma 3.2. Note that for g = f , we have that for observed transition info oh = (rh, sh, ah, sh+1)

Esh∼dπf Eah∼U(A) [`(oh, f)] = Esh,ah,sh+1∼dπf [Qh,f (sh, ah)− r(sh, ah)− Vh+1,f (sh+1)]

Therefore, to prove that this is a Bilinear Class, we will show that a stronger “equality” version of Equation (2) holds (which
will also prove Equation (1) holds). Observe that for any h,

Esh∼dπf Eah∼U(A) [`f (oh, g)]

= Esh∼dπf [Qh,g(sh, πg(sh))− r(sh, πg(sh))− E [Vh+1,g(sh+1)|sh, πg(sh)]]

= 〈Wh(g)−Wh(f?), Xh(f)〉

This completes the proof.

B.2. Linear Mixture MDP.

Recall that for any hypothesis g = {θ0, . . . , θH−1} ∈ H, Vh,g and Qh,g satisfy the following Bellman optimality equation:

Qh,g(sh, ah) = θ>h

(
ψ(sh, ah) +

∑
s̄∈S

φ(sh, ah, s̄)Vh+1,g(s̄)

)
(6)

Proof of Lemma 3.3. Observe that for g = f , using Equation (6), for observed transition info oh = (rh, sh, ah, sh+1),

`f (oh, f) = Qh,f (sh, ah)− rh − Vh+1,f (sh+1) .

and therefore

Eoh∼dπf
[
`f (oh, f)

]
= Ea0:h∼πf

[
Qh,f (sh, ah)− r(sh, ah)− Vh+1,f (sh+1)

]
.

We consider on-policy estimation πest = πf . To prove that linear mixture MDP is a Bilinear Class, we only need
to show that an “equality” version of Equation (2) holds (which implies Equation (1) holds by the frame above). For
g = {θ0, . . . , θH−1} ∈ H, observe:

Eoh∼dπf
[
`f (oh, g)

]
= Esh,ah∼dπf

[
θ>h

(
ψ(sh, ah) +

∑
s̄∈S

φ(sh, ah, s̄)Vh+1,f (s̄)
)
− Esh+1∼Ph(sh,ah)

[
Vh+1,f (sh+1) + rh

]]
.

= Esh,ah∼dπf

[
(θh − θ?h)>

(
ψ(sh, ah) +

∑
s̄∈S

φ(sh, ah, s̄)Vh+1,f (s̄)

)]
= 〈Wh(g)−Wh(f?), Xh(f)〉

where we defined the Wh, Xh functions as follows:

Wh(g) = θh,

Xh(f) = Esh,ah∼dπf

[
ψ(sh, ah) +

∑
s̄∈S

φ(sh, ah, s̄)Vh+1,f (s̄)

]
.

This concludes that Linear Mixture Model also forms a Bilinear Class.
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B.3. Linear Q?/V ? (new model)

Proof of Lemma 3.4. Note that we will show that a stronger “equality” version of Equation (2) holds, which will also prove
Equation (1) holds since for observed transition info oh = (rh, sh, ah, sh+1),

Eoh∼dπf
[
`f (oh, f)

]
= Ea0:h∼πf

[
Qh,f (sh, ah)− r(sh, ah)− Vh+1,f (sh+1)

]
.

Observe that for any h

Eoh∼dπf [`(oh, g)]

= Esh,ah,sh+1∼dπf
[
w>h φ(sh, ah)− θ>h+1ψ(sh+1)−Q?h(sh, ah) + V ?h+1(sh+1)

]
= 〈Wh(g)−Wh(f?), Xh(f)〉

where

Wh(g) = [wh, θh+1],

Xh(f) = Esh,ah∼dπf ,sh+1∼Ph(sh,ah) [φ(sh, ah), ψ(sh+1)] .

This concludes the proof.

B.4. Bellman Complete and Linear MDPs

Proof of Lemma 3.5. Note that in this case, we will show that a stronger version of Equation (2) holds i.e with equality
instead of ≤ inequality, which will also prove Equation (1) holds since for observed transition info oh = (rh, sh, ah, sh+1),

Eoh∼dπf
[
`f (oh, f)

]
= Ea0:h∼πf

[
Qh,f (sh, ah)− r(sh, ah)− Vh+1,f (sh+1)

]
.

Observe that for any h

Eoh∼dπf [`(oh, g)] = Esh,ah∼dπf
[
θ>h φ(sh, ah)− Th(θh+1)>φ(sh, ah)

]
= 〈Wh(g)−Wh(f?), Xh(f)〉

where

Wh(g) = θh − Th(θh+1)

Xh(f) = Esh,ah∼dπf [φ(sh, ah)].

Observe that Wh(f?) = 0 for all h.

B.5. Low Occupancy Complexity (new model).

Proof of Lemma 3.6. To see why this is a Bilinear Class, as in previous proofs, we will show that an “equality” version of
Equation (2) holds, which will also prove Equation (1) holds since

Eoh∼dπf
[
`f (oh, f)

]
= Ea0:h∼πf

[
Qh,f (sh, ah)− r(sh, ah)− Vh+1,f (sh+1)

]
.

Observe that for any h (here observed transition info oh = (rh, sh, ah, sh+1)):

Eoh∼dπf
[
`f (oh, g)

]
=

∑
(sh,ah)∈S×A

dπf (sh, ah)
(
Qh,g(sh, ah)− r(sh, ah)− E[Vh+1,g(sh+1)|sh, ah]

)
=
〈
βh(f),

∑
(sh,ah)∈S×A

φh(sh, ah)
(
Qh,g(sh, ah)− r(sh, ah)− E[Vh+1,g(sh+1)|sh, ah]

)〉
= 〈Wh(g)−Wh(f?), Xh(f)〉
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where the notation E[V (sh+1)|sh, ah] is shorthand for Esh+1∼Ph(sh,ah)[V (sh+1)] and we defined the Wh, Xh functions as
follows:

Xh(f) := βh(f),

Wh(g) :=
∑

(s,a)∈S×A

φh(s, a)
(
Qh,g(s, a)− r(s, a)− Es′∼Ph(s,a)[Vh+1,g(s

′)]
)
.

Note that Wh(f?) = 0. This completes the proof.

Note that as such the hypothesis class H could be arbitrary and unlike other models where we assume linearity, here it
could be a neural state-action value class. Our model can also capture the setting where the state-only occupancy has low
complexity, i.e., dπf (sh) = βh(f)µh(sh), for some µh : S → V . In this case, we will use πest = U(A).

C. Proof of Theorem 4.1 and Theorem 4.2
In this section, we prove our main theorems – Theorem 4.1 and Theorem 4.2.

Notation To simplify notation, we denote by µt;h the distribution induced over S × A × S by a0:h−1 ∼ dπft and
ah ∼ πest; Dt;h the batch dataset collected from distribution µt;h; εgen the generalization error εgen(m,H) · conf(δ/(TH)).
Also, recall that for any distribution µ over R× S ×A× S and hypothesis f, g ∈ H

Lµ,f (g) = Eo∼µ[`f (o, g)]

Note that throughout the proof unless specified, the statements are true for any fixed δ ∈ (0, 1), integer m > 0 and integer
T > 0. Also, we set R =

√
Tεgen throughout the proof. To simplify the proof, we will condition on the event that uniform

convergence of ` holds throughout our algorithm, which we first show holds with high probability.

Lemma C.1 (Uniform Convergence). For all t ∈ [T ] and g ∈ H and h ∈ [H], with probability at least 1− δ, we have:∣∣LDt;h,ft(g)− Lµt;h,ft(g)
∣∣ ≤ εgen

Proof. This follows from the uniform convergence (Assumption 4.1) and then union bounding over all t ∈ [T ] and
h ∈ [H].

We start by presenting our main lemma which shows if uniform convergence of ` holds throughout our algorithm, our
algorithm finds a near-optimal policy. This lemma will be enough to prove our main results.

Lemma C.2 (Existence of high quality policy). Suppose we run the algorithm for T iterations. Set R =
√
Tεgen. Assume

the event in Lemma C.1 holds and supf∈H‖Wh(f)‖2 ≤ BW for all h ∈ [H]. Then, for all λ ∈ R+, there exists t ∈ [T ]
such that the following is true for hypothesis ft:

V ? − V πft (s0) ≤ H

√
(4λB2

W + 4Tε2
gen)

(
exp

(
1

T
γT (λ;X )

)
− 1

)

We now complete the proof of Theorem 4.1 and Theorem 4.2 using Lemma C.1, Lemma C.2 and setting the parameters
using the definition of critical information gain.

Proof of Theorem 4.1 and Theorem 4.2. Fix λ = ε2
gen(m,H)/B2

W . From definition of critical information gain (Equa-
tion (5)), it follows that for T = γ̃(λ,X ),

T ≥ γT (λ,X )

Using Lemma C.2, we get that

V ? − V πft (s0) ≤ H

√(
4λB2

W + 4Tε2
gen(m,H) · conf2(δ/TH)

)(
exp

(
1

T
γT (λ;X )

)
− 1

)
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Observing that for our choice of T , γT (λ;X )/T ≤ 1 and e− 1 < 2 , we get

V ? − V πft (s0) ≤
√

8H

√(
λB2

W + γ̃(λ,X )ε2
gen(m,H) · conf2(δ/TH)

)
≤
√

8H
(√

λBW +
√
γ̃(λ,X )εgen(m,H) · conf(

δ

γ̃(λ,X )H
)
)

=
√

8H
(

1 +
√
γ̃(λ,X ) · conf(

δ

γ̃(λ,X )H
)
)
· εgen(m,H)

≤ 3H
(

1 +
√
γ̃(λ,X ) · conf(

δ

γ̃(λ,X )H
)
)
· εgen(m,H)

where the second last equality uses the definition of λ.

Moreover, each iteration of the algorithm, takes only mH trajectories, this gives the total trajectories as mHT =
mHγ̃(λ,X ). This proves Theorem 4.2. Theorem 4.1 follows from the upper bound on γ̃(λ,X ) for finite dimensional Xh
using Lemma G.3.

In the rest of the section, we will prove our main lemma – Lemma C.2. The first step shows that under Assumption 4.1, our
R is set properly so that f? is always a feasible solution of the constrained optimization program in Algorithm 1.

Lemma C.3 (Feasibility of f?). Assume the event in Lemma C.1 holds. Then for all t ∈ [T ], we have that f? is always a
feasible solution.

Proof. Note that Lµi;h,fi(f∗) = 0 (Equation (2)). Thus using Lemma C.1, we have:

t−1∑
i=0

(
LDi;h,fi(f∗)

)2 ≤ tε2
gen ∀h ∈ [H] .

Noting that t ≤ T and in our parameter setup R =
√
Tεgen completes the proof.

The feasibility result immediately leads to optimism.

Lemma C.4 (Optimism). Assume the event in Lemma C.1 holds. Then for all t ∈ [T ], we have V ? ≤ Vft;0(s0).

Proof. Lemma C.3 implies f? is a feasible solution for the optimization program for all t ∈ [T ]. This proves the claim.

The following lemma relates the sub-optimality to a sum of bilinear forms. Using the performance difference lemma, we
first show that sub-optimality is upper bounded by the Bellman errors of Qh,ft , which are further upper bounded by sum of
bilinear forms via our assumption (Equation (1)).

Lemma C.5 (Bilinear Regret Lemma). Assume the event in Lemma C.1 holds. Then, the following holds for all t ∈ [T ]:

V ? − V πft (s0) ≤
H−1∑
h=0

|〈Wh(ft)−Wh(f?), Xh(ft)〉| .
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Proof. We can upper bound the regret

V ?(s0)− V πft (s0)

≤ V0,ft(s0)− V πft (s0) (since V0,ft(s0) ≥ V ?(s0) (Lemma C.4))

= Q0,ft(s0, a0)− Ea0:h∼dπft

[
H−1∑
h=0

r(sh, ah)

]
(since Vft(s0) = Qft(s0, a0), a0 = argmaxaQft(s0, a))

= Ea0:h∼dπft

[
H−1∑
h=0

(Qh,ft(sh, ah)− r(sh, ah)−Qh+1,ft(sh+1, ah+1))

]
(by telescoping sum)

=

H−1∑
h=0

Ea0:h∼dπft [Qh,ft(sh, ah)− r(sh, ah)−Qh+1,ft(sh+1, ah+1)]

=

H−1∑
h=0

Ea0:h∼dπft [Qh,ft(sh, ah)− r(sh, ah)− Vh+1,ft(sh+1)] (since Vh+1,ft(sh+1) = Qh+1,ft(sh+1, ah+1))

=

H−1∑
h=0

|〈Wh(ft)−Wh(f?), Xh(ft)〉|

where the last step follows Equation (1) in the Bilinear Class definition.

The following is a variant of the Elliptical Potential Lemma, central in the analysis of linear bandits (Dani et al., 2008;
Srinivas et al., 2009; Abbasi-Yadkori et al., 2011).

Lemma C.6 (Elliptical potential). Consider any sequence of vectors {x0, . . . , xT−1} where xi ∈ V for some Hilbert space
V . Let λ ∈ R+. Denote Σ0 = λI and Σt = Σ0 +

∑t−1
i=0 xix

>
i . We have that:

min
i∈[T ]

ln
(

1 + ‖xi‖2Σ−1
i

)
≤ 1

T

T−1∑
i=0

ln
(

1 + ‖xi‖2Σ−1
i

)
=

1

T
ln

det (ΣT )

det(λI)
.

Proof. By definition of Σt and matrix determinant lemma, we have:

ln det(Σt+1) = ln det(Σt) + ln det
(
I + (Σt)

−1/2xtx
>
t (Σt)

−1/2
)

= ln det(Σt) + ln
(

1 + ‖xt‖2Σ−1
t

)
.

Using recursion completes the proof.

Now, we will finish the proof of Lemma C.2 by showing that the sum of bilinear forms in Lemma C.5 is small for at least
for one t ∈ [T ]. More precisely, using Equation (2) together with elliptical potential argument (Lemma C.6), we can show
that after d̃m many iterations, we must have found a policy πft such that |〈Wh(ft)−Wh(f?), Xh(ft)〉| is small for all h.

Proof of Lemma C.2. Our goal (as per Lemma C.5 and Equation (1)) is to find t ∈ [T ] such that

|〈Wh(ft)−Wh(f?), Xh(ft)〉| is small for all h ∈ [H]

To that end, we will show that

‖Wh(ft)−Wh(f?)‖A ‖Xh(ft)‖A−1 is small for all h ∈ [H]

for appropriately chosen A. We will show existence of such Xh(ft) and A (Equation (7)) using the potential argument
(Lemma C.6) and conditions on Wh(ft)−Wh(f?) follow from our optimization program. We now show this in more detail.
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Let the hypothesis used by our algorithm at ith iteration be fi. Consider the corresponding sequence of representations
{Xh(fi)}i,h. Then, by Lemma C.6, we have that for all h ∈ [H] and λ ∈ R+

T−1∑
i=0

ln
(

1 + ‖Xh(fi)‖2Σ−1
i;h

)
≤ ln

det (ΣT ;h)

det(λI)
≤ γT (λ;Xh)

where we have used definition of maximum information gain γT (λ;Xh) (Equation (3)) and

Σi;h = λI +

i−1∑
j=0

Xh(fj)Xh(fj)
>

Summing these inequalities over all h ∈ [H], we have that for all λ ∈ R+

T−1∑
i=0

H−1∑
h=0

ln
(

1 + ‖Xh(fi)‖2Σ−1
i;h

)
≤
H−1∑
h=0

γT (λ;Xh) = γT (λ;X )

where the last equality follows from Equation (4). Since, each of these terms is≥ 0, we get that there exists t ∈ [T ] such that

H−1∑
h=0

ln
(

1 + ‖Xh(ft)‖2Σ−1
t;h

)
≤ 1

T
γT (λ;X )

Again, since each of these terms is ≥ 0, we get that for all h ∈ [H]

ln
(

1 + ‖Xh(ft)‖2Σ−1
t;h

)
≤ 1

T
γT (λ;X )

and simplifying, we get that for all h ∈ [H],

‖Xh(ft)‖2Σ−1
t;h
≤ exp

(
1

T
γT (λ;X )

)
− 1 (7)

Also, by construction of our program, for all iterations and in particular for t, it holds that for all h ∈ [H]

t−1∑
j=0

(
LDj;h,fj (ft)

)2

≤ Tε2
gen

and by Lemma C.1, for all h ∈ [H]

t−1∑
j=0

(
Lµj;h,fj (ft)

)2

≤ 2

t−1∑
j=0

(
LDj;h,fj (ft)

)2

+ 2

t−1∑
j=0

ε2
gen

≤ 4Tε2
gen

where the first inequality follows from (a+ b)2 ≤ 2a2 + 2b2 and the last step follows from the frame above and t ∈ [T ].
Using the definition of Bilinear Class (Equation (2)), for all h ∈ [H]

t−1∑
j=0

|〈Wh(ft)−Wh(f?), Xh(fj)〉|2 ≤ 4Tε2
gen

Using this, we get for all h ∈ [H]

(Wh(ft)−Wh(f?))>Σt;h(Wh(ft)−Wh(f?))

≤ λ‖(Wh(ft)−Wh(f?))‖22 + 4Tε2
gen

≤ 4λB2
W + 4Tε2

gen (8)
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where the first inequality follows from the frame above and definition of Σt;h. Using Equation (7) and the frame above, this
immediately shows that for all h ∈ [H]

|〈Wh(ft)−Wh(f?), Xh(ft)〉|2 ≤ ‖Wh(ft)−Wh(f?)‖2Σt;h‖Xh(ft)‖2Σ−1
t;h

≤ (4λB2
W + 4Tε2

gen)

(
exp

(
1

T
γT (λ;X )

)
− 1

)
Summing over all h ∈ [H], this gives

H−1∑
h=0

|〈Wh(ft)−Wh(f?), Xh(ft)〉| ≤ H

√
(4λB2

W + 4Tε2
gen)

(
exp

(
1

T
γT (λ;X )

)
− 1

)
Using Lemma C.5, this gives the desired result.

D. Proofs for Section 4
Proof of Corollary 4.1. First, using Lemma G.1, we get that for any distribution µ over S ×A× S and for any δ ∈ (0, 1),
with probability of at least 1− δ over choice of an i.i.d. sample D ∼ µm of size m, for all g ∈ H

|LD(g)− Lµ(g)| ≤ 2
√

2H

√
ln(|H|/δ)

m

≤ 2
√

2H

√
ln(|eH|/δ)

m

= 2
√

2H

√
1 + ln(|H|) + ln(1/δ)

m

≤ 2
√

2H

√
1 + ln(|H|)

m
·
√

ln(1/δ)

This satisfies our Assumption 4.1 with

εgen(m,H) = 2
√

2H

√
1 + ln(|H|)

m

conf(δ) =
√

ln(1/δ)

Using this in Theorem 4.1, we set

T = 4dH ln
(

1 + 3B2
XB

2
W

√
m
)

Therefore, we get ε-optimal policy by setting

3H · 2
√

2H

√
1 + ln(|H|)

m
·
(

1 +

√
4dH ln

(
1 + 3B2

XB
2
W

√
m
)
·

√√√√
ln

4dH2 ln
(

1 + 3B2
XB

2
W

√
m
)

δ
≤ ε

or equivalently by setting m at least as large as

720dH5(1 + ln(|H|)) ln(1 + 3B2
XB

2
W

√
m)

ε2
· ln

4dH2 ln
(

1 + 3B2
XB

2
W

√
m
)

δ

≤ 720dH5 ln(4dH2)(1 + ln(|H|)) ln2(1 + 3B2
XB

2
W

√
m) ln(1/δ)

ε2



Bilinear Classes: A Structural Framework for Provable Generalization in RL

Using Lemma G.2, we get a solution for m

m =
6480dH5 ln(4dH2) ln(1/δ)(1 + ln(|H|))

ε2
ln
(25920dH5B2

XB
2
W (1 + ln(|H|)) ln(4dH2) ln(1/δ)

ε2

)
This gives the total trajectory complexity

mTH =
cd2H7 ln(dH2) ln(1/δ)(1 + ln(|H|))

ε2
ln2(

dHBXBW (1 + ln(|H|)) ln(1/δ)

ε2
)

for some absolute constants c.

D.1. Linear Q?/V ?

Corollary D.1 (RKHS Linear Q?/V ?). Suppose MDP M is a linear Q?/V ? model. Assume
sup(w,θ)∈Hh,h∈[H]‖[w, θ]‖2 ≤ BW and supx∈Φ◦Ψ‖x‖2 ≤ BX . Fix δ ∈ (0, 1/3), batch sample size m, and
define:

d̃m(Φ ◦Ψ) = γ̃
( 1

8B2
Wm

; Φ ◦Ψ
)
· ν, (9)

d̃m(X ) = γ̃

(
144H2d̃m(Φ ◦Ψ)

B2
Wm

;X

)
, (10)

where ν := ln

(
1 + 3BXBW

√
mγ̃
(

1
8B2

Wm
; Φ ◦Ψ

))
.

Set the parameters as: R = (12H/
√
m)

√
d̃m(X ) · d̃m(Φ ◦Ψ) ·

√
ln
(
(d̃m(X )H)/δ

)
and T = d̃m(X ). With probability

greater than 1− δ, Algorithm 1 uses at most mHd̃m(X ) trajectories and returns a hypothesis f :

V ?(s0)− V πf (s0) ≤ 72H2

√
d̃m(X ) · d̃m(Φ ◦Ψ) · v

√
m

, (11)

where v :=

√
ln
(

(d̃m(X )H)/δ
)

.

Proof. First, using Corollary F.3, we get that for any distribution µ over S ×A× S and for any δ ∈ (0, 1), with probability
of at least 1− δ over choice of an i.i.d. sample D ∼ µm of size m, for all g = ([w0, θ0], . . . , [wH−1, θH−1]) ∈ H (note that
Lµ(g) only depends on [wh, θh] for distribution µ over observed transitions oh = (rh, sh, ah, sh+1) at timestep h.)

|LD(g)− Lµ(g)| ≤ 4√
m

+ 2H

√√√√2γ̃m ln
(

1 + 3BXBW
√
γ̃mm

)
+ 2 ln(1/δ)

m

=

4 + 2H

√
2γ̃m ln

(
1 + 3BXBW

√
γ̃mm

)
+ 2 ln(1/δ)

√
m

≤
12H

√
γ̃m ln

(
1 + 3BXBW

√
γ̃mm

)
·
√

ln(1/δ)

√
m

where we have used that ln(1/δ) > 1 and γ̃m = γ̃(1/(8B2
Wm); Φ ◦Ψ) (as defined in Equation (5)). Define

d̃m(Φ ◦Ψ) := γ̃m ln
(

1 + 3BXBW
√
γ̃mm

)
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This satisfies our Assumption 4.1 with

εgen(m,H) =
12H

√
d̃m(Φ ◦Ψ)
√
m

conf(δ) =
√

ln(1/δ)

Substituting this in Theorem 4.2 gives the result

d̃m(X ) = γ̃
(
ε2

gen(m,H)/B2
W ;X

)
= γ̃

(
144H2d̃m(Φ ◦Ψ)/mB2

W ;X
)

V ?(s0)− V πft (s0) ≤ 6H

√
d̃m(X ) · εgen(m,H) · conf

(
δ/(d̃m(X )H)

)
= 72H2

√
d̃m(X ) · d̃m(Φ ◦Ψ) ·

√
ln
(
(d̃m(X )H)/δ

)
√
m

Next, we complete the proof of Corollary 4.2. Note that both d̃m(Φ ◦Ψ) and d̃m(X ) (related to critical information gain
under Φ and X respectively) scale as Õ(d) if Φ ◦Ψ ⊂ Rd.

Proof of Corollary 4.2. First, from Lemma G.3, we have that

γ̃
( 1

8B2
Wm

; Φ ◦Ψ
)
≤ 3d ln

(
1 + 24B2

XB
2
Wm

)
+ 1

≤ 3d ln
(

25B2
XB

2
Wm

)
+ 1

≤ 4d ln
(

25B2
XB

2
Wm

)
and substituting this in Equation (9)

d̃m(Φ ◦Ψ) ≤ 4d ln
(

25B2
XB

2
Wm

)
· ln

(
1 + 3BXBW

√
m4d ln

(
25B2

XB
2
Wm

))

≤ 4d ln
(

25B2
XB

2
Wm

)
· ln

(
4BXBW

√
m4d ln

(
25B2

XB
2
Wm

))
≤ 4d ln

(
25B2

XB
2
Wm

)
·
(

ln(4BXBW ) + ln
(

10m
√
dBXBW

))
≤ 8d ln2(25B2

XB
2
Wm
√
d)

Similarly, as supz∈X ‖z‖ ≤ supx∈Φ◦Ψ‖x‖, using Lemma G.3 and similar analysis as above (and 144H2d̃m(Φ ◦Ψ) ≥ 1),
we get

γ̃

(
144H2d̃m(Φ ◦Ψ)

B2
Wm

;Xh

)
≤ 4d ln

(
25B2

XB
2
Wm

)
and substituting this in Equation (10)

d̃m(X ) ≤ 4dH ln
(

4B2
XB

2
Wm

)
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To get ε-optimal policy (from Equation (11)), we have to set

72H2

√
d̃m(X ) · d̃m(Φ ◦Ψ) ·

√
ln
(
(d̃m(X )H)/δ

)
√
m

≤ ε

m ≥ (72)2H4 d̃m(X ) · d̃m(Φ ◦Ψ) · ln
(
(d̃m(X )H)/δ

)
ε2

Further upper bounding the right hand side of the above inequality by substituting in upper bounds for d̃m(X ) and d̃m(Φ◦Ψ)
from frames above, we can set m to be as large as:

(72)2H5 32d2 ln3(25B2
XB

2
Wm
√
d) · ln

(
(16dH2B2

XB
2
Wm)/δ

)
ε2

≤ 32 · (72)2 d
2H5 ln4(25B2

XB
2
WmdH

2) ln(1/δ)

ε2

Using Lemma G.2 for α = 4, a = 32 · (72)2d2H5 ln(1/δ)/ε2, b = 25B2
XB

2
W dH

2 and c = 54, we get that

m = 54 · 32 · (72)2 d
2H5 ln(1/δ)

ε2
ln4
(

54 · 25 · 32 · (72)2 d
3H7B2

XB
2
W ln(1/δ)

ε2

)
ln
(

4B2
XB

2
Wm

)
≤ 5 ln

(
56 · 32 · (72)2 d

3H7 ln(1/δ)B2
XB

2
W

ε2

)
Substituting this in the expression above for d̃m(X ) and setting this upper bound to T , we get

T = 20dH ln
(

56 · 32 · (72)2 d
3H7 ln(1/δ)B2

XB
2
W

ε2

)
Since, we use on policy estimation, i.e., πest = πft for all t, the trajectory complexity is mT which completes the proof.

D.2. Bellman Complete

Corollary D.2 (RKHS Bellman Complete). Suppose H is Bellman Complete with respect to MDPM for some Hilbert
space V . Assume suph∈[H],θ∈Hh‖θ‖2 ≤ BW and supx∈Φ‖x‖2 ≤ BX . Fix δ ∈ (0, 1/3), batch sample size m, and define:

d̃m(Φ) = γ̃
( 1

8B2
Wm

; Φ
)
· ν,

d̃m(X ) = γ̃
(400H2dm(Φ)

B2
Wm

;X
)
,

where ν = ln

(
1 + 3BXBW

√
mγ̃
(

1
8B2

Wm
; Φ
))

.

Set the parameters as: R = (12H/
√
m)

√
d̃m(X ) · d̃m(Φ) ·

√
ln
(
(d̃m(X )H)/δ

)
and T = d̃m(X ). With probability at

least 1− δ, Algorithm 1 uses at most mHd̃m(X ) trajectories and returns a hypothesis f :

V ?(s0)− V πf (s0) ≤ 120H2

√
d̃m(X ) · d̃m(Φ) · v

√
m

,

where v =
√

ln
(
(d̃m(X )H)/δ

)
.

Proof. First, using Corollary F.2, we get that for any distribution µ over S ×A× S and for any δ ∈ (0, 1), with probability
of at least 1− δ over choice of an i.i.d. sample D ∼ µm of size m, for all g = (θ0, . . . , θH−1) ∈ H (note that Lµ(g) only
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depends on θh for distribution µ over observed transitions oh = (rh, sh, ah, sh+1) at timestep h.)

|LD(g)− Lµ(g)| ≤ 8√
m

+ 2H

√√√√2γ̃m ln
(

1 + 3BXBW
√
γ̃mm

)
+ 2 ln(1/δ)

m

=

8 + 2H

√
2γ̃m ln

(
1 + 3BXBW

√
γ̃mm

)
+ 2 ln(1/δ)

√
m

≤
20H

√
γ̃m ln

(
1 + 3BXBW

√
γ̃mm

)
·
√

ln(1/δ)

√
m

where we have used that ln(1/δ) > 1 and γ̃m = γ̃(1/(8B2
Wm); Φ) (as defined in Equation (5)). Define

d̃m(Φ) := γ̃m ln
(

1 + 3BXBW
√
γ̃mm

)
This satisfies our Assumption 4.1 with

εgen(m,H) =
20H

√
d̃m(Φ)
√
m

conf(δ) =
√

ln(1/δ)

Substituting this in Theorem 4.2 gives the result

d̃m(X ) = γ̃
(
ε2

gen(m,H)/B2
W ;X

)
= γ̃

(
400H2d̃m(Φ ◦Ψ)/mB2

W ;X
)

V ?(s0)− V πft (s0) ≤ 6H

√
d̃m · εgen(m,H) · conf

(
δ/(d̃mH)

)
= 120H2

√
d̃m(X ) · d̃m(Φ) ·

√
ln
(
(d̃m(X )H)/δ

)
√
m

We now complete the proof of Corollary 4.3. Note that both d̃m(Φ) and d̃m(X ) (related to critical information gain under Φ

and X respectively) scale as Õ(d) if Φ ⊂ Rd.

Proof of Corollary 4.3. Since the proof follows similar to proof of Corollary 4.2, we will only provide a proof sketch here.
First, from Lemma G.3, we have that

γ̃
( 1

8B2
Wm

; Φ
)
≤ 4d ln

(
25B2

XB
2
Wm

)
and therefore

d̃m(Φ) ≤ 8d ln2(25B2
XB

2
Wm
√
d)

Similarly, as supz∈X ‖z‖ ≤ supx∈Φ‖x‖, using Lemma G.3 (and since 400H2d̃m(Φ) ≥ 1), we get

γ̃

(
400H2d̃m(Φ)

B2
Wm

;Xh

)
≤ 4d ln

(
25B2

XB
2
Wm

)
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and therefore

d̃m(X ) ≤ 4dH ln
(

4B2
XB

2
Wm

)
To get ε-optimal policy, we have to set

120H2

√
d̃m(X ) · d̃m(Φ) ·

√
ln
(
(d̃m(X )H)/δ

)
√
m

≤ ε

The rest of the proof follows similarly to proof of Corollary 4.2.

D.3. Linear Mixture Model

We omit proof of Corollary 4.4 since it follows same as proof of Corollary 4.2.

Corollary D.3 (RKHS linear mixture model). Suppose MDP M is a linear Mixture Model. Assume
supθ∈Hh,h∈[H]‖θ‖2 ≤ BW and supx∈Φh,h∈[H]‖x‖2 ≤ BX . Fix δ ∈ (0, 1/3), batch sample size m, and define:

d̃m(Φ) = max
h∈[H]

γ̃
( 1

8B2
Wm

; Φh

)
· νh

d̃m(X ) = γ̃
(256H2d̃m(Φ)

B2
Wm

;X
)
,

where νh = ln

(
1 + 3BXBW

√
mγ̃
(

1
8B2

Wm
; Φh

))
.

Set parameters as: R = (12H/
√
m)

√
d̃m(X ) · d̃m(Φ) ·

√
ln
(
(d̃m(X )H)/δ

)
and T = d̃m(X ). With probability greater

than 1− δ, Algorithm 1 uses at most mHd̃m(X ) trajectories and returns a hypothesis f

V ?(s0)− V πf (s0) ≤ 96H2

√
d̃m(X ) · d̃m(Φ) · v

√
m

.

where v =
√

ln
(
(d̃m(X )H)/δ

)
.

Proof. First, using Corollary F.3 and Lemma G.1, we get that for any distribution µ over S ×A× S and for any δ ∈ (0, 1),
with probability of at least 1− δ over choice of an i.i.d. sample D ∼ µm of size m, for all g = (θ0, . . . , θH−1) ∈ H (note
that Lµ(g) only depends on θh for distribution µ over observed transitions oh = (rh, sh, ah, sh+1) at timestep h.)

|LD(g)− Lµ(g)| ≤ 4√
m

+ 2H

√√√√2γ̃m ln
(

1 + 3BXBW
√
γ̃mm

)
+ 2 ln(1/δ)

m
+
√

2H

√
ln(1/δ)

m

=

4 + 2H

√
2γ̃m ln

(
1 + 3BXBW

√
γ̃mm

)
+ 2 ln(1/δ) +

√
2H
√

ln(1/δ)

√
m

≤
16H

√
γ̃m ln

(
1 + 3BXBW

√
γ̃mm

)
·
√

ln(1/δ)

√
m

where we have used that ln(1/δ) > 1 and γ̃m = maxh∈[H] γ̃(1/(8B2
Wm); Φh) (as defined in Equation (5)). Define

d̃m(Φ) := γ̃m ln
(

1 + 3BXBW
√
γ̃mm

)
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This satisfies our Assumption 4.1 with

εgen(m,H) =
16H

√
d̃m(Φ)
√
m

conf(δ) =
√

ln(1/δ)

Substituting this in Theorem 4.2 gives the result

d̃m(X ) = γ̃
(
ε2

gen(m,H)/B2
W ;X

)
= γ̃

(
256H2d̃m(Φ)/mB2

W ;X
)

V ?(s0)− V πft (s0) ≤ 6H

√
d̃m · εgen(m,H) · conf

(
δ/(d̃mH)

)
= 96H2

√
d̃m(X ) · d̃m(Φ) ·

√
ln
(
(d̃m(X )H)/δ

)
√
m

D.4. Low Occupancy Complexity

Proof of Corollary 4.5. First, using Lemma G.1, we get that for any distribution µ over S ×A× S and for any δ ∈ (0, 1),
with probability of at least 1− δ over choice of an i.i.d. sample D ∼ µm of size m, for all g ∈ H

|LD(g)− Lµ(g)| ≤ 2
√

2H

√
ln(|H|/δ)

m

≤ 2
√

2H

√
ln(|eH|/δ)

m

= 2
√

2H

√
1 + ln(|H|) + ln(1/δ)

m

≤ 2
√

2H

√
1 + ln(|H|)

m
·
√

ln(1/δ)

This satisfies our Assumption 4.1 with

εgen(m,H) = 2
√

2H

√
1 + ln(|H|)

m

conf(δ) =
√

ln(1/δ)

Substituting this in Theorem 4.2 gives the result

d̃m(X ) = γ̃
(
ε2

gen(m,H)/B2
W ;X

)
= γ̃

(8H2(1 + ln(|H|))
mB2

W

;X
)

V ?(s0)− V πft (s0) ≤ 6H

√
d̃m(X ) · εgen(m,H) · conf

(
δ/(d̃m(X )H)

)
= 12

√
2H2

√
d̃m(X ) ·

√
1 + ln

(
|H|
)
·
√

ln
(
(d̃m(X )H)/δ

)
√
m
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D.5. Finite Bellman Rank

Proof of Corollary 4.6. First, as observed in (Jiang et al., 2016)[Lemma 14], we get that for any distribution µ over S×A×S
and for any δ ∈ (0, 1), with probability of at least 1− δ over choice of an i.i.d. sample D ∼ µm of size m, for all g ∈ H

|LD(g)− Lµ(g)| ≤
√

8|A|H2 ln(|H|/δ)
m

+
2H|A| ln(|H|/δ)

m

≤ 4
√

2H
√
|A|
√

ln(|eH|/δ)
m

= 4
√

2H
√
|A|
√

1 + ln(|H|) + ln(1/δ)

m

≤ 4
√

2H
√
|A|
√

1 + ln(|H|)
m

·
√

ln(1/δ)

where the second inequality holds as long as m > 2H|A| ln(|H|/δ). This satisfies our Assumption 4.1 with

εgen(m,H) = 4
√

2H
√
|A|
√

1 + ln(|H|)
m

conf(δ) =
√

ln(1/δ)

Substituting this in Theorem 4.2 gives the result

d̃m(X ) = γ̃
(
ε2

gen(m,H)/B2
W ;X

)
= γ̃

(32H2|A|(1 + ln(|H|))
mB2

W

;X
)

≤ H
(

3d ln
(

1 + 3mB2
WB

2
X

)
+ 1
)

≤ 4dH ln
(

4mB2
WB

2
X

)
where the second last step follows from Lemma G.3. Substituting εgen and conf in Theorem 4.2 also gives

V ?(s0)− V πft (s0)

≤ 6H

√
d̃m(X ) · εgen(m,H) · conf

(
δ/(d̃m(X )H)

)
= 24

√
2H2

√
|A|

√
4dH ln

(
4mB2

WB
2
X

)
·
√

1 + ln
(
|H|
)
·
√

ln
(
(4dH2 ln

(
4mB2

WB
2
X

)
/δ
)

√
m

To get ε-optimal policy, we have to set

m ≥
4608dH5|A| ln

(
4mB2

WB
2
X

)
· (1 + ln(|H|) · ln

(
(4dH2 ln

(
4mB2

WB
2
X

)
/δ
)

ε2

Further simplifying the RHS, we can write it as

4608dH5|A|(1 + ln(|H|)) · ln2
(

16dH2mB2
WB

2
X/δ

)
ε2

Using Lemma G.2 for α = 2, a = 4608dH5|A|(1 + ln(|H|))/ε2, b = 16dH2B2
WB

2
X/δ and c = 9, we get that

m =
41472dH5|A|(1 + ln(|H|))

ε2
ln2
(663552d2H7|A|B2

WB
2
X(1 + ln(|H|))

δε2

)
ln
(

4mB2
WB

2
X

)
= 3 ln

(663552d2H7|A|B2
WB

2
X(1 + ln(|H|))

δε2

)
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Substituting this in the expression above for d̃m(X ) and setting this upper bound to T , we get

T = 12dH ln
(663552d2H7|A|B2

WB
2
X(1 + ln(|H|))

δε2

)
Since, we use on policy estimation, i.e., πest = U(A) for all t, the trajectory complexity is mTH which completes the
proof.

E. An Elliptical Cover for Hilbert Spaces
The following theorem is a key technical contribution which allows us to obtain a number of non-parametric convergence
rates.

Theorem E.1. Let X ⊂ V , where V is a Hilbert space. Suppose T ∈ N+, ε ∈ R+; defineW ⊆ {w ∈ V : ‖w‖ ≤ BW } for
some real number BW ; and suppose for all x ∈ X that ‖x‖2 ≤ BX . Set λ = ε2/(8B2

W ).There exists a set C ⊂ W (a cover
ofW) such that: (i) log |C| ≤ T log(1 + 3BWBX

√
T/ε) and (ii) for all w ∈ W , there exists a w′ ∈ C, such that:

sup
x∈X
|(w − w′) · x| ≤ ε

√(
exp

(
γT (ε2/(8B2

W ))

T

)
− 1

)
.

Proof. Let us suppose that X is closed, in order for certain maximizers (and arg-maximizers) over X to exist. If X is not
closed, then let us replace X with the closure of X , which is possible since X is a bounded set. Consider the process: Set
Σ0 = λI with λ ∈ R+.

1. For t = 0, . . . T − 1,

(a) xt = argmaxx∈X ‖x‖
2
Σ−1
t

(b) Σt+1 = Σt + xtx
>
t

Via Lemma C.6, we have that:

T−1∑
t=0

ln
(

1 + ‖xt‖2Σ−1
t

)
≤ ln

det(ΣT )

det(Σ0)
.

This implies that there must exist a t ∈ 0, . . . , T − 1, such that:

ln
(

1 + ‖xt‖2Σ−1
t

)
≤ γT (λ)

T
,

which means that:

‖xt‖2Σ−1
t
≤ exp

(
γT (λ)

T

)
− 1.

Note that xt = argmaxx∈X ‖x‖Σ−1
t

. Thus, we have that:

max
x∈X
‖x‖2

Σ−1
t
≤ exp

(
γT (λ)

T

)
− 1.

Note that the above derivation holds for any λ ∈ R+.

Define MT =
∑T
i=0 xtx

>
t . Note that the range of MT , Range(MT ) is a T + 1-dimensional object. For an ε′-net, C, in `2

distance over BW -norm ball on Range(MT ), i.e., {v ∈ W : v ∈ Range(MT )}. With a standard covering number bound,
we have that ln(|C|) ≤ 2T ln (1 + 2BW /ε

′) (e.g. see Lemma F.1).
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Fix some w ∈ W . Denote the projection of w on the the range of MT by w. Let w′ ∈ C being the closest point to w in `2
distance. Note that ‖w − w′‖2 ≤ ε′. For any x ∈ X , we have:(

(w − w′)>x
)2 ≤ ‖w − w′‖2ΣT ‖x‖2Σ−1

T

≤ ‖w − w′‖2ΣT (exp (γT (λ)/T )− 1)

=

(
λ‖w − w′‖2 + (w − w′)>

(
T∑
i=0

xix
>
i

)
(w − w′)

)
(exp (γT (λ)/T )− 1)

=

(
λ‖w − w′‖2 + (w − w′)>

(
T∑
i=0

xix
>
i

)
(w − w′)

)
(exp (γT (λ)/T )− 1)

≤
(
4λB2

W + Tε′2B2
X

)
(exp (γT (λ)/T )− 1),

where the equality in the third step uses that (w − w′)>xi = (w − w′)> xi for all i ∈ 0, . . . , T . The proof is completed
choosing λ = ε2/(8B2

W ) and (ε′)2 = ε2/(2TB2
X).

F. Concentration Arguments for Special Cases
An application to RKHS Linear MDPs. Consider the RKHS linear MDP, where φ : S × A 7→ H withH being some
Hilbert space. Define Φ = {φ(s, a) : s ∈ S, a ∈ A}.
Corollary F.1. Suppose T ∈ N+ and ε ∈ R+; defineW ⊆ {w ∈ H : ‖w‖ ≤ BW } for some real number BW ; and suppose
for all φ(s, a) ∈ Φ that ‖φ(s, a)‖2 ≤ Bφ. There exists a set C ⊂ W such that: (i) log |C| ≤ T log(1 + 3BφBW

√
T/ε) and

(ii) for all w ∈ W , there exists a w′ ∈ C such that for all distributions d over S ×A× S, we have:∣∣∣∣Es,a,s′∼d[w · φ(s, a)− r(s, a)−max
a′

w · φ(s′, a′)
]

− Es,a,s′∼d
[
w′ · φ(s, a)− r(s, a)−max

a′
w′ · φ(s, a′)

]∣∣∣∣
≤ 2ε

√(
exp

(
γT (ε2/(8B2

W ))

T

)
− 1

)
Proof. For any distribution d, we seek to bound:∣∣∣Es,a,s′∼d[w · φ(s, a)− w′ · φ(s, a)−

(
max
a′

w · φ(s′, a′)−max
a′

w′ · φ(s, a′)
)]∣∣∣

≤ sup
s,a

∣∣w · φ(s, a)− w′ · φ(s, a)
∣∣+
∣∣∣Es,a,s′∼d[(max

a′
w · φ(s′, a′)−max

a′
w′ · φ(s, a′)

)]∣∣∣
≤ sup

s,a

∣∣w · φ(s, a)− w′ · φ(s, a)
∣∣+ sup

s

∣∣ sup
a
w · φ(s, a)− sup

a
w′ · φ(s, a)

∣∣∣∣∣
≤ 2 sup

s,a

∣∣w · φ(s, a)− w′ · φ(s, a)
∣∣

where the last step follows using that | supx f(x)− supx g(x)| ≤ supx |f(x)− g(x)| (which can be verified by considering
both case of the sign inside the absolute value). The proof is completed by choose w′ to be closest point C to w and applying
Theorem E.1.

Corollary F.2. DefineW =: {w ∈ H : ‖w‖ ≤ BW , w>φ(s, a) ∈ [0, H] ∀s, a ∈ S ×A} for some real number BW ; and
suppose for all φ(s, a) ∈ Φ that ‖φ(s, a)‖2 ≤ Bφ. Let

`(r, s, a, s′, w) = w · φ(s, a)− r −max
a′

w · φ(s′, a′)

with r ∈ [0, 1]. Then, for any distribution µ over R× S ×A× S and for any δ ∈ (0, 1), with probability of at least 1− δ
over choice of an i.i.d. sample D ∼ µm of size m, for all w ∈ H

|LD(w)− Lµ(w)| ≤ 8√
m

+ 2H

√√√√2γ̃m ln
(

1 + 3BφBW
√
γ̃mm

)
+ 2 ln(1/δ)

m
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where γ̃m = γ̃(1/(8B2
Wm); Φ) (as defined in Equation (5)).

Proof. First note that for any w ∈ W , we must have:

`(r, s, a, s′, w) ∈ [−H − 1, H],

since we eliminate all w such that w>φ(s, a) 6∈ [0, H] for some s, a.

Consider the cover C from Corollary F.1. From Lemma G.1 and a union bound over all w′ ∈ C, for all w′ ∈ C, we have that
with probability at least 1− δ:

|LD(w′)− Lµ(w′)| ≤ 2H

√
2 ln(|C|/δ)

m
.

Now consider any w ∈ W , via Corollary F.1, we know that there exists a w′ ∈ C such that:

|Lµ(w)− Lµ(w′)| ≤ 2ε

√(
exp

(
γT (λ)

T

)
− 1

)
.

Thus, together with the fact that Corollary F.1 holds for both µ and the uniform distribution over D, we get:

|Lµ(w)− LD(w)| ≤ |Lµ(w)− Lµ(w′)|+ |Lµ(w′)− LD(w′)|+ |LD(w′)− LD(w)|

≤ 4ε

√(
exp

(
γT (λ)

T

)
− 1

)
+ 2H

√
2 ln(|C|/δ)

m

≤ 4ε

√(
exp

(
γT (ε2/(8B2

W ))

T

)
− 1

)
+ 2H

√√√√2T ln
(

1 + 3BφBW
√
T/ε

)
+ 2 ln(1/δ)

m

Let us set ε = 1/
√
m and rearrange terms, we get:

|Lµ(w)− LD(w)|

≤ 4√
m

√(
exp

(
γT (1/(8B2

Wm))

T

)
− 1

)
+ 2H

√√√√2T ln
(

1 + 3BφBW
√
Tm

)
+ 2 ln(1/δ)

m
.

Denote γ̃m = T where T is the smallest integer that satisfies T ≥ γT (1/(8B2
Wm)). Thus, we have:

|Lµ(w)− LD(w)|

≤ 8√
m

+ 2H

√√√√2γ̃m ln
(

1 + 3BφBW
√
γ̃mm

)
+ 2 ln(1/δ)

m
,

where in the inequality we use exp
(
γT (1/(8B2

Wm))
T

)
− 1 ≤ e− 1 ≤ 2.

An application to RKHS linear functions Consider features ζ : S × A × S 7→ V with V being some Hilbert space.
Define Z = {ζ(s, a, s′) : (s, a, s′) ∈ S ×A× S}.

Corollary F.3. DefineW =: {w ∈ V : ‖w‖ ≤ BW , w>ζ(s, a, s′) ∈ [0, H] ∀s, a, s′ ∈ S ×A× S} for some real number
BW ; and suppose for all ζ(s, a, s′) ∈ Z that ‖ζ(s, a, s′)‖2 ≤ Bζ . Let

`(r, s, a, s′, w) = w · ζ(s, a, s′)
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Then, for any distribution µ over S ×A× S and for any δ ∈ (0, 1), with probability of at least 1− δ over choice of an i.i.d.
sample D ∼ µm of size m, for all w ∈ H

|LD(w)− Lµ(w)| ≤ 4√
m

+ 2H

√√√√2γ̃m ln
(

1 + 3BζBW
√
γ̃mm

)
+ 2 ln(1/δ)

m

where γ̃m = γ̃(1/(8B2
Wm);Z) (as defined in Equation (5)).

Proof. The proof follows exactly as proof of Corollary F.2.

Lemma F.1 (Covering number). For any ε > 0, the ε-covering number of the Euclidean ball in Rd with radius R ∈ R+,
i.e., B = {x ∈ Rd : ‖x‖2 ≤ R}, is upper bounded by (1 + 2R/ε)d.

G. Auxiliary Lemmas
Lemma G.1 (Azuma-Hoeffding). Let X1, . . . , Xm be independent random variables with mean µ such that |Xi| ≤ B for
some B > 0 almost surely for all i ∈ [m]. Then, with probability 1− δ,∣∣∣∣∣ 1

m

m∑
i=1

Xi − µ

∣∣∣∣∣ ≤ √2B

√
ln(1/δ)

m

Lemma G.2. (Log Dominance Rule) Suppose α, a, b ≥ 0 and c ≥ (1 + α)α. Then, m = ca lnα(abc) is a solution to

m ≥ a lnα(bm)

Proof. First note that

a lnα(bm)

= a lnα(abc lnα(abc))

= a (ln(abc) + α ln ln(abc))
α

≤ a (ln(abc) + α ln(abc))
α

= a(1 + α)α lnα(abc)

≤ ca lnα(abc)

Lemma G.3. Let X ⊂ Rd and supx∈X ‖x‖2 ≤ BX . Then, the maximum information gain

γn(λ;X ) ≤ d ln

(
1 +

nB2
X

dλ

)
Furthermore, the critical information gain

γ̃(λ;X ) ≤
⌈

3d ln

(
1 +

3B2
X

λ

)⌉
Proof.

γn(λ;D) := max
x0...xn−1∈D

ln det

(
I +

1

λ

n−1∑
t=0

xtx
>
t

)
.

We have

trace

(
I +

1

λ

n−1∑
t=0

xtx
>
t

)
= d+

1

λ

n−1∑
t=0

‖xt‖22

≤ d+ nB2
X/λ
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Therefore, using the Determinant-Trace inequality, we get the first result

ln det

(
I +

1

λ

n−1∑
t=0

xtx
>
t

)
≤ d ln

trace
(

I + 1
λ

∑n−1
t=0 xtx

>
t

)
d

≤ d ln

(
1 +

nB2
X

dλ

)
To get the second result, first note that for n = cd ln(1 + cB2

X/λ) and c = 3,

d ln

(
1 +

nB2
X

dλ

)
= d ln

(
1 +

cB2
X

λ
ln(1 + cB2

X/λ)

)
≤ d ln

(
1 +

cB2
X

λ
max{ln(1 + cB2

X/λ), 1}
)

≤ d ln

(
(1 +

cB2
X

λ
) max{ln(1 + cB2

X/λ), 1}
)

≤ d
(

ln
(
1 +

cB2
X

λ

)
+ ln

(
max{ln(1 + cB2

X/λ), 1}
))

≤ d
(

ln
(
1 +

cB2
X

λ

)
+ ln(1 + cB2

X/λ)

)
= 2d ln

(
1 +

cB2
X

λ

)
≤ n

where the third last step follows from ln(1 + cB2
X/λ) ≥ 0 and ln(1 + cB2

X/λ) ≥ ln(ln(1 + cB2
X/λ)) and last step follows

from c = 3 > 2.


