A. Additional Details on Algorithms

A.1. Additional Background of \(\alpha \)-rank

Given a \(n \)-player game, where each player \(i \in [n] \) has a finite set \(S_i \) of pure strategies. Let \(S = \Pi_i S_i \) denote the set of joint strategies. For each tuple \(s = (s_1, \ldots, s_n) \in S \) of pure strategies, the game specifies a joint payoffs \(M(s) \) of players. The vector of expected payoffs is denoted \(\bar{M}(s) = (M^1(s), \ldots, M^n(s)) \in \mathbb{R}^n \). \(\alpha \)-rank computes rankings following four steps: 1) construct payoff matrix for each player \(M^i, i \in [n] \); 2) construct transition matrix by Equation (2); 3) compute the stationary distribution of \(C \), as \(\pi \); 4) return the ranking of strategies according to probabilities in \(\pi \). Below is the computation of transition matrix \(C \):

\[
C_{i,\sigma} = \begin{cases}
\frac{1 - \exp(-\alpha (M^i(\sigma) - M^i(s)))}{\eta} & \text{if } M^i(\sigma) \neq M^i(s) \\
0 & \text{otherwise}
\end{cases}
\]

(2)

where the coefficient \(\eta \) is defined as \(\eta = (\sum_{i=1}^n (|S_i| - 1))^{-1} \), and \(\alpha > 0, \eta \in \mathbb{N} \) are hyperparameters. Let \(C_{\sigma, \tau} = 0 \) for all \(\tau \) that differ from \(\sigma \) in more than a single player’s strategy. \(C_{\sigma, \sigma} = 1 - \sum_{\tau \neq \sigma} C_{\sigma, \tau} \) ensures that transition distributions are valid.

Our two-player meta-games setting is the single population case of traditional \(\alpha \)-rank that two players have a shared pure strategies space \(S \), and the joint strategies space is defined as \(S \times S \). The payoffs of joint strategies are saved as a payoff matrix \(\bar{M} \), where \(M_{ij}, M_{ji} \) represents the payoffs of strategy \(S_i \) and strategy \(S_j \) respectively. Thus we could construct the transition matrix \(C \) between strategies in \(S \) by Equation (1) and get the ranking of strategies in \(S \) eventually.

A.2. Supporting Algorithms

Algorithm 3 gives the details of RG-UCB (Rowland et al., 2019) algorithm as a supplement of Algorithm 2. RG-UCB is composed by a sampling scheme \(S \) and a stopping condition \(C(\delta) \). It adopts Uniform-exhaustive (UE) as sampling scheme \(S \). At each time, it uniformly randoms a pair from all pairs need to be estimated to make a simulation. For the stopping condition \(C(\delta) \), Hoeffding (UCB) is considered as confidence-bound for stopping the evaluation of \(M_{ij} \). With \(\delta \) as confidence level and \(K \) as interaction times of \(M_{ij} \), we can get \(M_{ij} \) bounded in \([\bar{M}_{ij} - \epsilon, \bar{M}_{ij} + \epsilon] \), where \(\bar{M}_{ij} \) is empirical estimation and \(\epsilon \) is a very small quantity calculated by the Hoeffding inequality and \(\epsilon < \sqrt{\frac{4M_{max}^2 \log(2/\delta)}{K}} \).

Algorithm 4 gives the OptSpace algorithm (Keshavan & Oh, 2009; Keshavan et al., 2009; 2010) as a supplement to Algorithm 1 and 2. OptSpace reconstructs a low rank matrix from a small subset of entries. Given incomplete observations \(M^\Omega \), OptSpace aims to find \(\bar{M} \), such that \(\bar{M} = U \Sigma V \), and \(||M^\Omega - \bar{M}||_F \) is minimized. It relies on singular value decomposition for an initial guess and then adopts local manifold optimization. Two important steps are Trimming and Rank-\(r \) projection. Trimming eliminates over-represented rows and columns in \(M^\Omega \), which are those containing more than \(2|\Omega|/n \) observed entries. Let \(\tilde{M}^\Omega \) denote the trimmed matrix. Rank-\(r \) projection is then applied to find the initialization of \(U_0, V_0 \). The singular value decomposition of the trimmed matrix \(\tilde{M}^\Omega \) is defined as: \(\tilde{M}^\Omega = \sum_{i=1}^n \Sigma_i U_i V_i^T \), where \(\Sigma_1 \geq \Sigma_2 \ldots \geq \Sigma_n \) are singular values. Then the rank-\(r \) projection of \(\tilde{M}^\Omega \) is defined as: \(P_r(\tilde{M}^\Omega) = \frac{n}{n^2} \sum_{i=1}^r \Sigma_i U_i V_i^T \). Then we get the reconstructed matrix \(\bar{M} \) through gradient descent on the Grassman manifold, with initial condition \((U_0, V_0) \). For more detailed descriptions, see (Keshavan & Oh, 2009; Keshavan et al., 2009; 2010).
We first give the necessary lemmas and theorems for our proof.

Algorithm 3 ResponseGraphUCB($\delta, S, C(\delta)$)

1: Construct list L of pairs of strategy profiles to compare;
2: Initialize tables \tilde{M}, N to store empirical means and interaction counts while L is not empty do;
3: while L is not empty do
4: Select a strategy profile s appearing in an edge in L using sampling scheme S;
5: Simulate one interaction for s and update \tilde{M}, N accordingly;
6: Check whether any edges are resolved according to $C(\delta)$, remove them from L if so return empirical table \tilde{M}.
7: end while

Algorithm 4 OptSpace(Matrix completion of $M^{(i)}$)

Input: A chosen rank r, sampling operator $\Omega \in [n] \times [n]$
Output: The recovered matrix \tilde{M}
1: Trim $M^{(i)}$, and let $\tilde{M}^{(i)}$ be the output;
2: Compute the rank-r projection of $M^{(i)}$, $\Pi_r(\tilde{M}^{(i)}) = U_0 \Sigma_0 V_0^T$;
3: Minimize $\hat{F}(U, V)$ through gradient descent, with initial condition (U_0, V_0).
4: Return $\tilde{M} = U \Sigma V^T$

B. Theories and Proofs

B.1. Details of definition and theorem for Proposition 1

Definition 1 ((μ_0, μ_1)-Incoherence (Keshavan et al., 2009)). Let matrix $M \in \mathbb{R}^{n \times n}$ of rank r and the singular value decomposition is $M = U \Sigma V^T$, $U, V \in \mathbb{R}^{n \times r}$ are orthogonal matrices and $\Sigma \in \mathbb{R}^{r \times r}$ is a diagonal matrix. In matrix Σ, $\Sigma_{min} = \Sigma_1 \leq \ldots \leq \Sigma_{r} = \Sigma_{max}$, and define $\kappa = (\Sigma_{max}/\Sigma_{min})$. If M meet the following two conditions:

1. $\forall i \in [n]: \sum_{k=1}^{r} U^2_{ik} \leq \mu_0 r$, $\sum_{k=1}^{r} V^2_{ik} \leq \mu_0 r$
2. $\forall i, j \in [n]: |\sum_{k=1}^{r} U_{ik} (\frac{\Sigma_{kj}}{\Sigma_{jj}}) V_{jk}| \leq \mu_1 \sqrt{r}$

then M is defined as (μ_0, μ_1)-incoherent.

This condition describes that one cannot expect to recover the payoff matrix if the meaningful payoffs are in the null space of the sampling operator. Let $\| \cdot \|_*$ denote the nuclear norm, which is a summation of all singular values. The following theorem supports the result in Proposition 1.

Theorem 3. (Keshavan et al., 2010) Assume $M \in \mathbb{R}^{n \times n}$ of rank r that satisfies the incoherence conditions with (μ_0, μ_1). Let $\mu = \max \{ \mu_0, \mu_1 \}$. Further, assume $\Sigma_{min} \leq \Sigma_1 \leq \ldots \leq \Sigma_r \leq \Sigma_{max}$ with $\Sigma_{min}, \Sigma_{max}$ bounded away from 0 and ∞. Then there exists a numerical constant C such that, if

$$|\Omega| \geq Cnr\sqrt{\alpha} \left(\frac{\Sigma_{max}}{\Sigma_{min}} \right)^2 \max \left\{ \mu_0 \log n, \mu^2 r \sqrt{\alpha} \left(\frac{\Sigma_{max}}{\Sigma_{min}} \right)^4 \right\}$$

then the output of OptSpace \tilde{M} converges, with high probability, to the matrix M.

The proof of Proposition 1 directly follows by applying Theorem 3 with $\alpha = 1$.

B.2. Proof of Theorem 1

We first give the necessary lemmas and theorems for our proof.

Lemma 1. (Rowland et al., 2019) Suppose there are n strategies and all payoffs are bounded in the interval $[-M_{max}, M_{max}]$, and define $L(\alpha, M_{max}) = 2\alpha \exp(2\alpha M_{max})$, and $g(\alpha, n, p, M_{max}) = \eta \exp(2\alpha M_{max})$, where α, n, p are all hyperparameters in α-rank. Let $\epsilon \in (0, 18 \times 2^{-n} \sum_{i=1}^{n-1} \binom{n}{i} n^i)$. If $\sup_{(i,j) \in [n] \times [n]} |\tilde{M}_{i,j} - M_{i,j}| \leq \frac{g(\alpha, n, p, M_{max})}{18L(\alpha, M_{max}) \sum_{i=1}^{n-1} \binom{n}{i} n^i}$, then we have $\max_{i \in [n]} |\tilde{\pi}(i) - \pi(i)| \leq \epsilon$.

Theorem 4. (Keshavan et al., 2009) Let $M \in \mathbb{R}^{n \times n}$ be a (μ_0, μ_1)-incoherent matrix of rank r and the singular value decomposition is $M = U \Sigma V^T$, where $U, V \in \mathbb{R}^{n \times r}$ are orthogonal matrices and $\Sigma \in \mathbb{R}^{r \times r}$ is a diagonal matrix. In
matrix $\Sigma, \Sigma_{\min} = \Sigma_1 \leq \ldots \leq \Sigma_1 = \Sigma_{\max}$, and define $\kappa = (\Sigma_{\max}/\Sigma_{\min})$. Let $\tilde{M} = M + \mathbf{Z}$ be the observed matrix with noise \mathbf{Z}. Define $\Omega \subseteq [n] \times [n]$ is the sampling operator in which m entries are randomly selected for observation from all n^2 entries. Therefore, the matrix with noise observed by the sampling operator Ω is $\tilde{M}^\Omega = M^\Omega + \mathbf{Z}^\Omega$. There exist constants C, C' such that if the number of sampled entries satisfies

$$
|\Omega| \geq C\kappa^2 n \max(\mu_0 r \log(n), \mu_0^2 r^2 \kappa^4, \mu_1^2 r^2 \kappa^2)
$$

and get \tilde{M} through performing matrix completion algorithm OptSpace (Keshavan et al., 2009) on \tilde{M}^Ω then we have

$$
\frac{1}{n} \| \tilde{M} - M \|_F \leq C' \kappa^2 n^2 \sqrt{\frac{2}{|\Omega|}} \| \mathbf{Z}^\Omega \|_2 + \| \mathbf{Z} \|_F
$$

with probability at least $1 - \frac{1}{m}$. The right hand side above is less than Σ_{\min}.

Theorem 5. (Keshavan et al., 2009) For any matrix $M \in \mathbb{R}^{n \times n}$ and any set $\Omega \subseteq [n] \times [n]$, \n
$$
\| M^\Omega \|_2 \leq \frac{2|\Omega|}{n} \max_{(i,j) \in \Omega} |M_{ij}|
$$

Now we are ready to provide the proof for Theorem 1.

Proof of Theorem 1. According to Theorem 4 and 5, we have

$$
\| \tilde{M} - \hat{M} \|_F \leq \| \tilde{M} - M \|_F + \| M - \hat{M} \|_F
$$

(3)

$$
\leq C' \kappa^2 n^2 \sqrt{\frac{2}{|\Omega|}} \| \mathbf{Z}^\Omega \|_2 + \| \mathbf{Z} \|_F
$$

(4)

$$
\leq C' \kappa^2 n^2 \sqrt{\frac{2}{|\Omega|}} \cdot \frac{2|\Omega|}{n} \max_{(i,j) \in \Omega} |Z_{ij}| + n \| \mathbf{Z} \|_{\max}
$$

(5)

$$
\leq (2C' \kappa^2 \sqrt{\tau} + 1)n \| \mathbf{Z} \|_{\max}.
$$

(6)

Recall that, $\tau = \frac{2\epsilon g(\alpha, n, p, M_{\max})}{18L(\alpha, M_{\max}) \sum_{i=1}^{n-1} \binom{n}{i} n (2C' \kappa^2 \sqrt{\tau} + 1)n}$, Thus we have

$$
\sup_{(i,j) \in [n] \times [n]} |\tilde{M}_{ij} - \hat{M}_{ij}| \leq \| \tilde{M} - \hat{M} \|_F \leq \frac{\epsilon g(\alpha, \eta, p, M_{\max})}{18L(\alpha, M_{\max}) \sum_{i=1}^{n-1} \binom{n}{i} n i n}. \quad (7)
$$

By applying Lemma 1, we have $\max_{i \in [n]} |\tilde{\pi}(i) - \hat{\pi}(i)| \leq \epsilon$. Thus the proof of Theorem 1 is completed.

B.3. Proofs of Theorem 2

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Define $\mathbf{Z} = \hat{M} - M$. Let $\tau = \frac{\epsilon g(\alpha, n, p, M_{\max}) |\Omega|}{18L(\alpha, M_{\max}) \sum_{i=1}^{n-1} \binom{n}{i} n i (2C' \kappa^2 \sqrt{\tau} + 1)n}$. Denote $\tilde{M}_{ij} = \frac{1}{K} \sum_{k=1}^{K} \tilde{M}_{ij}^k$,
then we have:

\[
P(\|Z^\Omega\|_2 > \tau) \leq P\left(\frac{2|\Omega| \max_{(i,j) \in \Omega}|Z_{ij}|}{n} > \tau \right) \quad \text{by Theorem 5}
\]

\[
= P\left(\max_{(i,j) \in \Omega} |Z_{ij}| > \frac{\tau n}{2|\Omega|} \right)
\]

\[
= P\left(\exists (i, j) \in \Omega : |\hat{M}_{ij} - M_{ij}| > \frac{\tau n}{2|\Omega|} \right)
\]

\[
\leq \sum_{(i,j) \in \Omega} P(|\hat{M}_{ij} - M_{ij}| > \frac{\tau n}{2|\Omega|})
\]

\[
\leq \sum_{i,j \in \Omega} \frac{1}{mn^3} \quad \text{(since } K > \frac{8M_{max}^2 \log(2mn^3)m^2}{\tau^2n^2})
\]

\[
= \frac{1}{n^3}
\]

Here (8) holds because of union bound theorem (Shalev-Shwartz & Ben-David, 2014). (9) holds because of Hoeffding’s Inequality: let \(X_1, X_2, \ldots, X_n\) be i.i.d random variables bounded in \([a, b]\), then for any \(\epsilon > 0\), \(P\left(\left| \frac{1}{K} \sum_{i=1}^K X_i - \mathbb{E}(X_i) \right| > \epsilon \right) \leq 2e^{-2K\epsilon^2/(b-a)^2}\). So we get that with probability at least \(1 - \frac{1}{n^3}\),

\[
\|Z^\Omega\|_2 \leq \frac{\epsilon g(\alpha, \eta, p, M_{\max})|\Omega|}{18L(\alpha, M_{\max}) \sum_{i=1}^{n-1} (\frac{\eta}{i}) i^n C' \kappa^2 n^2 \sqrt{r}}
\]

Thus, combined with Theorem 4 and the union bound, the probability that the first inequality (in Theorem 4) is true is \(1 - 1/n^3\), the probability that the second inequality (above) is true is \(1 - 1/n^3\), we can get with probability at least \(1 - \frac{2}{n^3}\), that:

\[
\|\hat{M} - M\|_F \leq \frac{\epsilon g(\alpha, \eta, p, M_{\max})}{18L(\alpha, M_{\max}) \sum_{i=1}^{n-1} (\frac{\eta}{i}) i^n}
\]

Obviously, \(\sup_{(i,j) \in [n] \times [n]} |\hat{M}_{i,j} - M_{i,j}| \leq \|\hat{M} - M\|_F\). By applying Lemma 1, the proof of Theorem 2 is completed. \(\square\)

C. Further Experiments

Additional results Figure 7 and 8 show the results with \(\alpha = 0.001\) and \(\delta \in \{0.01, 0.1, 0.2\}\) on Bern(100) and soccer meta-game, as a supplement for Figure 5. Similarly, Figure 9 and 10 show the results with \(\alpha = 0.01\) and \(\delta \in \{0.01, 0.1, 0.2\}\) on Bern(100) and soccer meta-game, as a supplement for Figure 5. The results show that, across different choices of \(\alpha\)-rank parameters, our algorithm can estimate \(\alpha\)-rank with much fewer sample of pairs.

Table 3 shows the statistics of real world games that is used in Figure 1. Table 4 shows results of twelve real world games with \(\alpha\)-conv metric, as a supplement of Table 2, which demonstrates that higher rank will lead to lower approximation error on payoff matrices and better convergence to \(\alpha\)-rank.
Table 3. Statistics of payoffs from real world games from (Czarnecki et al., 2020). k denote the number of dominant singular values such that $\sum_{i}^{k} \Sigma_{i} / \sum_{i}^{n} \Sigma_{i} \geq 80\%$.

<table>
<thead>
<tr>
<th>Game</th>
<th># policies</th>
<th>rank</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,3-Blotto</td>
<td>66</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>10,4-Blotto</td>
<td>286</td>
<td>40</td>
<td>14</td>
</tr>
<tr>
<td>10,5-Blotto</td>
<td>1001</td>
<td>50</td>
<td>16</td>
</tr>
<tr>
<td>3-move parity game 2</td>
<td>160</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>5,3-Blotto</td>
<td>21</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>5,4-Blotto</td>
<td>56</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>5,5-Blotto</td>
<td>126</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>AlphaStar</td>
<td>888</td>
<td>888</td>
<td>238</td>
</tr>
<tr>
<td>Blotto</td>
<td>1001</td>
<td>50</td>
<td>16</td>
</tr>
<tr>
<td>Disc game</td>
<td>1000</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Elo game + noise=0.1</td>
<td>1000</td>
<td>1000</td>
<td>396</td>
</tr>
<tr>
<td>Elo game + noise=0.5</td>
<td>1000</td>
<td>1000</td>
<td>507</td>
</tr>
<tr>
<td>Elo game + noise=1.0</td>
<td>1000</td>
<td>1000</td>
<td>524</td>
</tr>
<tr>
<td>Elo game</td>
<td>1000</td>
<td>38</td>
<td>2</td>
</tr>
<tr>
<td>Kuhn-poker</td>
<td>64</td>
<td>64</td>
<td>24</td>
</tr>
<tr>
<td>Normal Bernoulli game</td>
<td>1000</td>
<td>1000</td>
<td>499</td>
</tr>
<tr>
<td>Rock-Paper-Scissors</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Random game of skill</td>
<td>1000</td>
<td>1000</td>
<td>515</td>
</tr>
<tr>
<td>Transitive game</td>
<td>1000</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Triangular game</td>
<td>1000</td>
<td>1000</td>
<td>137</td>
</tr>
<tr>
<td>connect_four</td>
<td>1470</td>
<td>1464</td>
<td>297</td>
</tr>
<tr>
<td>go(board_size=3,komi=6.5)</td>
<td>1933</td>
<td>1924</td>
<td>516</td>
</tr>
<tr>
<td>go(board_size=4,komi=6.5)</td>
<td>1679</td>
<td>1668</td>
<td>380</td>
</tr>
<tr>
<td>hex(board_size=3)</td>
<td>766</td>
<td>764</td>
<td>232</td>
</tr>
<tr>
<td>misere(game=tic_tac_toe())</td>
<td>926</td>
<td>926</td>
<td>295</td>
</tr>
<tr>
<td>quoridor(board_size=3)</td>
<td>1404</td>
<td>1306</td>
<td>244</td>
</tr>
<tr>
<td>quoridor(board_size=4)</td>
<td>1540</td>
<td>1464</td>
<td>343</td>
</tr>
<tr>
<td>tic_tac_toe</td>
<td>880</td>
<td>880</td>
<td>285</td>
</tr>
</tbody>
</table>

Figure 7. Bernoulli game with $n = 100, r = 10, \alpha = 0.001$ with noisy evaluations.
Figure 8. Soccer meta-game with $n = 200, r = 10, \alpha = 0.001$ with noisy evaluations.

Figure 9. Bernoulli game with $n = 100, r = 10, \alpha = 0.01$ with noisy evaluations.

Figure 10. Soccer meta-game with $n = 200, r = 10, \alpha = 0.01$ with noisy evaluations.
Table 4. Results on twelve real world games with noise free evaluations. (Left of plot) Recovery error on the payoff matrices. (Right of the plot) α-conv error showing the convergence to α-rank.