Learning Diverse-Structured Networks for Adversarial Robustness

A. Proof of Proposition 3.3
Before we give the proof for Proposition 3.3, we first illustrate how we obtain Lemma 3.2.

Proof of Lemma 3.2 For the first module f; in DS-Net, the Lipschitz smoothness is represented as
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which is obtained by the definition of Lipschitz smoothness for each atomic block. By composing different layers behind
together, we get
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Therefore, the Lipschitz constant of DS-Net is decomposed as Ly = H 1 Z - w/ L’ Followmg the same decomposition

process, the Lipschitz constant of the common network architecture is decomposed as L = j:1 KL ; with the same number
of network parameters.

Proof of Proposition 3.3 For the Lipschitz constant of the parameterized convolutional layers, we focus on the L, bounded
perturbations. According to the definition of spectral norm, the Lipschitz constant of these layers is the spectral norm of
its weight matrix. Mathematically, we get L/ = HkM:1 |[Wi||2 where M is the number of convolutional layers in the current
block. The spectral norm is also the maximum singular value of W. According to Pascanu et al. (2013), we need ||Wi|[2 > 1
in order to prevent vanishing gradient problem during adversarial training. Therefore, we get L > 1 for all the blocks.

Comparing Lf and L; then degenerates to comparing Z N wJ L] for DS-Net and H i Lj for the common network
architecture since we can reorder the blocks and do not change the Lipschitz constant And we have the following
comparison results
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which obtained by using the fact that Ll’ > 1. Note that although the perturbation is L, bounded, the robustness against L.

can be also achieved, as stated by (Qian & Wegman, 2019).

Next, we prove DS-Net with a learnable attention weight is more robust than DS-Net with an arbitrary fixed set of attention
weight. According to Cissé et al. (2017); Ma et al. (2020), the robust training objective £( f(x+ J,y,w)) can be approximated
by

U(f(x+8,y,w)) = L(f(xy,w)) + Le, (19)
which is the standard classification loss on the natural images plus a term that is linearly correlated with the global Lipschitz
constant.

Given a fixed number of network parameters, the standard classification loss function for the DS-Net with a learnable or
fixed set of attention weights does not vary much. Therefore, adversarial training minimizes the global Lipschitz constant L
of DS-Net implicitly. Recall that the global L1psch1tz constant L is a function of the attention weight w/ and the Lipschitz

constant LJ for each block, 1f we assume w! is learnable and adversarial training leads to a global minimization of L, then
changing the optimized wl in DS-Net will cause the global Lipschitz constant L to increase, which validates our claim

Ly < L}.
B. Proof of Theorem 3.7
The proof of Theorem 3.7 is inspired by Shu et al. (2020).

Proof of Theorem 3.7 Following Fig. 3 in the main paper, we first explain how we obtain the bound of the block-wise
Lipschitz constant for the common network architecture given a bounded block-wise Lipschitz constant of DS-Net.

To begin with, the derivative w.r.t. the parameter W; in DS-Net is calculated as:

Vi f =V fxl. (20)
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For the common network architecture, we get £; = H;(:l Wix. Similarly, the gradient w.r.t. the parameter matrix W; is

calculated by the chain rule as
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Using the fact that Vg, f= V. [, we replace V, FxT with Vw, f according to Eqn. (20) and we get
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To avoid the complexity of using the standard Lipschitz constant of the smoothness for analysis, we explore and compare the

block-wise Lipschitz constant (Beck & Tetruashvili, 2013) for DS-Net and the common network architecture. Specifically,

we analyze for each parameter matrix W; while fixing others. Currently, we have the block-wise Lipschitz constant bound
for DS-Net, which is || Vy1 f — Vo f|| < Li |W' = W?||. W', W? are any two possible assignments of W;.

Denote A; as the largest eigenvalue of the parameter matrix W;, assume we use a 2-norm for the parameter matrix W;, then
we get A; = ||W;|| where 4; is the largest eigenvalue of ||W;||. The local smoothness w.r.t. the network parameters of the

common network architectures is shown as
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The first line of Eqn. (23) is obtained based on Eqn. (22) and the fact W; is the same when we focus on the investigating the
block-wise Lipschitz smoothness of W;. The second line of Eqn. (23) is based on triangle inequality of norm. The third
line is obtained by the inequality |[WV|| < ||W||||V || and the given block-wise smoothness of our DS-Net. The last line is
obtained by using the fact that Wk1 = sz ifk+#£1i.
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Similarly, for the gradient variance bound of the common network architecture, we start from the gradient variance bound
for DS-Net as follows

E ||V, f —EVw,f||* < 62 (24)
Given such a bound for DS-Net, the bound for the common network architectures is shown as follows:
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The first line of Eqn. (25) is obtained by using Eqn. (22). The second line of Eqn. (23) is obtained by Cauchy-Schwarz
inequality. The last line is obtained based on the inequality ||[W V|| < ||W||||V || and the bounded gradient variance of DS-Net.
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C. Additional Results on TRADES

To further illustrate the effectiveness of DS-Net on different adversarial training styles, we test its robustness and standard
accuracy on TRADES with both § = 1 and 8 = 6 in Tab. 5. The detailed experimental setting is described in Section 4.1 of
the main paper. Tab. 5 shows a similar trend as the DS-Net trained under standard AT and MART as stated in the main paper.

Table 5. Evaluations (test accuracy) of deep models on CIFAR-10 and SVHN dataset using TRADES (Zhang et al., 2019b). I means
B = 1.0 and > means 8 = 6.0. 1 means the results by our implementation. The perturbation bound £ is set to 0.031 for each architecture.

CIFAR-10

Defense Architecture Param (M) Natural FGSM PGD-20 C&W., AA
RobNet-large-v2T (Guo et al., 2020)F 33.42  [87.9040.132 57.01+£0.258 49.27+0.315 49.004+0.124 46.84+0.130
WRN-34-10! (Zagoruyko & Komodakis, 2016)1| 46.16 |88.074+0.231 56.03+0.120 49.27+0.200 48.98+0.119 46.62-0.288
IE-WRN-34-10! (Li et al., 2020a)t 4824 |88.31+0.303 54.3240.129 50.224+0.100 50.37+0.331 48.92+0.138
DS-Net-4-softmax! (ours) 20.78 |87.89+0.176 64.38+0.218 50.70+0.322 46.784+0.303 48.10+0.200
DS-Net-6-softmax ! (ours) 46.35 |88.44+0.301 65.00+0.120 52.504+0.286 49.754+0.174 50.00+0.166

Improv.(%) - 0.15% 14.02% 4.54% - 2.21%
RobNet-large-v2Z (Guo et al., 2020)F 3342 [81.954+0.119 60.31+0.320 53.21£0.166 50.09+£0.300 50.13+0.263
WRN-34-10% (Zagoruyko & Komodakis, 2016)1| 46.16 |83.8840.110 62.284+0.206 55.49+0.231 53.94+0.158 52.21+0.145
IE-WRN-34-102 (Li et al., 2020a)} 4824 183.23+0.134 61.284+0.209 56.034+0.099 61.72+0.201 52.73+0.273
DS-Net-4-softmaxZ(ours) 20.78 [82.81+0.375 64.69+0.154 54.61+0.272 50.634+0.219 52.02+0.116
DS-Net-6-softmax(ours) 46.35 |83.98+0.177 66.56+0.208 56.87+0.311 54.124+0.272 53.33+0.256

Improv.(%) - 0.12% 6.87% 1.50% - 1.14%

SVHN

WRN-34-10" (Zhang et al., 2019b)} 46.16  |94.23+0.117 72.76+0.287 52.4240.300 48.65+0.216 48.86+0.183
DS-Net-4-softmax! (ours) 20.78 [94.77+0.213 72.85+0.340 55.69+0.272 48.90+0.136 51.3740.401
DS-Net-6-softmax ! (ours) 46.35 |95.73+0.197 76.61+0.362 54.924+0.351 49.12+0.272 51.26+0.228

Improv.(%) - 1.59% 5.29% 6.24% 0.97% 5.14%
WRN-34-10% (Zhang et al., 2019b)T 46.16 |91.92+0.223 73.654+0.128 57.4640.125 50.344+0.231 54.11+0.231
DS-Net-4-softmax>(ours) 20.78 [91.744+0.370 73.83+0.414 59.84+0.351 53.924+0.184 56.5440.306
DS-Net-6-softmax(ours) 46.35 192.54+0.217 73.044+0.361 60.544+0.212 54.58+0.153 56.75+0.065

Tmprov.(%) - 0.67% 0.24% 5.36% 8.42% 4.88%

D. Effect of Weight Decay

To demonstrate the effect of weight decay in adversarial training, we change the weight cay to 3e-4, 4e-4, 6e-4 and 7e-4
and report the average performance in terms of robustness and generalization ability for DS-Net. We conduct experiments
using standard AT on CIFAR-10 with factor k = 4, which are shown in Tab. 6. The results demonstrate the importance of
weight decay in adversarial training (align well with the empirical findings in Pang et al. (2021)), which should be carefully
selected.

Table 6. Model robustness and generalization ability with different weight decay. The perturbation bound for evaluation is set to 0.031.
Weight decay 3e-4 4de-4 Se-4 6e4 Te4
PGD-20 Acc. (%) [48.28 49.69 54.14 52.67 49.69
Standard Acc. (%) |82.50 85.00 85.39 84.06 83.75

E. Comparison with using different optimizers for DS-Net

SGD is commonly used in AT literature. We tried other optimizers such as Adam, RMSprop, Adadelta and Adagrad. The
PGD-20 accuracy is listed in Tab. 7 for DS-Net-4-softmax on CIFAR-10 (vs. 54.14% by SGD).

Table 7. PGD-20 accuracy of DS-Net trained with different optimizers for block parameters.
Optimizer Adam  Adadelta Adagrad RMSprop
PGD-20 Acc. | 40.76%  41.12%  39.28% 37.46%






