
Risk Bounds and Rademacher Complexity in Batch Reinforcement Learning

A. Proof of Results for Double Sampling (Theorem 4.1)
Throughout the supplementary materials, we omit the subscript ρ in population Rademacher complexty Rρn(·) if the
distribution is clear from the context.

In this part, we prove Theorem 4.1 in Section 4. We first define some auxiliary notations to simplify the writing. We divide
the dataset D̃ into D̃ = D̃1 ∪ . . . ∪ D̃H , where D̃h consists of n independent sample tuples collected at the hth time step.
For fh, gh ∈ Fh, denote

`DS(gh, fh)(s, a, r, s′, s̃′) :=
(
gh(s, a)− r − Vfh(s′)

)2 − 1

2

(
Vfh(s′)− Vfh(s̃′)

)2
.

Define an expected value Eµh`DS(gh, fh) := E
[
`DS(gh, fh)(s, a, r, s′, s̃′)

]
with (s, a) ∼ µh, r = rh(s, a), s′, s̃′ i.i.d.∼

Ph(· | sh, ah) and its empirical version ˆ̀DS(gh, fh) := 1
n

∑
(s,a,r,s′,s̃′,h)∈D̃h `DS(gh, fh)(s, a, r, s′, s̃′). It is easy to see that

Eµh`DS(gh, fh) = ‖gh − T ?h fh‖2µh . For any f = (f1, . . . , fH) ∈ F , we have

LDS(f) :=
1

H

H∑
h=1

`DS(fh, fh+1), EµLDS(f) = E(f) and L̂DS(f) :=
1

H

H∑
h=1

ˆ̀DS(fh, fh+1),

where fH+1 := 0. Note that the loss function L̂DS(f) is an empirical estimation of E(f).

Theorem 4.1 provides an upper error bound for the BRM estimator f̂ = arg minf∈F L̂DS(f), of which the proof is given
below.

Theorem 4.1. There exists an absolute constant c > 0, with probability at least 1 − δ, the ERM estimator f̂ =
arg minf∈F L̂DS(f) satisfies the following:

E(f̂) ≤min
f∈F
E(f) + cH2

√
log(1/δ)

n

+ c

H∑
h=1

(
Rµhn (Fh) +Rνhn (VFh+1

)
)
.

Proof of Theorem 4.1. We apply the uniform concentration inequalites in Lemma G.1. Let f† be a minimizer of the Bellman
error within the function class F , i.e. f† ∈ arg minf∈F E(f). By noting that LDS(f) ∈

[
− 2H2, 4H2

]
, we have with

probabliity at least 1− δ,

EµLDS(f̂)− EµLDS(f†) ≤
(
L̂DS(f̂)− L̂DS(f†)

)
+ 2Rn

({
LDS(f)

∣∣ f ∈ F})+ 6H2

√
2 log(2/δ)

n
. (10)

We use the relations EµLDS(f̂) = E(f̂), EµLDS(f†) = E(f†) = minf∈F E(f) and L̂DS(f̂) ≤ L̂DS(f†) and reduce eq. (10)
to

E(f̂) ≤ min
f∈F
E(f) + 2Rn

({
LDS

∣∣ f ∈ F})+ 6H2

√
2 log(2/δ)

n
. (11)

It then remains to simplify the form of Rademacher complexityRn
({
LDS(f)

∣∣ f ∈ F}).
Due to the sub-additivity of Rademacher complexity, we have

Rn
({
LDS(f)

∣∣ f ∈ F}) ≤ 1

H

H∑
h=1

Rn
(
{`DS(fh, fh+1) | fh ∈ Fh, fh+1 ∈ Fh+1}

)
. (12)

In order to tackle the termRn
(
{`DS(fh, fh+1) | fh ∈ Fh, fh+1 ∈ Fh+1}

)
on the right hand side, we apply the vector-form

contraction property of Rademacher complexity in Lemma G.7. By letting

φ̃h,1 := fh(s, a), φ̃h,2 := rh + Vfh+1
(s′) and φ̃h,3 := rh + Vfh+1

(s̃′),
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we can write

`DS(fh, fh+1) =
1

2

(
φ̃h,1, φ̃h,2, φ̃h,3

)>
Ã

 φ̃h,1
φ̃h,2
φ̃h,3

 with Ã =

 2 −2 0
−2 1 1
0 1 −1

 .

Since the spectral norm ‖Ã‖2 ≤ 4 and
∥∥(φ̃h,1, φ̃h,2, φ̃h,3)>∥∥2

≤
√

3H due to the boundedness of fh and T ?h fh+1, we find

that `DS(fh, fh+1) is (4
√

3H)-Lipschitz with respect to the vector
(
φ̃h,1, φ̃h,2, φ̃h,3

)>
. Lemma G.7 then implies

Rn
({
`DS(fh, fh+1)

∣∣ fh ∈ Fh, fh+1 ∈ Fh+1

})
≤ 10H

(
Rn
({
φ̃h,1

})
+Rn

{
φ̃h,2

})
+Rn

{
φ̃h,3

}))
. (13)

Recalling that s′ and s̃′ are i.i.d. conditioned on (s, a), we use the sub-additivity of Rademacher complexity and find that

Rn
({
φ̃h,1

})
≤ Rµhn (Fh)

Rn
({
φ̃h,2

})
= Rn

({
φ̃h,3

})
≤ Rn({rh})+Rνhn (VFh+1

),
(14)

where νh is the marginal distribution of s′ in the hth step. Note that {rh} is a singleton, therefore,Rn({rh}) = 0. It follows
from eqs. (13) and (14) that

Rn
({
`DS(fh, fh+1)

∣∣ fh ∈ Fh, fh+1 ∈ Fh+1

})
≤ 10H

(
Rµhn (Fh) + 2Rνhn (Vfh+1

)
)
. (15)

Combining eqs. (12) and (15), we learn that

Rn
({
LDS(f)

∣∣ f ∈ F}) ≤ 10

H∑
h=1

(
Rµhn (Fh) + 2Rνhn (VFh+1

)
)
. (16)

Plugging eq. (16) into eq. (11), we finish the proof.

B. Proof of Results for FQI (Theorems 5.2 and 5.3)
In this section, we analyze the FQI estimator defined in Algorithm 1. For any fh ∈ Fh and fh+1 ∈ Fh+1, we denote

`(fh, fh+1)(s, a, r, s′) :=
(
fh(s, a)− r − Vfh+1

(s′)
)2
, (17)

therefore, ˆ̀
h(fh, fh+1) := 1

n

∑
(s,a,r,s′,h)∈Dh `(fh, fh+1)(s, a, r, s′). Note that each iteration in FQI solves an empirical

loss minimization problem f̂h := arg minfh∈Fh
ˆ̀
h(fh, f̂h+1). The empirical loss ˆ̀

h(fh, f̂h+1) approximates

Eµh`(fh, f̂h+1) =E
[
`(fh, f̂h+1)

∣∣ (s, a) ∼ µh, s′ ∼ Ph(· | s, a)
]

=‖fh − T ?h f̂h+1‖2µh + EµhVars′∼Ph(·|s,a)(Vf̂h+1
(s′)).

Recall that
f†h = arg min

fh∈Fh
‖fh − T ?h f̂h+1‖µh . (18)

f†h minimizes Eµh`(fh, f̂h+1).

In the sequel, we develop upper bounds for Bellman error E(f̂) based on (local) Rademathcer complexities.

B.1. Analyzing FQI with Rademacher Complexity (Theorem 5.2)

Theorem 5.2 (FQI, Rademacher complexity). There exists an absolute constant c > 0, under Assumption 2, with probability
at least 1− δ, the output of FQI f̂ satisfies

E(f̂) ≤ ε+ c

H∑
h=1

Rµhn (Fh) + cH2

√
log(H/δ)

n
. (7)
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Proof of Theorem 5.2. By Lemma G.1, with probability at least 1− δ, for any fh ∈ Fh,

Eµh`(fh, f̂h+1)− Eµh`(f
†
h, f̂h+1) ≤

(
ˆ̀
h(fh, f̂h+1)− ˆ̀

h(f†h, f̂h+1)
)

+ 2Rn
({
`(fh, f̂h+1)− `(f†h, f̂h+1)

∣∣ fh ∈ Fh})+ 4H2

√
2 log(2/δ)

n
,

(19)

where f†h is defined in eq. (18) and we have used `(fh, f̂h+1)− `(f†h, f̂h+1) ∈ [−2H2, 2H2].

Specifically, we take fh = f̂h in eq. (19). Due to the optimality of f̂h, we have ˆ̀
h(f̂h, f̂h+1) ≤ ˆ̀

h(f†h, f̂h+1). We further
use the relation

‖f̂h − T ?h f̂h+1‖2µh =
(
Eµh`(f̂h, f̂h+1)− Eµh`(f

†
h, f̂h+1)

)
+ ‖f†h − T

?
h f̂h+1‖2µh . (20)

and Assumption 2. It follows that

∥∥f̂h − T ?h f̂h+1

∥∥2

µh
≤ 2Rn

({
`(fh, f̂h+1)− `(f†h, f̂h+1)

∣∣ fh ∈ Fh})+ 4H2

√
2 log(2/δ)

n
+ ε. (21)

We now simplify the Rademacher complexity term in eq. (21). Due to the symmmetry of Rademacher random variables, we
haveRn

({
`(fh, f̂h+1)− `(f†h, f̂h+1)

∣∣ fh ∈ Fh}) = Rn
({
`(fh, f̂h+1)

∣∣ fh ∈ Fh}). We also note that the loss function `
is (4H)-Lipschitz in its first argument. In fact, since |fh| ≤ H for all fh ∈ Fh and r + Vf̂h+1

(s′) ∈ [−H,H], it holds that
for any fh, f ′h ∈ Fh, ∣∣`(fh, f̂h+1)(s, a, r, s′)− `(f ′h, f̂h+1)(s, a, r, s′)

∣∣
=|fh(s, a)− f ′h(s, a)|

∣∣fh(s, a) + f ′h(s, a)− 2r − 2Vf̂h+1
(s′)
∣∣

≤4H|fh(s, a)− f ′h(s, a)|.

(22)

According to the contraction property of Rademacher complexity (see Lemma G.6), we have

Rn
({
`(fh, f̂h+1)− `(f†h, f̂h+1)

∣∣ fh ∈ Fh}) = Rn
({
`(fh, f̂h+1)

∣∣ fh ∈ Fh}) ≤ 2HRµhn (Fh). (23)

Plugging eq. (23) into eq. (21) and applying union bound, we find that with probability at least 1− δ,

E(f̂) =
1

H

H∑
h=1

∥∥f̂h − T ?h f̂h+1

∥∥2

µh
≤ 8

H∑
h=1

Rµhn (Fh) + 4H2

√
2 log(2H/δ)

n
+ ε,

which completes the proof.

B.2. Analyzing FQI with Local Rademacher Complexity (Theorem 5.3)

Theorem 5.3 (FQI, local Rademacher complexity). There exists an absolute constant c > 0, under Assumption 2, with
probability at least 1− δ, the output of FQI f̂ satisfies

E(f̂) ≤ ε+ c
√
ε ·∆ + c∆ , (8)

∆ := H

H∑
h=1

r?h +H2 log(H/δ)

n
.

Here r?h is the critical radius of local Rademacher complexity Rµhn ({fh ∈ Fh | ‖fh − f†h‖2µh ≤ r}) with f†h :=

arg minfh∈Fh ‖fh − T
?
h f̂h+1‖µh .

Proof of Theorem 5.3. Recall that we have shown in eq. (22) that `(f, g) is (4H)-Lipchitz in its first argument f . Under
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Assumption 2, for f†h shown in eq. (18), we have

Var
[
`(fh, f̂h+1)− `(f†h, f̂h+1)

]
≤E
[(
`(fh, f̂h+1)− `(f†h, f̂h+1)

)2] ≤ 16H2E
[∣∣fh(sh, ah)− f†h(sh, ah)

∣∣2]
=16H2

∥∥fh − f†h∥∥2

µh
≤ 32H2

(∥∥fh − T ?h f̂h+1

∥∥2

µh
+
∥∥f†h − T ?h f̂h+1

∥∥2

µh

)
=32H2

[(∥∥fh − T ?h f̂h+1

∥∥2

µh
−
∥∥f†h − T ?h f̂h+1

∥∥2

µh

)
+ 2
∥∥f†h − T ?h f̂h+1

∥∥2

µh

]
≤32H2

(
Eµh

[
`(fh, f̂h+1)− `(f†h, f̂h+1)

]
+ 2ε

)
.

When applying Theorem G.3, we are supposed to take a sub-root function larger than

ψFQI(r) := 32H2Rn
{
`(fh, f̂h+1)− `(f†h, f̂h+1)

∣∣∣ fh ∈ Fh, 32H2
(
E
[
`(fh, f̂h+1)− `(f†h, f̂h+1)

]
+ 2ε

)
≤ r
}
.

Note that

ψFQI(r) ≤32H2Rn
({
`(fh, f̂h+1)− `(f†h, f̂h+1)

∣∣∣ fh ∈ Fh, 16H2
∥∥fh − f†h∥∥2

µh
≤ r
})

≤128H3Rn
({
fh − f†h

∣∣∣ fh ∈ Fh, 16H2
∥∥fh − f†h∥∥2

µh
≤ r
})

=128H3Rn
({
fh ∈ Fh

∣∣∣ 16H2
∥∥fh − f†h∥∥2

µh
≤ r
})
≤ 128H3ψh

( r

16H2

)
where ψh is a sub-root function satisfying ψh(r) ≥ Rn

({
fh ∈ Fh

∣∣ ‖fh − f†h‖2µh ≤ r
})

and the positive fixed point r?h
of ψh is the corresponding critical radius. In the second inequality, we have used the contraction property of Rademacher
complexity (see Lemma G.6) and the Lipschitz continuity of `. The equality in the last line is due to the symmetry of
Rademacher random variables. According to Lemma G.5, the positive fixed point of 128H3ψh

(
r

16H2

)
is upper bounded by

1024H4r?h.

We apply eq. (90) in Theorem G.3 and use the eq. (20) and ˆ̀
h(f̂h, f̂h+1) ≤ ˆ̀

h(f†h, f̂h+1). It follows that for a fixed
parameter θ, with probability at least 1− δ,∥∥f̂h − T ?h f̂h+1

∥∥2

µh
−
∥∥f†h − T ?h f̂h+1

∥∥2

µh

≤cH2r?h +
cH2 log(1/δ)

n
+ c(θ − 1)

(
H2r?h + c

H2 log(1/δ)

n

)
+

2ε

θ − 1
,

where c > 0 is a universal constant. By union bound and Assumption 2, we have

E(f̂) ≤ ε+ cH

H∑
h=1

r?h + cH2 log(H/δ)

n
+ c(θ − 1)

(
H

H∑
h=1

r?h +
H2 log(1/δ)

n

)
+

2ε

θ − 1
.

We further take θ := 1 +
√
ε

2H

(
1
H

∑H
h=1 r

?
h + log(H/δ)

n

)− 1
2 and find that

E(f̂) ≤ ε+ cH

H∑
h=1

r?h + cH2 log(H/δ)

n
+ c

√√√√ε
(
H

H∑
h=1

r?h +H2
log(1/δ)

n

)
,

which completes the proof.

C. Proof of Results for Minimax Algorithm (Theorems 5.4, 5.5 and C.1)
In this part, we prove the statistical guarantees for minimax algorithm in Section 5.3.
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Notations We first introduce some notations that will be used later in the analyses. For any vector-valued function

f = (f1, . . . , fH) ∈ L2(µ1) × . . . × L2(µH), we denote ‖f‖µ :=
√

1
H

∑H
h=1 ‖fh‖2µh for short. Parallel to the optimal

Bellman operator T ?h , we define T †h and T̂h as

T †h fh+1 := arg min
gh∈Gh

‖gh − T ?h fh+1‖µh and T̂hfh+1 := arg min
gh∈Gh

1

n

∑
(s,a,r,s′,h)∈Dh

(
gh(s, a)− r − Vfh+1

(s′)
)2
.

Let T ?, T †, T̂ be their vector form, given by

T ?f :=(T ?1 f2, . . . , T ?HfH+1),

T †f :=(T †1 f2, . . . , T †HfH+1),

T̂ f :=(T̂1f2, . . . , T̂HfH+1),

(24)

for any f ∈ F .

Similar to the definition of ` in eq. (17), for any gh ∈ Gh ∪ Fh and fh+1 ∈ Fh+1, we take

`(gh, fh+1)(s, a, r, s′) =
(
gh(s, a)− r − Vfh+1

(s′)
)2
.

For any f ∈ F , g ∈ F ∪ G and {(sh, ah, rh, s′h)}Hh=1 ∈ (S ×A× R× S)H , let

`(g, f)(·) :=
1

H

H∑
h=1

`(gh, fh+1)(sh, ah, rh, s
′
h) =

1

H

H∑
h=1

(
gh(sh, ah)− rh − Vfh+1

(s′h)
)2
.

Denote

Eµ`(g, f) :=
1

H

H∑
h=1

Eµh`(gh, fh+1) =
1

H

H∑
h=1

E
[
`(gh, fh+1)(s, a, r, s′)

∣∣ (s, a) ∼ µh, s′ ∼ Ph(· | s, a)
]

=‖g − T ?f‖2µ +
1

H

H∑
h=1

EµhVars′∼Ph(·|s,a)(Vfh+1
(s′))

and ˆ̀(g, f) :=
1

H

H∑
h=1

ˆ̀
h(gh, fh+1) =

1

nH

∑
(s,a,r,s′,h)∈D

(
gh(s, a)− r − Vfh+1

(s′)
)2
.

The loss function in minimax algorithm then can be written as

LMM(f, g) := `(f, f)− `(g, f),

EµLMM(f, g) := Eµ`(f, f)− Eµ`(g, f)

L̂MM(f, g) := ˆ̀(f, f)− ˆ̀(g, f).

(25)

Note that EµLMM(f, g) = ‖f − T ?f‖2µ − ‖g − T ?f‖2µ = E(f)− ‖g − T ?f‖2µ.

With our newly-defined notations, we formulate the minimax estimator as

f̂ = arg min
f∈F

max
g∈G

L̂MM(f, g) = arg min
f∈F

L̂MM(f, T̂ f). (26)

In the analysis of minimax algorithm, we take f† as the function in F that minimizes the Bellmen risk, i.e.

f† := arg min
f∈F

E(f).
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Main results
Theorem 5.4 (Minimax algorithm, Rademacher complexity). There exists an absolute constant c > 0, under Assumption 3,
with probability at least 1− δ, the minimax estimator f̂ satisfies:

E(f̂) ≤min
f∈F
E(f) + ε+ cH2

√
log(1/δ)

n

+ c

H∑
h=1

(
Rµhn (Fh) +Rµhn (Gh) +Rνhn (VFh+1

)
)
.

Theorem 5.5 (Minimax algorithm, local Rademacher complexity). There exists an absolute constant c > 0, under
Assumptions 3 and 4, with probability at least 1− δ, the minimax estimator f̂ satisfies:

E(f̂)≤min
f∈F
E(f)+ε+ c

√(
min
f∈F
E(f)+ε

)
∆ + c∆ , (9)

∆ := H3
H∑
h=1

[
C̃
(
r?f,h + r?g,h + r̃?f,h

)
+
√
C̃r?g,hε

]
+H2 log(H/δ)

n
.

where C̃ is the concentrability coefficient in Assumption 4, and r?f,h, r
?
g,h, r̃

?
f,h are the critical radius of the following local

Rademacher complexities respectively:

Rµhn
({
fh ∈ Fh

∣∣ ‖fh − f†h‖2µh ≤ r}) ,
Rµhn

({
gh ∈ Gh

∣∣ ‖gh − g†h‖2µh ≤ r}) ,
Rνhn

({
Vfh+1

∣∣ fh+1 ∈ Fh+1,

‖fh+1 − f†h+1‖
2
νh×Unif(A) ≤ r

})
.

Aside from Theorems 5.4 and 5.5, we also have an alternative statistical guarantee for E(f̂) using local Rademacher
complexity for composite function LMM(f, T †f). See Theorem C.1 below.
Theorem C.1 (Minimax algorithm, local Rademacher complexity, alternaltive). There exists an absolute constant c > 0,
under Assumption 3, with probability at least 1− δ, the minimax estimator f̂ satisfies:

E(f̂)≤min
f∈F
E(f)+ε+ c

√(
min
f∈F
E(f)+ε

)
∆ + c∆ , (27)

∆ := H2r?L +H

H∑
h=1

r?g,h +H2 log(H/δ)

n
.

where r?L and r?g,h are the critical radius of the following local Rademacher complexities respectively:

Rµhn
({
LMM(f, T †f)

∣∣ f ∈ F ,E[LMM(f, T †f)2
]
≤ r
})
,

Rµhn
({
gh ∈ Gh

∣∣ ‖gh − g†h‖2µh ≤ r}) .
In contrast to Theorem 5.5, Theorem C.1 does not rely on the additional Assumption 4. In general, Theorem C.1 provides a
tighter upper bound for E(f̂) than Theorem 5.5 when the function class

{
LMM(f, T †f)

∣∣ f ∈ F} has a clear structure and
r?L is easy to estimate. For instance, this is the case if both f and G have finite elements. Based on Theorem C.1, we can
recover the sharp results for finite function classes in Chen & Jiang (2019).

Assumption 3 used in our analysis of minimax algorithm can be relaxed to:

“There exist constants ε > 0 and ζ ∈ [0, 1) such that inf
g∈G
‖g − T ?f‖2µ ≤ ε+ ζE(f) for any f ∈ F .”

In this way, we only need a high-quality approximation of T ?f in G when f lies within a neighborhood of the optimal
Q-function. We can easily generalize our analyses to this case. However, in order to avoid unnecessary clutter, we stick to
the current Assumption 3.
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Proof outline Our analyses in this section are devoted to the proofs of Theorems 5.4, 5.5 and C.1.

1. We first translate the estimation of E(f̂) into deriving uniform concentration bounds for L̂MM(f, T †f)−L̂MM(f†, T †f†)
and ˆ̀(g, f)− ˆ̀(T †f†, f†) (Lemma C.2 in Appendix C.1). The error decomposition lemma is shared among the proofs
of Theorems 5.4, 5.5 and C.1.

2. We then develop the desired uniform concentration bounds using Rademacher complexities (Appendix C.2) and local
Rademacher complexities (Appendix C.3) separately. In particular, when tackling L̂MM(f, T †f)− L̂MM(f†, T †f†),
we have two alternative analyses involving local Rademacher complexities of different types of function classes. One
leads to Theorem 5.5 and the other results in Theorem C.1.

3. In Appendix C.4, we integrate the error decomposition result and uniform concentration bounds, and finish the proofs
of theorems.

C.1. Error Decomposition

We provide a decomposition of the Bellman error E(f̂) and upper bound the error using some uniform concentration
inequalities.

Lemma C.2 (Error decomposition). Suppose there exist α > 0 and Errf , Errg > 0 such that the following concentration
inequailities hold simultaneously.

1. For any f ∈ F ,

EµLMM
(
f, T †f

)
− EµLMM

(
f†, T †f†

)
≤ α

(
L̂MM

(
f, T †f

)
− L̂MM

(
f†, T †f†

))
+ Errf . (28)

2. For any g ∈ G,
Eµ`

(
g, f†

)
− Eµ`

(
T †f†, f†

)
≤ α

(
ˆ̀
(
g, f†

)
− ˆ̀
(
T †f†, f†

))
+ Errg. (29)

Then under Assumption 3, the Bellman error satisfies

E(f̂) ≤ min
f∈F
E(f) + Errf + Errg + ε. (30)

Proof. By definition of function EµLMM(f, g) in eq. (25), we find that for any f ∈ F ,

EµLMM
(
f, T †f

)
=Eµ`(f, f)− Eµ`(T †f, f) = ‖f − T ?f‖2µ − ‖T †f − T ?f‖2µ = E(f)− ‖T †f − T ?f‖2µ.

We learn from Assumption 3 that ‖T †f − T ?f‖2µ ≤ ε for any f ∈ F , therefore,

EµLMM
(
f, T †f

)
− EµLMM

(
f†, T †f†

)
=E(f)− E(f†)− ‖T †f − T ?f‖2µ + ‖T †f† − T ?f†‖2µ
≥E(f)− E(f†)− ε,

(31)

which implies
E(f̂) ≤ min

f∈F
E(f) +

(
EµLMM

(
f̂ , T †f̂

)
− EµLMM

(
f†, T †f†

))
+ ε.

By virtue of eq. (28),

E(f̂) ≤ min
f∈F
E(f) + α

(
L̂MM

(
f̂ , T †f̂

)
− L̂MM

(
f†, T †f†

))
+ Errf + ε. (32)

In the following, we leverage eq. (29) to estimate L̂MM
(
f̂ , T †f̂

)
− L̂MM

(
f†, T †f†

)
.

We use the definition of LMM and find that

L̂MM
(
f̂ , T †f̂

)
− L̂MM

(
f†, T †f†

)
= ˆ̀(f̂ , f̂)− ˆ̀(T †f̂ , f̂)− ˆ̀(f†, f†) + ˆ̀(T †f†, f†)

=
(
L̂MM

(
f̂ , T̂ f̂

)
+ ˆ̀(T̂ f̂ , f̂)

)
− ˆ̀(T †f̂ , f̂)−

(
L̂MM

(
f†, T̂ f†

)
+ ˆ̀(T̂ f†, f†)

)
+ ˆ̀(T †f†, f†)

=
(
L̂MM

(
f̂ , T̂ f̂

)
− L̂MM

(
f†, T̂ f†

))
+
(
ˆ̀(T̂ f̂ , f̂)− ˆ̀(T †f̂ , f̂)

)
−
(
ˆ̀(T̂ f†, f†)− ˆ̀(T †f†, f†)

)
.

(33)
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Since (f, g) := (f̂ , T̂ f̂) solves the minimax optimizaiton problem eq. (26), we have L̂MM
(
f̂ , T̂ f̂

)
≤ L̂MM

(
f†, T̂ f†

)
. Due

to the optimality of T̂ , it also holds that ˆ̀(T̂ f̂ , f̂) ≤ ˆ̀(T †f̂ , f̂). To this end, eq. (33) reduces to

L̂MM
(
f̂ , T †f̂

)
− L̂MM

(
f†, T †f†

)
≤ −

(
ˆ̀(T̂ f†, f†)− ˆ̀(T †f†, f†)

)
. (34)

Additionally, eq. (29) implies

ˆ̀(T̂ f†, f†)− ˆ̀(T †f†, f†) ≥ α−1
(
Eµ`

(
T̂ f†, f†

)
− Eµ`

(
T †f†, f†

))
− α−1Errg.

Note that Eµ`
(
T̂ f†, f†

)
−Eµ`

(
T †f†, f†

)
= ‖T̂ f†−T ?f†‖2µ−‖T †f†−T ?f†‖2µ and ‖T̂ f†−T ?f†‖µ ≥ ‖T †f†−T ?f†‖µ

by definition of T †, therefore,
ˆ̀(T̂ f†, f†)− ˆ̀(T †f†, f†) ≥ −α−1Errg.

It then follows from eq. (34) that

L̂MM
(
f̂ , T †f̂

)
− L̂MM

(
f†, T †f†

)
≤ α−1Errg. (35)

Combining eq. (32) and eq. (35), we obtain eq. (30).

C.2. Analyzing Minimax Algorithm with Rademacher Complexity

In what follows, we develop uniform concentration inequalities eqs. (28) and (29) using Rademacher complexities.
Lemma C.3. With probability at least 1− δ,

EµLMM
(
f, T †f

)
− EµLMM

(
f†, T †f†

)
≤
(
L̂MM

(
f, T †f

)
− L̂MM

(
f†, T †f†

))
+ Errf for any f ∈ F ,

where

Errf := c

H∑
h=1

(
Rµhn (Fh) +Rµhn (Gh) +Rνhn (VFh+1

)
)

+ 4H2

√
2 log(2/δ)

n

for some universal constant c > 0.

Proof. Note that
∣∣LMM

(
f, T †f

)
− LMM

(
f†, T †f†

)∣∣ ≤ 8H2. We apply Lemma G.1 and find that

EµLMM
(
f, T †f

)
− EµLMM

(
f†, T †f†

)
≤
(
L̂MM

(
f, T †f

)
− L̂MM

(
f†, T †f†

))
+ 2Rn

({
LMM

(
f, T †f

)
− LMM

(
f†, T †f†

) ∣∣ f ∈ F})+ 16H2

√
2 log(2/δ)

n
.

Due to the symmetry of Rademacher random variables, we have

Rn
({
LMM

(
f, T †f

)
− LMM

(
f†, T †f†

) ∣∣ f ∈ F}) = Rn
({
LMM

(
f, T †f

) ∣∣ f ∈ F}).
We now use Lemma G.7 to simplify the termRn

({
LMM

(
f, T †f

) ∣∣ f ∈ F}).
Note that

LMM
(
f, T †f

)
=

1

H

H∑
h=1

φh(f)>Aφh(f), whereA :=

(
1 −1
−1 0

)
,

φh(f) :=
(
fh(sh, ah)− T †h fh+1(sh, ah), rh + Vfh+1

(s′h)− T †h fh+1(sh, ah)
)>
.

Since ‖φh(f)‖2≤
√

2H and ‖A‖2 =
√

5+1
2 , we learn that φh(f)>Aφh(f) is

(√
5+1√

2
H
)
-Lipschitz with respect to φh(f).

According to Lemma G.7,

Rn
({
LMM

(
f, T †f

) ∣∣ f ∈ F}) =
1

H

H∑
h=1

Rn
({
φh(f)>Aφh(f)

∣∣ f ∈ F})
≤(
√

5 + 1)

H∑
h=1

(
Rn
({
φh,1(f)

∣∣ f ∈ F})+Rn
({
φh,2(f)

∣∣ f ∈ F})).
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Here,

Rn
({
φh,1(f)

∣∣ f ∈ F}) =Rn
({
fh − T †h fh+1

∣∣ fh ∈ Fh, fh+1 ∈ Fh+1

})
≤Rn

({
fh − gh

∣∣ fh ∈ Fh, gh ∈ Gh}) ≤ Rµhn (Fh) +Rµhn (Gh),

Rn
({
φh,2(f)

∣∣ f ∈ F}) =Rn
({
rh + Vfh+1

− T †h fh+1

∣∣ fh+1 ∈ Fh+1

})
≤Rνhn (VFh+1

) +Rn
({
T †h fh+1

∣∣ fh+1 ∈ Fh+1

})
≤ Rνhn (VFh+1

) +Rµhn (Gh).

Integrating the pieces, we finish the proof of Lemma C.3.

Lemma C.4. With probability at least 1− δ, for any g ∈ G,

Eµ`
(
g, f†

)
− Eµ`

(
T †f†, f†

)
≤
(
ˆ̀
(
g, f†

)
− ˆ̀
(
T †f†, f†

))
+ Errg,

where

Errg := 8

H∑
h=1

Rµhn (Gh) + 4H2

√
2 log(2/δ)

n
.

Proof. Note that
∣∣`(g, f†)− `(T †f†, f†)∣∣ ≤ 2H2. By Lemma G.1, with probability at least 1− δ, for any g ∈ G,

Eµ`
(
g, f†

)
− Eµ`

(
T †f†, f†

)
≤
(
ˆ̀
(
g, f†

)
− ˆ̀
(
T †f†, f†

))
+ 2Rn

({
`(g, f†)− `

(
T †f†, f†

) ∣∣ g ∈ G})+ 4H2

√
2 log(2/δ)

n
.

(36)

We observe that

Rn
({
`(g, f†)− `

(
T †f†, f†

) ∣∣ g ∈ G}) = Rn
({
`(g, f†)

∣∣ g ∈ G}) ≤ 1

H

H∑
h=1

Rn
({
`(gh, f

†
h+1)

∣∣ gh ∈ Gh}). (37)

Similar to eq. (22), we can show that `(gh, f
†
h+1) is (4H)-Lipschitz with respect to gh, therefore,

Rn
({
`(gh, f

†
h+1)

∣∣ gh ∈ Gh}) ≤ 4HRµhn (Gh). (38)

Combining eq. (36) - eq. (38), we complete the proof.

C.3. Analyzing Minimax Algorithm with Local Rademacher Complexity

In this part, Lemmas C.5 and C.6 are devoted to the uniform concentration of L̂MM
(
f, T †f

)
− L̂MM

(
f†, T †f†

)
and

Lemma C.7 is concerned with ˆ̀
(
g, f†

)
− ˆ̀
(
T †f†, f†

)
. The proof of Theorem C.1 uses Lemmas C.5 and C.7, while

Theorem 5.5 uses Lemmas C.6 and C.7.

Concentration inequality eq. (28), L̂MM
(
f, T †f

)
− L̂MM

(
f†, T †f†

)
Lemma C.5 below will be used as a buiding block

of the proof of Theorem C.1.

Lemma C.5. There exists a universal constant c > 0 such that under Assumption 3, for any fixed parameter θ > 1, with
probability at least 1− δ, we have

EµLMM
(
f, T †f

)
− EµLMM

(
f†, T †f†

)
≤ θ

θ − 1

(
L̂MM

(
f, T †f

)
− L̂MM

(
f†, T †f†

))
+ Errf (39)

for any f ∈ F , with

Errf := cθH2r?L + cθH2 log(1/δ)

n
+

c

θ − 1

(
E(f†) + ε

)
.
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Proof. We consider using Theorem G.3 to analyze the concentration of L̂MM
(
f, T †f

)
− L̂MM

(
f†, T †f†

)
. Similar to

eq. (22), we can show that for any f ∈ F ,

∣∣LMM
(
f, T †f

)∣∣ ≤ 2

H∑
h=1

∣∣fh(sh, ah)− T †h fh+1(sh, ah)
∣∣.

By Cauchy-Schwarz inequality,

E
[
LMM

(
f, T †f

)2] ≤ 4H2
∥∥f − T †f∥∥2

µ
≤ 8H2

(∥∥f − T ?f∥∥2

µ
+
∥∥T †f − T ?f∥∥2

µ

)
≤ 8H2

(
E(f) + ε

)
, (40)

where we have used Assumption 3. It follows that

Var
[
LMM

(
f, T †f

)
− LMM

(
f†, T †f†

)]
≤ E

[
(LMM

(
f, T †f

)
− LMM

(
f†, T †f†

)
)2
]

≤2E
[
LMM

(
f, T †f

)2]
+ 2E

[
LMM

(
f†, T †f†

)2] ≤ 16H2
(
E(f) + E(f†) + 2ε

)
.

We also learn from eq. (31) that

E
[
LMM

(
f, T †f

)
− LMM

(
f†, T †f†

)]
≥ E(f)− E(f†)− ε. (41)

We combine eq. (40) and eq. (41) and find that

Var
[
LMM

(
f, T †f

)
− LMM

(
f†, T †f†

)]
≤ 16H2

(
E
[
LMM

(
f, T †f

)
− LMM

[
f†, T †f†

]]
+ 2E(f†) + 3ε

)
.

We now apply Theorem G.3 and aim to find a sub-root function ψL such that ψL(r) ≥ ψ̃(r) for

ψ̃(r) :=16H2Rn
({
LMM

(
f, T †f

)
− LMM

(
f†, T †f†

) ∣∣∣ f ∈ F ,
16H2

(
E
[
LMM

(
f, T †f

)
− LMM

(
f†, T †f†

)]
+ 2E(f†) + 3ε

)
≤ r
})

=16H2Rn
({
LMM

(
f, T †f

) ∣∣∣ f ∈ F ,
16H2

(
E
[
LMM

(
f, T †f

)
− LMM

(
f†, T †f†

)]
+ 2E(f†) + 3ε

)
≤ r
})
.

(42)

Note that by eqs. (40) and (41), we have

16H2
(
E
[
LMM

(
f, T †f

)
− LMM

(
f†, T †f†

)]
+ 2E(f†) + 3ε

)
≥ 2E

[
LMM

(
f, T †f

)2]
,

therefore,

ψ̃(r) ≤16H2Rn
({
LMM

(
f, T †f

) ∣∣∣ f ∈ F , 2E[LMM
(
f, T †f

)2] ≤ r}) ≤ 16H2ψL

(r
2

)
,

where
ψL(r) = Rn

({
LMM

(
f, T †f

) ∣∣∣ f ∈ F ,E[LMM
(
f, T †f

)2] ≤ r}).
Let r?L be the positive fixed point of ψL. Lemma G.5 implies the positive fixed point of mapping r 7→ 16H2ψL

(
r/2
)

is
upper bounded by 128H4r?L. We then obtain eq. (39) by applying eq. (90) in Theorem G.3.

While Lemma C.5 above uses the local Rademacher complexity of a composite function LMM(f, T †f), Lemma C.6 below
provides an alternative concentration inequality for L̂MM

(
f, T †f

)
− L̂MM

(
f†, T †f†

)
, which involves the complexities of

Fh, Gh and VFh+1
.

Lemma C.6. Suppose Assumptions 3 and 4 hold. There exists a universal constant c > 0 such that for any fixed parameter
θ > 1, with probability at least 1− δ,

EµLMM
(
f, T †f

)
− EµLMM

(
f†, T †f†

)
≤ θ

θ − 1

(
L̂MM

(
f, T †f

)
− L̂MM

(
f†, T †f†

))
+ Errf (43)
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for any f ∈ F , with

Errf := cθC̃H3
H∑
h=1

(
r?f,h + r?g,h + r̃?f,h+1 +

√
εr?g,h/C̃

)
+ cθH2 log(1/δ)

n
+

c

θ − 1

(
E(f†) + ε

)
.

Here, C̃ is the concentrability coefficient in Assumption 4.

Proof. In this proof, we estimate the critical radius of ψ̃(r) in eq. (42) in an alternative way. In particular, we use
parameters r?f,h, r?g,h and r̃?f,h defined in the statement of Theorem 5.5. The key step is to upper bound ψ̃(r) by the
local Rademacher complexities Rµhn

({
fh ∈ Fh

∣∣ ‖fh − f†h‖2µh ≤ r
})

, Rµhn
({
gh ∈ Gh

∣∣ ‖gh − g†h‖2µh ≤ r
})

and
Rνhn

({
Vfh+1

∣∣ fh+1 ∈ Fh+1, ‖fh+1 − f†h+1‖2νh×Unif(A) ≤ r
})

.

We take a shorthand F(r) :=
{
f ∈ F

∣∣ 16H2
(
E
[
LMM

(
f, T †f

)
− LMM

(
f†, T †f†

)]
+ 2E(f†) + 3ε

)
≤ r

}
and rewrite

ψ̃(r) as ψ̃(r) = 16H2Rn
({
LMM

(
f, T †f

) ∣∣ f ∈ F(r)
})

. Similar to Lemma C.3, one can show that there exists a univeral
constant c > 0 such that

r̃ ≤ cH2
H∑
h=1

(
ψh,1(r) + ψh,2(r) + ψh,3(r)

)
.

where ψh,1(r) := Rµhn
({
fh
∣∣ f ∈ F(r)

})
, ψh,2(r) := Rµhn

({
T †h fh+1

∣∣ f ∈ F(r)
})

and ψh,3(r) := Rνhn
({
Vfh+1

∣∣ f ∈
F(r)

})
. In the sequel, we simplify ψh,1, ψh,2 and ψh,3.

For any f ∈ F(r), due to eq. (41), we have∥∥(f − T ?f)− (f† − T ?f†)
∥∥2

µ
≤2
∥∥f − T ?f∥∥2

µ
+ 2
∥∥f† − T ?f†∥∥2

µ
= 2E(f) + 2E(f†)

≤2E
[
LMM

[
f, T †f

]
− LMM

(
f†, T †f†

)]
+ 4E(f†) + 2ε ≤ r

8H2
.

We use Lemma F.1 and find that under Assumptions 3 and 4, for any f ∈ F ,

∥∥fh − f†h∥∥2

µh
≤ C̃r

8
,∥∥T †h fh+1 − T †h f

†
h+1

∥∥2

µh
≤
(∥∥T ?h fh+1 − T ?h f

†
h+1

∥∥
µh

+ 2
√
ε
)2

≤2
∥∥T ?h fh+1 − T ?h f

†
h+1

∥∥2

µh
+ 8ε ≤ C̃r

4
+ 8ε,

∥∥fh+1 − f†h+1

∥∥2

νh×Unif(A)
≤ C̃r

8
.

It follows that

ψh,1(r) = Rµhn
({
fh

∣∣∣ f ∈ F(r)
})
≤ Rµhn

({
fh ∈ Fh

∣∣∣ ∥∥fh − f†h∥∥2

µh
≤ C̃r

8

})
,

ψh,2(r) = Rµhn
({
T †h fh+1

∣∣ f ∈ F(r)
})
≤ Rµhn

({
gh ∈ Gh

∣∣∣ ∥∥gh − T †h f†h+1

∥∥2

µh
≤ C̃r

4
+ 8ε

})
,

ψh,3(r) = Rνhn
({
Vfh+1

∣∣ f ∈ F(r)
})
≤ Rνhn

({
Vfh+1

∣∣∣ fh+1 ∈ Fh+1,
∥∥fh+1 − f†h+1

∥∥2

νh×Unif(A)
≤ C̃r

8

})
.

Recall that r?f,h, r?g,h and r̃?f,h+1 are respectively the fixed points of

ψf,h(r) = Rµhn
({
fh ∈ Fh

∣∣ ∥∥fh − f†h‖2µh ≤ r}),
ψg,h(r) = Rµhn

({
gh ∈ Gh

∣∣ ∥∥gh − T †h f†h+1‖
2
µh
≤ r
})

and

ψ̃f,h(r) = Rνhn
({
Vfh+1

∣∣ fh+1 ∈ Fh+1,
∥∥fh+1 − f†h+1

∥∥2

µ̃h+1
≤ r
})
.
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According to Lemma G.5, the positive fixed points of ψh,1, ψh,2 and ψh,3 are upper bounded by 8C̃r?f,h, 4C̃r?g,h +√
32εC̃r?g,h and 8C̃r̃f,h, therefore, the critical radius r̃? of ψ̃(r) satisfies

r̃? ≤c2H4

(
H∑
h=1

(√
8C̃r?f,h +

√
4C̃r?g,h + 4

√
32εC̃r?g,h +

√
8C̃r̃?f,h

))2

≤c′C̃H5
H∑
h=1

(
r?f,h + r?g,h + r̃?f,h +

√
εr?g,h/C̃

)
,

where c, c′ > 0 are universal constants.

We then apply eq. (90) in Theorem G.3 and obtain eq. (43).

Concentration inequality eq. (29), ˆ̀
(
g, f†

)
− ˆ̀
(
T †f†, f†

)
Lemma C.7. Suppose Assumption 3 holds. Then there exists a universal constant c > 0 such that for any fixed parameter
θ > 1, with probability at least 1− δ,

Eµ`
(
g, f†

)
− Eµ`

(
T †f†, f†

)
≤ θ

θ − 1

(
ˆ̀
(
g, f†

)
− ˆ̀
(
T †f†, f†

))
+ Errg, (44)

with Errg := cθH

H∑
h=1

r?g,h + cθH2 log(H/δ)

n
+

cε

θ − 1
.

Proof. Note that

`
(
g, f†

)
− `
(
T †f†, f†

)
=

1

H

H∑
h=1

(
`(gh, f

†
h+1)− `

(
T †h f

†
h+1, f

†
h+1

))
.

We can analyze the concentration of `(gh, f
†
h+1)− `

(
T †h f

†
h+1, f

†
h+1

)
in a way similar to Theorem 5.3. It follows that for

any h ∈ [H], with probability at least 1− δ,

Eµ`(gh, f†h+1)− Eµ`
(
T †h f

†
h+1, f

†
h+1

)
≤ θ

θ − 1

(
ˆ̀(gh, f

†
h+1)− ˆ̀

(
T †h f

†
h+1, f

†
h+1

))
+ 8c1θH

2r?g,h + (2c2 + 8c3θ)H
2 log(1/δ)

n
+

2ε

θ − 1
,

for any gh ∈ Gh, where c1, c2, c3 are the constants in Theorem G.3. By union bound, we can further derive eq. (44).

C.4. Proof of Theorems 5.4, 5.5 and C.1

Proof of Theorem 5.4. Combining Lemmas C.2 to C.4, we obtain Theorem 5.4.

Proof of Theorems 5.5 and C.1. Plugging Lemmas Lemmas C.5 and C.7 into Lemma C.2 yields that with probability at
least 1− δ,

E(f̂) ≤min
f∈F
E(f) + ε+ cθH2

(
r?L +

1

H

H∑
h=1

r?g,h +
log(H/δ)

n

)
+

c

θ − 1

(
E(f†) + ε

)
for a universal constant c > 0. By letting

θ := 1 +

√
E(f†) + ε

cH2
(
r?L + 1

H

∑H
h=1 r

?
gh

+ log(H/δ)
n

) ,
we have

E(f̂) ≤min
f∈F
E(f) + ε+ cH2

(
r?L +

1

H

H∑
h=1

r?gh +
log(H/δ)

n

)

+ cH

√√√√(min
f∈F
E(f†) + ε

)(
r?L +

1

H

H∑
h=1

r?gh +
log(H/δ)

n

)
,
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which finishes the proof of Theorem C.1.

Similarly, by combining Lemmas C.2, C.6 and C.7, we prove Theorem 5.5.

D. Examples (Propositions 6.1 to 6.4)
In this part, we provide estimates for the (local) Rademacher complexities of four special function spaces, namely function
class with finite elements, linear function space, kernel class and sparse linear space. The results presented here slightly
generalize Propositions 6.1 to 6.4.

D.1. Function class with finite elements (Proposition 6.1)

Lemma D.1 (Full version of Proposition 6.1). Suppose F is a discrete function class with |F| <∞ and f ∈ [0, D] for any
f ∈ F . Then for any distribution ρ,

Rρn(F) ≤ 2Dmax

{√
log |F|
n

,
log |F|
n

}
. (45)

For any function f◦ with range in [0, D], we have

Rρn
({
f ∈ F

∣∣ ‖f − f◦‖2ρ ≤ r}) ≤ ψ(r), where ψ(r) := 2 max

{√
r log |F|

n
,
D log |F|

n

}
. (46)

ψ is a sub-root function with positive fixed point

r? =
2(D ∨ 2) log |F|

n
.

We remark that Proposition 6.1 is a corollary of Lemma D.1 with D := H .

In order to prove Lemma D.1, we first present a preliminary lemma that will be used later. See Lemma D.2.

Lemma D.2. Suppose a random variable X satisfies |X| ≤ D and E[X] = 0. Then for any λ > 0, we have

E[eλX ] ≤ exp

{
λ2Var[X]

(
eλD − 1− λD

λ2D2

)}
. (47)

Proof. Note that X ≤ D and the mapping x 7→ ex−1−x
x2 is nondecreasing, therefore, e

λX−1−λX
λ2X2 ≤ eλD−1−λD

λ2D2 . It follows
that

E[eλX ] = 1 + λE[X] + λ2E
[
X2

(
eλX − 1− λX

λ2X2

)]
≤ 1 + λ2Var[X]

(
eλD − 1− λD

λ2D2

)
, (48)

where we have used the fact E[X] = 0. Since 1 + x ≤ ex for any x ∈ R, eq. (48) implies eq. (47).

We are now ready to prove Lemma D.1.

Proof of Lemma D.1. We can easily see that eq. (45) is a corollary of eq. (46) by letting f◦ = 0 and r = D2, therefore, we
focus on proving eq. (46). By definition of Rademacher complexity and the symmetry of Rademacher variables, we have

Rρn
({
f ∈ F

∣∣ ‖f − f◦‖2ρ ≤ r}) =Rρn
({
f − f◦ ∈ F

∣∣ ‖f − f◦‖2ρ ≤ r})
=Emax

{
1

n

n∑
i=1

σi
(
f(Xi)− f◦(Xi)

) ∣∣∣∣ f ∈ F , ‖f − f◦‖2ρ ≤ r
}
.
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For any λ > 0, it holds that

Rρn
({
f ∈ F

∣∣ ‖f − f◦‖2ρ ≤ r}) =
1

λn
E log max

f∈F :
‖f−f◦‖2ρ≤r

exp

{
λ

n∑
i=1

σi
(
f(Xi)− f◦(Xi)

)}

≤ 1

λn
E log

∑
f∈F :

‖f−f◦‖2ρ≤r

exp

{
λ

n∑
i=1

σi
(
f(Xi)− f◦(Xi)

)}

≤ 1

λn
log

∑
f∈F :

‖f−f◦‖2ρ≤r

E exp

{
λ

n∑
i=1

σi
(
f(Xi)− f◦(Xi)

)}
,

(49)

where the last line is due to Jensen’s inequality. Since (σ1, X1), . . . , (σn, Xn) are i.i.d. samples,

E exp

{
λ

n∑
i=1

σi
(
f(Xi)− f◦(Xi)

)}
=
(
E exp

{
λσ1

(
f(X1)− f◦(X1)

)})n
. (50)

Note that
∣∣σ1

(
f(X1) − f◦(X1)

)∣∣ ≤ D and E
[
σ1

(
f(X1) − f◦(X1)

)]
= 0 since E[σ1] = 0. For any f ∈ F such that

‖f − f◦‖2ρ ≤ r, we have Var
[
σ1

(
f(X1)− f◦(X1)

)]
= E

[(
f(X1)− f◦(X1)

)2]
= ‖f − f◦‖2ρ ≤ r. We apply Lemma D.2

and derive that

E exp
{
λσ1

(
f(X1)− f◦(X1)

)}
≤ exp

{
λ2r

(
eλD − 1− λD

λ2D2

)}
. (51)

Combining eqs. (49) to (51), we obtain

Rρn
({
f ∈ F

∣∣ ‖f − f◦‖2ρ ≤ r}) ≤ 1

λn
log

∑
f∈F :

‖f−f◦‖2ρ≤r

(
E exp

{
λσ1

(
f(X1)− f◦(X1)

)})n

≤ 1

λn
log

(
|F| exp

{
nλ2r

(
eλD − 1− λD

λ2D2

)})

=
log |F|
λn

+ λr

(
eλD − 1− λD

λ2D2

)
.

(52)

For r ≥ D2 log |F|
n , by letting λ :=

√
log |F|
rn , eq. (52) implies Rρn

({
f ∈ F

∣∣ ‖f − f◦‖2ρ ≤ r
})
≤ 2

√
r log |F|

n , where

we have used the fact ex−1−x
x2 ≤ 1 for any x ≤ 1. When 0 ≤ r < D2 log |F|

n , by letting λ := 1
D , eq. (52) ensures

Rn
({
f ∈ F

∣∣ P (f − f◦)2 ≤ r
})
≤ 2D log |F|

n . Integrating the pieces, we complete the proof of eq. (46).

It is easy to see that the right hand side of eq. (46) is a sub-root function with positive fixed point 2(D∨2) log |F|
n .

D.2. Linear Space (Proposition 6.2)

Lemma D.3 (Full version of Proposition 6.2). Let φ : S × A → Rd be a feature map to d-dimensional Euclidean space
and ρ be a distribution over S ×A. Consider a function class

F =
{
f = w>φ

∣∣ w ∈ Rd, ‖f‖2ρ ≤ B
}
,

where B > 0. It holds that

Rρn(F) ≤
√

2Bd

n
.

For any f◦ ∈ F , we have

Rρn
({
f ∈ F

∣∣ ‖f − f◦‖2ρ ≤ r}) ≤ ψ(r), where ψ(r) :=

√
2rd

n
.
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ψ is sub-root and has a positive fixed point

r? =
2d

n
.

Proposition 6.2 in Section 6 is a corollary to Lemma D.3. In Proposition 6.2, conditions ‖w‖ ≤ H and ‖φ(s, a)‖ ≤ 1 ensure
‖f‖∞ ≤ H for f = w>φ and therefore ‖f‖2ρ ≤ H2. By letting B := H2 in Lemma D.3, we obtain Proposition 6.2.

Proof of Lemma D.3. Lemma D.3 can be viewed as a consequence of Lemma D.4 in Appendix D.3. Without loss of

generality, suppose that φ is orthonormal in L2(ρ), that is,
∫
S×A φi(s, a)φj(s, a)ρ(s, a)dsda =

{
1 if i = j,

0 if i 6= j.
Define a

kernel function k
(
(s, a), (s′, a′)

)
= φ(s, a)>φ(s′, a′). The RKHS associated with kernel k is the linear space spanned

by φ endorsed with inner product 〈f, f ′〉K := w>w′ for f = φ>w, f ′ = φ>w′. In this way, we have ‖ · ‖ρ = ‖ · ‖K.
For any f ∈ F , ‖f‖2ρ ≤ B implies ‖f‖K ≤

√
B. We apply the results in Lemma D.4 with D =

√
B. It follows that

Rρn(F) ≤
√

2B
n

∑∞
i=1 1 ∧ (4λi) ≤

√
2Bd
n andRρn

({
f ∈ F

∣∣ ‖f − f◦‖2ρ ≤ r}) ≤√ 2
n

∑∞
i=1 r ∧

(
4Bλk

)
≤
√

2rd
n since

λi = 0 for i > d.

D.3. Kernel Class (Proposition 6.3)

We now consider kernel class, that is, a sphere in an RKHSH associated with a positive definite kernel k : X × X → R. In
our paper, X = S ×A. Let ρ be a distribution over X . We are interested in Rademacher complexities of function class

F =
{
f ∈ H

∣∣ ‖f‖K ≤ D, ‖f‖2ρ ≤ B}. (53)

Here, ‖ · ‖K denotes the RKHS norm and D,B ≥ 0 are some constants. Suppose that Eρk(X,X) < ∞ for X ∼ ρ. We
define an integral operator T : L2(ρ)→ L2(ρ) as

T f =

∫
k(·, y)f(y)ρ(y)dy.

It is easy to see that T is positive semidefinite and trace-class. Let {λi}∞i=1 be the eigenvalues of T , arranging in a
nonincreasing order. By using these eigenvalues, we have an estimate for (local) Rademacher complexities of F in
Lemma D.4 below.
Lemma D.4 (Full version of Proposition 6.3). For function class F defined in eq. (53), we have

Rρn(F) ≤

√√√√ 2

n

∞∑
i=1

B ∧ (4D2λi). (54)

Let f◦ be an arbitrary function in F . The local Rademacher complexity around f◦ satisfies

Rρn
({
f ∈ F

∣∣ ‖f − f◦‖2ρ ≤ r}) ≤ ψ(r), where ψ(r) :=

√√√√ 2

n

∞∑
i=1

r ∧
(
4D2λi

)
. (55)

ψ is a sub-root function with positive fixed point

r? ≤ 2 min
j∈N

 j

n
+D

√√√√ 2

n

∞∑
i=j+1

λi

 . (56)

In Proposition 6.3, we assume that k(x, x) ≤ 1 for any x ∈ X and ‖f‖K ≤ H for any f ∈ F . It is then guaranteed
that |f(x)| =

∣∣〈f, k(·, x)〉K
∣∣ ≤ ‖f‖K∥∥k(·, x)

∥∥
K = ‖f‖K

√
k(x, x) ≤ H , which further implies ‖f‖2ρ ≤ H2. To this end,

Proposition 6.3 is a consequence of lemma D.4 by taking D := H and B := H2.

We remark on the rate of r? with respect to sample size n. Firstly, it is evident that r? . n−
1
2 . When λi . i−α for α > 1,

r?h has order n−
α

1+α which is typical in nonparametric estimation. When the eigenvalues {λi}∞i=1 decay exponentially
quickly, i.e. λi . exp(−βiα) for α, β > 0, r? can be of order n−1(log n)1/α.

Our proof of Lemma D.4 is based on a classical result shown in Theorem D.5.
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Theorem D.5 (Theorem 41 in Mendelson (2002)). For every r > 0, we have

Rρn
({
f ∈ H

∣∣ ‖f‖K ≤ 1, ‖f‖2ρ ≤ r
})
≤

√√√√ 2

n

∞∑
i=1

r ∧ λi.

Now we are ready to prove Lemma D.4.

Proof of Lemma D.4. Since eq. (54) is a corollary of eq. (55) by setting r = B, we only consider eqs. (55) and (56).

Due to the symmetry of Rademacher random variables,

Rρn
({
f ∈ F

∣∣ ‖f − f◦‖2ρ ≤ r}) = Rρn
({
f − f◦

∣∣ f ∈ F , ‖f − f◦‖2ρ ≤ r}). (57)

Since ‖f‖K ≤ D implies ‖f − f◦‖K ≤ 2D, we have F ⊆
{
f ∈ H

∣∣ ‖f − f◦‖K ≤ 2D
}

. It follows that

Rρn
({
f ∈ F

∣∣ ‖f − f◦‖2ρ ≤ r}) ≤Rρn({f − f◦ ∣∣ f ∈ H, ‖f − f◦‖K ≤ 2D, ‖f − f◦‖2ρ ≤ r
})

=Rρn
({
f ∈ H

∣∣ ‖f‖K ≤ 2D, ‖f‖2ρ ≤ r
})

f ′h:=fh/(2D)
= 2D · Rρn

({
f ′ ∈ H

∣∣∣∣ ‖f ′‖K ≤ 1, ‖f ′‖2ρ ≤
r

4D2

})
,

where we have used the translational symmetry of RKHSH. We apply Theorem D.5 and derive that

Rρn
({
f ∈ F

∣∣ ‖f − f◦‖2ρ ≤ r}) ≤2D

√√√√ 2

n

∞∑
i=1

r

4D2
∧ λi =

√√√√ 2

n

∞∑
i=1

r ∧
(
4D2λi

)
= ψ(r).

It is evident that ψ is sub-root. In the following, we estimate the positive fixed point r? of ψ.

If r ≤ r?, then r ≤ ψ(r), which implies

r2 ≤ 2

n

∞∑
i=1

r ∧
(
4D2λi

)
≤ 2

n

(
jr + 4D2

∞∑
i=j+1

λi

)
for any j ∈ N.

Solving the quadratic inequality yields

r ≤ 2j

n
+ 2D

√√√√ 2

n

∞∑
i=j+1

λi for any j ∈ N.

It ensures that

r? ≤ 2 min
j∈N

 j

n
+D

√√√√ 2

n

∞∑
i=j+1

λi

 .

D.4. Sparse Linear Class (Proposition 6.4)

Let φ : S ×A → Rd be a d-dimensional feature map and ρ be a distribution over S ×A. We are interested in function class

Fs =
{
f = w>φ

∣∣ w ∈ Rd, ‖w‖0 ≤ s, ‖f‖2ρ ≤ B
}
.

In the following, we provide an estimate for (local) Rademacher complexities of Fs based on the transportation T2 inequality.
Proposition 6.4 would be a special case of our result in this part since Gaussian distributions always satisfy T2 inequality.
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Notations We denote by α ⊆ [d] an index set with s elements. Let I :=
{
α ⊆ [d]

∣∣ |α| = s
}

. Note that |I| ≤ ds. For any
α ∈ I, let φα be the subvector of φ with φα := (φα1

, φα2
, . . . , φαs)

>. Denote covariance matrix Σ := Eρ
[
φφ>

]
∈ Rd×d.

Let Σα := Eρ
[
φαφ

>
α

]
∈ Rs×s be the principal submatrix of Σ with indices given by α.

We use Orlicz norms ‖ · ‖ψ1
and ‖ · ‖ψ2

in the spaces of random variables. For a real-valued random variable X , define
‖X‖ψ1

:= inf
{
c > 0

∣∣ E[exp(|X|/c) − 1] ≤ 1
}

and ‖X‖ψ2
:= inf

{
c > 0

∣∣ E[exp(X2/c2) − 1] ≤ 1
}

. For a random
vector X ∈ Rd, define ‖X‖ψ1 := supu∈Sd−1 ‖u>X‖ψ1 and ‖X‖ψ2 := supu∈Sd−1 ‖u>X‖ψ2 .

For any positive semidefinite (PSD) matrix M ∈ Rd×d, let M† denote its Moore–Penrose inverse and
√
M† ∈ Rd×d be the

unique PSD matrix such that
(√
M†
)2

= M†. We define a M†-weighted vector norm ‖ · ‖M† as ‖x‖M† =
√
x>M†x :=∥∥√M†x∥∥

2
for any x ∈ Rd.

For any two distributions µ and ν on a same metric space (X, d), we say a measure p(X,Y ) over X× X is a coupling of µ
and ν if the marginal distributions of p are µ and ν respectively, i.e. p(·,X) = µ and p(X, ·) = ν. The quadratic Wasserstein
metric of µ and ν is defined as

W2(µ, ν) := inf
p(X,Y )∈C(µ,ν)

√
E[d(X,Y )2],

where C(µ, ν) is the collection of all couplings of µ, ν.

Main results Before the statement of main results, we first introduce the notion of T2 property. See Definition D.6 below.

Definition D.6 (T2(σ) distribution). Suppose that a probability measure ρ on metric space (X, d) satisfy the quadratic
transportation cost (T2) inequality

W2(ρ, ν) ≤
√

2σ2KL (ν, ρ) for all measures ν on X,

then we say ρ is a T2(σ) distribution.

We remark that T2 is a broad class that contains many common distributions as special cases. For example, Gaussian
distributionN (·,M) satisfies T2

(√
‖M‖2

)
-inequality. Strongly log-concave distributions are T2. Suppose ρ is a continuous

measure with a convex and compact support set. If its smallest density is lower bounded within the support, then ρ is T2.

We have an estimate of the (local) Rademacher complexities of Fs in Lemma D.7.

Lemma D.7 (Full version of Proposition 6.4). Suppose that for X ∼ ρ, the distribution of φα(X) ∈ Rs satisfies T2

(
σ(α)

)
-

inequality for any α ∈ I. Let σ2
min(α) be the smallest positive eigenvalue of Σα = Eρ

[
φαφ

>
α

]
. Let ηs be a constant such

that ηs ≥ σ(α)/σmin(α) for any α ∈ I. There exists a universal constant c > 0 such that when n ≥ cs log d,

Rρn(Fs) ≤ c(1 + ηs)

√
Bs log d

n
.

Moreover, when n ≥ cs log d, for any f◦ ∈ Fs, the local Rademacher complexity of Fs satisfies

Rρn
({
f ∈ Fs

∣∣ ‖f − f◦‖2ρ ≤ r}) ≤ ψ(r), with ψ(r) := c
√
r(1 + ηs)

√
s log d

n
.

Here, ψ(r) is a sub-root function with a unique positive fixed point

r? = c2(1 + ηs)
2 · s log d

n
.

When φ(X) follows a non-degenerated Gaussian distribution with covariance matrix Σ ∈ Rd×d, we have σ(α) ≤√
λmax(Σα). Since Eρ

[
φαφ

>
α

]
� Σα, it also holds that σmin(α) =

√
λmin

(
Eρ
[
φαφ>α

])
≥
√
λmin(Σα). According to

Lemma D.7, we take a parameter κs(Σ) such that κs(Σ) ≥ λmax(Σα)/λmin(Σα) ≥ 1 for all α ∈ I. In this way, the result
in Lemma D.7 holds for ηs =

√
κs(Σ) and reduces to Proposition 6.4.
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Proof of main results In the sequel, we prove Lemma D.7. We first present some preliminary results.

Lemma D.8. For arbitrary random variables X1, X2, . . . , Xm ≥ 0 (m ≥ 2) satisfying ‖Xi1{|Xi|≤R}‖ψ2 ≤ κ2 and
‖Xi1{|Xi|>R}‖ψ1

≤ κ1 for i = 1, 2, . . . ,m and some parameter R ≥ 1, we have

E max
1≤i≤m

Xi ≤ c
(
κ2

√
logm+m(κ1 +R)e−cR/κ1

)
,

where c > 0 is a universal constant.

Proof. We first note that E
[

max1≤i≤mXi

]
≤ U + V with U := E

[
max1≤i≤mXi1{Xi≤R}

]
and V :=

E
[

max1≤i≤mXi1{|Xi|≥R}
]
. In what follows, we analyze U and V separately.

By definition of ψ2-norm and our assumption
∥∥Xi1{|Xi|≤R}

∥∥
ψ2
≤ κ2, we have E

[
exp(X2

i 1{|Xi|≤R}/κ
2
2)− 1

]
≤ 1 for

i = 1, 2, . . . ,m. It follows that

E
[

max
1≤i≤m

X2
i 1{|Xi|≤R}

κ2
2

] Jensen’s
inequality
≤ logE

[
max

1≤i≤m
exp

(X2
i 1{|Xi|≤R}

κ2
2

)]
≤ log

(
m∑
i=1

E
[

exp
(X2

i 1{|Xi|≤R}

κ2
2

)])
≤ log(2m) ≤ 2 logm.

Therefore, by Jensen’s inequality U = E
[

max1≤i≤mXi1{|Xi|≤R}
]
≤
√

E
[

max1≤i≤mX2
i 1{|Xi|≤R}

]
≤ κ2

√
2 logm.

Recall that ‖Xi1{|Xi|>R}‖ψ1
≤ κ1, which implies there exists a universal constant c ≥ 1 such that P

(
|Xi|1{|Xi|≥R} >

t
)
≤ ce−ct/κ1 . Using this fact, we find that

V ≤E
[

max
1≤i≤m

|Xi|1{|Xi|>R}
]

=

(∫ R

0

+

∫ ∞
R

)
P
(

max
1≤i≤m

|Xi|1{|Xi|>R} ≥ t
)

dt

=RP
(

max
1≤i≤m

|Xi|1{|Xi|>R} ≥ R
)

+

∫ ∞
R

P
(

max
1≤i≤m

|Xi|1|Xi|>R} ≥ t
)

dt

union
bound
≤ mRP

(
|Xi|1{|Xi|>R} ≥ R

)
+m

∫ ∞
R

P
(
|Xi|1{|Xi|>R} ≥ t

)
dt

≤mR · ce−cR/κ1 +m

∫ ∞
R

ce−ct/κ1dt = cmRe−cR/κ1 +mκ1e
−cR/κ1 ≤ cm(κ1 +R)e−cR/κ1 .

Integrating the pieces, we finish the proof.

Lemma D.9. Let X1, X2, . . . , Xn ∈ Rd be i.i.d. random vectors satisfying T2(σ)-inequality and E[X1X
>
1 ] = M ∈ Rd×d.

Suppose that n ≥ d. Let σ1, σ2, . . . , σn be Rademacher random variables independent of X1, X2, . . . , Xn. Then Y :=∥∥ 1
n

∑n
k=1 σkXk

∥∥
M†

satisfies

∥∥|Y − E[Y ]|1
{
|Y − E[Y ]| ≤

(
1 + σ

√
‖M†‖2

)}∥∥
ψ2
≤ c
(

1√
n

+ σ

√
‖M†‖2
n

)

and
∥∥|Y − E[Y ]|1

{
|Y − E[Y ]| >

(
1 + σ

√
‖M†‖2

)}∥∥
ψ1
≤ c
(

1

n
+
σ
√
‖M†‖2
n

)
.

Proof. We take shorthands X := [X1, X2, . . . , Xn] ∈ Rd×n, σ := (σ1, . . . , σn)> ∈ Rn and rewrite Y as Y = 1
n‖Xσ‖M† .

Note that Y − EY =
(
Y − Eσ[Y | X]

)
+
(
Eσ[Y | X]− EY

)
. In the following, we analyze these two terms separately.

Note that ∇σY = n−1‖Xσ‖−1
M†

X>M†Xσ and ‖∇σY ‖2 ≤ n−1
∥∥√M†X∥∥

2
, therefore, Y is (n−1

∥∥√M†X∥∥
2
)-Lipschitz

with respect to σ in the Euclidean norm. Moreover, Y is convex in σ and the Rademacher random variables are independent
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and bounded. We use Talagrand’s inequality (See Theorem 4.20 and Corollary 4.23 in (van Handel, 2014).) and obtain that
there exists a universal constant c > 0 such that

P
(∣∣Y − Eσ[Y | X]

∣∣ ≥ t1n−1
∥∥√M†X∥∥

2

∣∣∣ X) ≤ ce−ct21 for any t1 > 0. (58)

We next consider the concentration of
∥∥√M†X∥∥

2
. For random vector X , we define

‖X‖ψ2
:= sup

u∈Rd,‖u‖2≤1

‖u>X‖ψ2 .

Since X satisfies T2(σ)-inequality, according to Gozlan’s theorem (Theorem 4.31 in van Handel (2014)), we find that∥∥√M†(X − EX)
∥∥
ψ2
≤ cσ

√
‖M†‖2 for some universal constant c > 0. Additionally, we have

∥∥√M†EX∥∥
2
≤√∥∥E[√M†XX>√M†]∥∥

2
= 1. Therefore,

∥∥√M†X∥∥
ψ2
≤
∥∥√M†(X − EX)

∥∥
ψ2

+
∥∥√M†EX∥∥

2
≤ 1 + cσ

√
‖M†‖2.

We now apply Theorem 5.39 in Vershynin (2010) and obtain that

P
(∥∥√M†X∥∥

2
≥
√
n+ c(

√
d+ t)

∥∥√M†X∥∥
ψ2

)
≤ ce−ct

2

,

which further implies

P
(∥∥√M†X∥∥

2
≥
√
n+ c

(√
d+ t2

)(
1 + σ

√
‖M†‖2

))
≤ ce−ct22 for all t2 > 0. (59)

Combining eq. (58) and eq. (59), we learn that

P
(∣∣Y − Eσ[Y | X]

∣∣ ≥ t1n− 1
2 + ct1n

−1
(√
d+ t2

)(
1 + σ

√
‖M†‖2

))
≤ c
(
e−ct

2
1 + e−ct

2
2

)
. (60)

As for the second term Eσ[Y | X] − EY , we use the T2(σ) property of sample distribution and Gozlan’s theorem

(Theorem 4.31 in van Handel (2014)). We first show that Eσ[Y | X] is
√
‖M†‖2
n -Lipschitz with respect to Frobenius norm

‖ · ‖F . In fact,∣∣Eσ[Y | X]− Eσ[Y | X′]
∣∣ =

1

n

∣∣Eσ‖Xσ‖M† − Eσ‖X′σ‖M†
∣∣ ≤ 1

n
Eσ
∣∣‖Xσ‖M† − ‖X′σ‖M†∣∣

≤ 1

n
Eσ
∥∥(X−X′)σ

∥∥
M†
≤ 1

n

√
‖M†‖2‖X−X′‖2Eσ‖σ‖2 ≤

√
‖M†‖2
n
‖X−X′‖F .

We then apply Gozlan’s theorem and find that there exists a universal constant c > 0 such that

P

(∣∣Eσ[Y | X]− E[Y ]
∣∣ ≥ t1σ√‖M†‖2

n

)
≤ ce−ct

2
1 for any t1 > 0. (61)

Integrating eq. (60) and eq. (61) and using the condition n ≥ d, we find that

P
(∣∣Y − E[Y ]

∣∣ ≥ t1n− 1
2

(
1 + cn−

1
2 t2
)(

1 + σ
√
‖M†‖2

))
≤ c
(
e−ct

2
1 + e−ct

2
2

)
.

If 0 ≤ t1 ≤
√
n, then by letting t2 =

√
n, we have

P
(∣∣Y − E[Y ]

∣∣ ≥ ct1n− 1
2

(
1 + σ

√
‖M†‖2

))
≤ ce−ct21 .

Otherwise, when t1 >
√
n, we take t2 = t1 and obtain

P
(∣∣Y − E[Y ]

∣∣ ≥ ct21n−1
(
1 + σ

√
‖M†‖2

))
≤ ce−ct21 .

We then finish the proof by combining these two cases.
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We are now ready to prove Lemma D.7.

Proof of Lemma D.7. Note that Rρn
({
f ∈ Fs

∣∣ ‖f − f◦‖2ρ ≤ r
})

= Rρn
({
f − f◦

∣∣ f ∈ Fs, ‖f − f◦‖2ρ ≤ r
})
≤

Rρn
({
f ∈ F2s

∣∣ ‖f‖2ρ ≤ r
})

. Therefore, we can easily obtain upper bounds for Rρn
({
f ∈ Fs

∣∣ ‖f − f◦‖2ρ ≤ r
})

by
analyzingRρn

({
f ∈ Fs

∣∣ ‖f‖2ρ ≤ r}). To this end, in the following, we focus on the local Rademacher complexity

Rρn
({
f ∈ Fs

∣∣ ‖f‖2ρ ≤ r}).
To simplify the notation, we write x := (s, a). Note that

Rρn
({
f ∈ Fs

∣∣ ‖f‖2ρ ≤ r}) =E sup

{
1

n

K∑
k=1

σkf(xk)

∣∣∣∣ f ∈ F , ‖f‖2ρ ≤ r
}

=E sup

{
1

n

n∑
k=1

σkφα(xk)>w

∣∣∣∣ α ∈ I, w ∈ Rs, w>Σαw ≤ r

}
.

We fix α, {σk}nk=1 and {xk}nk=1 and then optimize w ∈ Rs. Since xk ∈ supp(ρ), one always has 1
n

∑K
k=1 σkφα(xk) ∈

range(Σα) with probability one. The supremum is therefore acheived at

w :=

√
rΣ†α

[
1
n

∑n
k=1 σkφα(xk)

]∥∥ 1
n

∑n
k=1 σkφα(xk)

∥∥
Σ†α

.

It follows that

Rρn
({
f ∈ Fs

∣∣ ‖f‖2ρ ≤ r}) =
√
rEmax

α∈I
Yα, where Yα :=

∥∥∥∥∥ 1

n

n∑
k=1

σkφα(xk)

∥∥∥∥∥
Σ†α

.

We further upper bound the local Rademacher complexity by

Rρn
({
f ∈ Fs

∣∣ ‖f‖2ρ ≤ r}) ≤ √r(max
α∈I

E[Yα]︸ ︷︷ ︸
E1

+E
[

max
α∈I

(
Yα − E[Yα]

)]
︸ ︷︷ ︸

E2

)
. (62)

In the following, we estimate the two terms in the right hand side of eq. (62) separately.

Define σ := (σ1, . . . , σn)> ∈ Rn and Φα :=
[
φα(x1), . . . , φα(xn)

]
∈ Rs×n. We reform Yα as Yα = n−1‖Φασ‖Σ†α . It

follows that

E[Y 2
α ] =

1

n2
E
[
‖Φασ‖2Σ†α

]
=

1

n2
E
[
(Φασ)>Σ†α(Φασ)

]
=

1

n2
E
[
Tr(Σ†αΦασσ

>Φ>α )
]
.

We use the relations 1
nE
[
ΦαΦ>α

]
= Σα and E[σσ>] = Is where Ir represents the identity matrix in Rs×s. The inequality

above is then reduced to

E[Yα] ≤
√
E[Y 2

α ] ≤ 1√
n

√
rank(Σα) ≤

√
s

n
. (63)

To this end, we have E1 ≤
√
s/n.

Now we focus on E2. Since φα(x) satisfies T2

(
σ(α)

)
-inequality. Applying Lemma D.9, we find that if n ≥ s,

∥∥|Yα − E[Yα]|1
{
|Yα − E[Yα]| ≤

(
1 + σ(α)/σmin(α)

)}∥∥
ψ2
≤ c√

n

(
1 +

σ(α)

σmin(α)

)
≤ c√

n
(1 + ηs)

and
∥∥|Yα − E[Yα]|1

{
|Yα − E[Yα]| >

(
1 + σ(α)/σmin(α)

)}∥∥
ψ1
≤ c

n

(
1 +

σ(α)

σmin(α)

)
≤ c

n
(1 + ηs).
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We further use Lemma D.9 and obtain

Emax
α∈I
|Yα − E[Yα]| ≤c(1 + ηs)

(
n−

1
2

√
log |I|+ |I|e−cn

)
≤c(1 + ηs)

(
n−

1
2

√
s log d+ exp

(
− cn+ s log d

))
.

If n ≥ c′s log d for some sufficiently large constant c′, then

E2 = Emax
α∈I

∣∣Yα − E[Yα]
∣∣ ≤ c(1 + ηs)

√
s log d

n
. (64)

Plugging eqs. (63) and (64) into eq. (62), we complete our proof.

E. Proof of Lower Bound (Theorem 5.1)
In this section, we will prove a stronger version of Theorem 5.1, which is Theorem E.1. In Theorem E.1, we show that
in the same setting as Theorem 5.1, even if additionally assuming Assumption 1 holds with C = 1, i.e., µh is the true
marginal distribution of the single-action MDP, and the algorithm knows {µh}Hh=1, it still takes Ω(

√
S
ε2 ) samples for the

learning algorithm A to achieve ε optimality gap for Bellman error. This further justifies the necessity of Assumption 2 and
Assumption 3 in the single sampling regime.
Theorem 5.1. Let A be an arbitrary algorithm that takes any dataset D and function class F as input and outputs an
estimator f̂ ∈ F . For any S ∈ N+ and sample size n ≥ 0, there exists an S-state, single-action MDP paired with a function
class F with |F| = 2 such that the f̂ output by algorithm A satisfies

EE(f̂) ≥ min
f∈F
E(f) + Ω

(
min

{
1,
S1/2

n

})
. (6)

Here, the expectation is taken over the randomness in D.

Theorem E.1. For any ε < 0.5 and S ≥ 2, there is a family of single-action, S + 5-state MDPs (H = 3) with the same
underlying distributions µh (satisfying Assumption 1 with C = 1) and the same reward function (thus the MDPs only differ
in probabiilty transition matrices) and a function class F of size 2, such that all learning algorithm A that takes n pairs of
states (s, a, r, s′) and output a value function in F must suffer Ω(ε2) expected optimality gap in terms of mean-squared
bellman error w.r.t µ if n = O(

√
S
ε2 ).

Mathematically, it means for any learning algorithm A, there is a single-action, S + 5-state MDP defined above, such that
for D = ∪h{(si, ai, ri, s′i, h)}ni=1 sampled fromM and µ, if n = O(

√
S
ε2 ), we have

ED [EM (A(D))] ≥ min
f∈F
EM (f) + Ω(ε2).

Below we will prove Theorem E.1. To better illustrate the idea of the hard instance, we will first prove a slightly weaker
version with C = 2 (Theorem E.2) in Appendix E.1 and in Appendix E.2 we will prove Theorem E.1 by slightly twisting
the proof in Appendix E.1.

E.1. Warm-up with C = 2

We construct the hard instances for single sampling in the following way.

Hard Instance Construction: We first generate a uniform random bit c ∈ {−1, 1}, and a Radamacher vector σ ∈ {±1}S .
For each c,σ, we define MDPMε

c,σ = (S,A, H,Pεc,σ, r) below, where 0 < ε < 0, 5. The claim is the distribution of
Mε

c,σ serves as the distribution of hard instances. Note that only Pεc,σ in the tuple definingMε
c,σ depends on c and σ. Here

the probability transition matrixMε
c,σ is the same for all h = 1, 2, . . . ,H .

Let S = {sstart} ∪ {1, . . . , S} ∪ {tj,k}j,k∈{−1,1}, H = 2, |A| = 1 and the initial state is sstart. Since there’s only one action,
below we will just drop the dependence on action and thus simplify the notation. We will always define the probability
transition matrix in the way such that in the 2nd step, we will reach some state among 1, . . . , S and in the 3rd step, we will
reach some state among tj,k.
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(a) Illustration of the 3-stage, single action MDP. Each state can
be visited for at most one h = 1, 2, 3. r is the reward for each
state.(action omitted since there’s only one)

(b) Illustration of f1 and f−1. They only differ
on t−1,1 and t−1,−1. For h = 3, the Bellman
error ‖fc′ − T 3

c,σfc′‖22,µ3
= 0.5, regardless of

c′ and c.

(c) Illustration of Pε1,σi . When c = 1, there are two different but equally likely types of state i,
depending on their probability transition matrix for the next step.

(d) Illustration of Pε−1,σi . When c = 1, there are two different but equally likely types of state i,
depending on their probability transition matrix for the next step.

Figure 1. Graphical illustration of the hard instancesMε
c,σ . As shown in Equation (65), the total Bellman error is only determined by the

Bellman error for h = 2, which is equal to optimal error + ε2

12
1 [c 6= c′] if fc′ is the returned function. The main idea of the proof is to

show it’s difficult to guess c via the observed dataset D if D only contains single-sampled data. As a sanity check, for any c and sample

(i, tj,k), if σi
unif∼ {±1}, the marginal distribution of tj,k is always uniform, but for double sampling of form (i, tj,k, tj′,k′), we can

decide c by simply looking at histogram of (tj,k, tj′,k′).
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Function class: F = {f1, f−1}, where fc(sstart) = 1
2 , fc(i) = 1

2 ,∀1 ≤ i ≤ S and fc(tj,k) = kmax(c,j)+1
2 , ∀c, j, k ∈

{±1}. Compared to the notation in the main paper, we drop the dependency on h for f ∈ F . This is because the MDP will
reach a disjoint set of states for each step h (see below).

Probability Transition Matrix: We define the probability transition matrix below. Specifically, for i ∈ {1, . . . , S} and
j, k ∈ {±1}, Pεc,σ(tj,k | i) ≡ Pεc,σi(tj,k) := 0.25(1 + εkmax(−c, j)σi).

From
To

sstart i(i = 1, . . . , S) tj,k send

sstart 0 1
S 0 0

i(i = 1, . . . , S) 0 0 Pεc,σi(tj,k) := 0.25(1 + εkmax(−c, j)σi) 0
tj,k 0 0 0 1

Table 1. Probability Transition Matrix Pεc,σ for MDPMε
c,σ . Starting from sstart, the process terminates as it reaches send in the 4th step.

Reward Function: r(sstart) = 0, r(i) = 0,∀1 ≤ i ≤ S, r(tj,k) = j+1
2 ,∀j, k ∈ {−1, 1}.

Underlying distribution: We define the underlying distribution for batch data µ as µ2(i) = 1
S and µ3(tj,k) = 1

4 , we can
check that Assumption 1 is satisfied with C = 2 as ε < 0.5. Define T 1

c,σ, T 2
c,σ, T 3

c,σ be the Bellman operator ofMε
c,σ, we

have ∀σ ∈ {−1, 1}S , ∀c, c′ ∈ {−1, 1},

‖fc′ − T 3
c,σfc′‖22,µ3

= ‖fc′ − r‖22,µ3
= P [j 6= kmax(c′, j)] = 0.5,

‖fc′ − T 2
c,σfc′‖22,µ2

=

∥∥∥∥∥ ∑
j,k∈{±1}

Pc,σ(tj,k | i)fc′(tj,k)

∥∥∥∥∥
2

2,µ2

=
1

64

∥∥∥∥∑
j,k

εσik
2 max(j, c) max(j,−c′)

∥∥∥∥2

2,µ2

=
ε2

4
1 [c 6= c′] ,

‖fc′ − T 1
c,σfc′‖22,µ3

= ‖fc(sstart)− fc(i)‖22,µ1
= 0.

Thus

Ec,σ(fc′) ≡ EMc,σ (fc′) =
1

3

3∑
h=1

‖fc′ − T hc,σfc′‖22,µh =
1

3
(0.5 +

ε2

4
1 [c 6= c′]). (65)

From eq. (65) we can see minimizing Bellman error in this case is equivalent to predict −c. And any algorithm predicts c
wrongly, i.e., outputs fc′ with c′ 6= c with constant probability, will suffer Ω(ε2) expected optimality gap. More specifically,
we can show that for random σ, it’s information-theoretically hard to predict c correctly given D, which leads to the
following theorem.

Theorem E.2. For c iid∼ {−1, 1}, σ iid∼ {−1, 1}S , D = ∪3
h=1{(si, ai, ri, s′i, h)}ni=1 sampled fromMε

c,σ and µ, we have

for any learning algorithm A with n = O(
√
S
ε2 ) samples,

Ec,σED [Ec,σ (A(D))] ≥ Ec,σ
[

min
c′∈{−1,1}

Ec,σ (fc′)

]
+ Ω(ε2).

Or equivalently (and more specifically), if we view Ã(D) as the modified version of A, whose range is {−1, 1} and satisfies
A = fc with c = Ã(D). Then we have

Ec,σED
[
1
[
Ã(D) 6= c

]]
≥ Ω(ε2).

Towards proving Theorem E.2, we need the following lower bound, where µ2 ◦ Pεc,σ is defined as the joint distribution of
(s, s′), where s ∼ µ2 and s′ ∼ Pc,σ|s. Note that when ε = 0, P0

c,σ(· | i) becomes uniform distribution for every 1 ≤ i ≤ S,
and thus is independent of c,σ, which could be denoted by P0 therefore.
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Lemma E.3. If n ≤ 0.1S
0.5

ε2 , then ‖Eσ
(
µ2 ◦ Pεc,σ

)n − (µ2 ◦ P0
)n‖TV ≤ 0.1, for all c ∈ {−1, 1}.

Proof. For convenience, we denote
(
µ2 ◦ P0

)n
by P and Eσ

(
µ2 ◦ Pεc,σ

)n
by Q. By Pinsker’s inequality, we have

‖P −Q‖TV ≤
√

2KL(P,Q), for any distribution P,Q. Thus it suffices to upper bound KL(P,Q) by 0.05.

We defineEi as a random subset, i.e.,Ei = {l|1 ≤ l ≤ n, sl = i}, givenD = {(si, s′i)}ni=1. Then for both Eσ
(
µ2 ◦ Pεc,σ

)n
and

(
µ2 ◦ P0

)n
, s1, . . . , sn are i.i.d. distributed by µ2. Note that

Q(s′1, . . . , s
′
n | s1, . . . , sn)

=
∑

σ∈{−1,1}S
p(σ)Q(s′1, . . . , s

′
n | s1, . . . , sn,σ)

=
∑

σ∈{−1,1}S

S∏
i=1

p(σi)

S∏
i=1

Q(s′Ei |Ei, σi)

=

S∏
i=1

 ∑
σi∈{−1,1}

p(σi)Q(s′Ei |Ei, σi)

 ,

(66)

and

P (s′1, . . . , s
′
n | s1, . . . , sn) =

S∏
i=1

P (s′Ei |Ei). (67)

For any tuple (s1, . . . , sn) and subset E ⊂ {1, . . . , n}, we define sE as the sub-tuple of s with length |E| selected by E.
Define PEi , QEi as the distribution of s′Ei conditioned on Ei. In detail, QEi(s

′
Ei

) =
∑

σi∈{−1,1}
p(σi)Q(s′Ei |Ei, σi) and

PEi(s
′
Ei

) = P (s′Ei |Ei). Note that for Q, s′Ei are i.i.d. conditioned on Ei and σi, i,.e., Q(s′Ei |Ei, σi) =
∏
l∈Ei P

ε

c,σi(s
′
l).

Therefore the distribution QEi only depends on |Ei|, so does PEi .

Thus we can write the KL divergence as:

KL
((
µ2 ◦ P0

)n
,Eσ

(
µ2 ◦ Pεc,σ

)n)
= KL (P,Q) = E

D∼P

[
log

P (D)

Q(D)

]
= E
D∼P

[
log

P (s′1, . . . , s
′
n | s1, . . . , sn)

Q(s′1, . . . , s
′
n | s1, . . . , sn)

+ log
P (s1, . . . , sn)

Q(s1, . . . , sn)

]
= E
D∼P

[
log

∏S
i=1 P (s′Ei |Ei)∏S
i=1Q(s′Ei |Ei)

+ log
P (s1, . . . , sn)

Q(s1, . . . , sn)

]
(P (s1, . . . , sn) = Q(s1, . . . , sn))

= E
D∼P

[
S∑
i=1

log
PEi(s

′
Ei

)

QEi(s
′
Ei

)

]

=

S∑
i=1

E
D∼P

[
log

PEi(s
′
Ei

)

QEi(s
′
Ei

)

]
.

(68)

By the definition of P and Q, given c ∈ ±1 and ε > 0, we can see that ED∼P
[
log

PEi (s
′
Ei

)

QEi (s
′
Ei

)

]
only a function of |Ei|, and

we denote it by Gc,ε(|Ei|). Thus we have
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KL
((
µ2 ◦ P0

)n
,Eσ

(
µ2 ◦ Pεc,σ

)n)
=KL (P,Q)

=

S∑
i=1

n∑
m=0

E
D∼P

[
S∑
i=1

log
PEi(s

′
Ei

)

QEi(s
′
Ei

)

∣∣∣∣∣|Ei| = m

]
P (|Ei| = m)

=

S∑
i=1

n∑
m=0

Gc,ε(m)P (|Ei| = m)

=S

n∑
m=0

Gc,ε(m)P (|E1| = m).

(69)

The last step is because Ei are i.i.d. distributed. For convenience, we will denote P (|E1| = m) by PN (m).

It can be shown that Gc,ε(m) is independent of c, and thus we drop c in the subscription. We could even simplify the
expression ofGε(m) by definingRσ,ε(j) = 0.5(1+jσε) over {−1, 1} (For c = 1, this is effectively grouping (t1,1, t−1,−1)
into a state, say 1, and (t1,−1, t−1,1) into another state, say −1.)

Gε(m) = KL

(
(Unif{−1, 1})m ,

(
R′−1,ε

)m
+
(
R′1,ε

)m
2

)
.

Below are some basic properties of Gε(m).

• Gε(0) = 0.

• Gε(1) = 0.

• Gε(m) ≤ 6m2+m
8 ε4 + m

2
ε4

1−ε2 ≤ 2mε4, for ε2 ≤ 1
2 .

The first two properties can be verified by direct calculation, and the third property is proved in Lemma E.4.

Now it remains to calculate PN (1) and EP
[
|E1|2

]
. We have

PN (1) = n
1

S
(1− 1

S
)n−1 ≤ n

S
(1− n

S
),

and

E
P

[
|E1|2

]
= E

P

[
(
∑
i=1n

1 [si = 1])2

]
= E

P

 n∑
i=1

1 [si = 1] +

n∑
i,j=1,ı 6=j

1 [si = sj = 1]

 =
n

S
+
n(n− 1)

S2
.

Thus we conclude that

KL (P,Q) =S

n∑
m=2

PN (m)Gε(m) ≤ S
n∑

m=2

PN (m) · 2m2ε4 = 2
( n∑
m=2

PN (m)m2
)
Sε4

=2

(
E
P

[
|E1|2

]
− PN (1)

)
Sε4 = 2

(
n(n− 1)

S2
+
n2

S2

)
Sε4 ≤ 4n2ε4

S
.

Since n ≤ 0.1S
0.5

ε2 , we have ‖P −Q‖TV ≤
√

2KL(P,Q) ≤
√

0.08 ≤ 0.1, which completes the proof.
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Lemma E.4. For ε2 ≤ 1
2 , we have

Gε(m) ≤ 6m2 +m

8
ε4 +

m

2

ε4

1− ε2
≤ 2m2ε4.

Proof of Lemma E.4. Let x1, . . . , xn
i.i.d.∼ {−1, 1}, we have

Gε(m) = −E
x

[
log

(
m∏
i=1

(1− xiε) +

m∏
i=1

(1 + xiε)

)]
.

For convenience, we define |x| := |
∑m
i=1 xi|. Note that

m∏
i=1

(1− xiε) +

m∏
i=1

(1 + xiε) =
(

(1− ε)|x| + (1 + ε)|x|
)

(1− ε2)
m−|x|

2 .

Thus

Gε(m) = −E
x

[
log
(

(1− ε)|x| + (1 + ε)|x|
)]
− m− |x|

2
E
x

[
log(1− ε2)

]
.

For the first term, we have

− E
x

[
log
(

(1− ε)|x| + (1 + ε)|x|
)]

≤− E
x

[
log

(
1 +
|x|(|x| − 1)

2
ε2

)]
≤E
x

[
−|x|(|x| − 1)

2
ε2 +

1

2

(
|x|(|x| − 1)

2
ε2

)2
]

≤E
x

[
−|x|(|x| − 1)

2
ε2 +

|x|4

8
ε4

]
=− m

2
ε2 + E

x

[
|x|
2

]
ε2 +

6m2 +m

8
ε4.

For the second term, we have

−E
x

[
log(1− ε2)

]
= E
x

[
log(1 +

ε2

1− ε2
)

]
≤ ε2

1− ε2
= ε2 +

ε4

1− ε2
.

Thus Gε(m) only contains ε4 terms, i.e.,

Gε(m) ≤ 6m2 +m

8
ε4 +

m

2

ε4

1− ε2
≤ 2m2ε4,

the last step is by assumption ε2 ≤ 1
2 .

Proof of Theorem E.2. In our case, since r is known and |A| = 1, we can simplify the each data in D into the form
of (s, s′, h). Further since the probability transition matrix for h = 1 and h = 3 are known, below we will assume D
only contains n pairs of (s, s′, 2), and we will call these states by {si}ni=1 and {s′i}ni=1. Since ‖fc′ − T 3

c,σfc′‖12,µ2
and

‖fc′ − T 3
c,σfc′‖12,µ2

are constant for all c, c′, we only need to consider ‖fc′ − T 2
c,σfc′‖22,µ3

as our loss.

Recall we define µ2 ◦ Pεc,σ as the joint distribution of (s, s′), where s ∼ µ2 and s′ ∼ Pc,σ|s. Thus the dataset D can be
viewed as sampled from Ec,σ (µ2 ◦ Pc,σ)

n, i.e., D is sampled from a mixture of product measures.
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By Lemma E.3, we know∥∥Eσ (µ2 ◦ Pε1,σ
)n − Eσ

(
µ2 ◦ Pε−1,σ

)n ∥∥
TV

≤
∥∥Eσ (µ2 ◦ Pε1,σ

)n − Eσ
(
µ2 ◦ P0

)n ∥∥
TV

+
∥∥Eσ (µ2 ◦ Pε−1,σ

)n − Eσ
(
µ2 ◦ P0

)n ∥∥
TV

≤0.2.

Thus if we denote the distribution of widetildeA(D) by Xc, where D ∼ Eσ
(
µ2 ◦ Pεc,σ

)n
and σ ∼ {−1, 1}S , and Ã can

be random, the above inequality implies P [X−1 6= X1] ≤ 0.2, and therefore we have

Ec,σED [Ec,σ (A(D))] =
1

2
(Eσ,D [E1,σ (A(D))] + Eσ,D [E−1,σ (A(D))])

=
1

6
+
ε2

24
(P [X1 6= 1] + P [X−1 6= −1])

=
1

6
+
ε2

24
(P [X1 6= 1] + P [X−1 6= −1] + P [X1 6= X−1])− ε2

24
P [X1 6= X−1]

≥1

6
+
ε2

24
− ε2

24
P [X1 6= X−1]

≥1

6
+
ε2

24
− ε2

24
× 0.2

=
1

6
+
ε2

30

=Ec,σ
[

min
c′∈{−1,1}

Ec,σ (fc′)

]
+
ε2

30
.

(70)

E.2. Proof of Theorem E.1

Now we will prove Theorem E.1 by slightly twisting the distribution of hard instances (MDPs) constructed in the previous
subsection.

Proof of Theorem E.1. W.O.L.G, we can assume S is even and S = 2S′ (o.w. we can just abandon one state.) The only
modification from the previous lower bound with C = 2 is now the distribution of σ is defined as the conditional distribution
of P on

∑S
i=1 = 0, i.e., P ′(σ) = P (σ|

∑S
i=1 σi = 0), where P is the uniform distribution on {−1, 1}S . The main idea is

that the data distribution (i.e., distribution of (s, s′)) shouldn’t be very different even if we add this additional ‘balancedness’

restriction. We further define a metric d on {−1, 1}S . In detail, for σ,σ′ ∈ {−1, 1}d, we define d(σ,σ′) =
∑S
i=1 |σi−σ

′
i|

2S .
We have the following lemma:

Lemma E.5.

W d
1 (P, P ′) =

1

2S
EP

∣∣∣∣∣
S∑
i=1

σi

∣∣∣∣∣, (71)

where W d
1 (P, P ′) is defined as min

σ∼P,σ′∼P ′
E[d(σ,σ′)].

By Cauchy Inequality, we have

W d
1 (P, P ′) =

1

2S
EP

∣∣∣∣∣
S∑
i=1

σi

∣∣∣∣∣ ≤ 1

2S

√√√√EP

(
S∑
i=1

σi

)2

=
1

2
√
S

(72)

Proof. For even S, we define B as the set of the “balanced” σ, i.e., B = {σ|
∑S
i=1 σ

′
i = 0}. For every σ ∈ {−1, 1}S , we

define Qσ as the uniform distribution on Uσ = {σ′ | d(σ,σ′) =
|
∑S
i=1 σi|
2S } ∩B, i.e. σ′ ∈ Uσ if and only if σ′ ∈ B and

d(σ,σ′) = minσ′∈B d(σ,σ′).



Risk Bounds and Rademacher Complexity in Batch Reinforcement Learning

Now we define Γ(σ,σ′) = P (σ)Qσ(σ′). By definition the marginal distribution of Γ on σ is P . By symmetry, the
marginal distribution of σ′ is P ′. Thus by definition of W1,

W d
1 (P, P ′) ≤ E

σ,σ′∼Γ
[d(σ,σ′)] =

1

2S
EP

∣∣∣∣∣
S∑
i=1

σi

∣∣∣∣∣.
Lemma E.6. ∥∥ (µ2 ◦ Pεc,σ

)n − (µ2 ◦ Pεc,σ′
)n ∥∥

TV
≤ Cε

√
nd(σ,σ′). (73)

Proof. First, note that

KL
(
µ2 ◦ Pεc,σ, µ2 ◦ Pεc,σ′

)
=KL (µ2, µ2) + E

i∼µ2

[
KL

(
Pεc,σ(· | i),Pεc,σ′(· | i)

)]
=0 + E

i∼µ2

[
KL

(
Pεc,σi ,P

ε
c,σ′i

)]
= P
i∼µ2

[σi 6= σ′i] ·
(

1 + ε

2
log

1 + ε

1− ε
+

1− ε
2

log
1− ε
1 + ε

)
= P
i∼µ2

[σi 6= σ′i] · ε log
1 + ε

1− ε

= P
i∼µ2

[σi 6= σ′i] ·
2ε2

1− ε
≤4d(σ,σ′)ε2.

(74)

Thus we have ∥∥ (µ2 ◦ Pεc,σ
)n − (µ2 ◦ Pεc,σ′

)n ∥∥
TV

≤
√

2KL
((
µ2 ◦ Pεc,σ

)n
,
(
µ2 ◦ Pεc,σ′

)n)
≤
√

2nKL
(
µ2 ◦ Pεc,σ, µ2 ◦ Pεc,σ′

)
≤ε
√

8md(σ,σ′).

(75)

Let Γ(σ,σ′) be the joint probabilistic distribution on {−1, 1}S × {−1, 1}S which attains the eq. (71). Therefore the
marginal distribution of Γ is P and P ′. And thus we have for any c ∈ {−1, 1},

‖ E
σ∼P

[(
µ2 ◦ Pεc,σ

)n]− E
σ∼P ′

[(
µ2 ◦ Pεc,σ′

)n]‖TV
≤ E
σ,σ′∼Γ

[
‖
(
µ2 ◦ Pεc,σ

)n − (µ2 ◦ Pεc,σ′
)n‖TV ]

≤ E
σ,σ′∼Γ

[
ε
√

8nd(σ,σ′)
]

≤ε
√
n E
σ,σ′∼Γ

[8d(σ,σ′)]

=ε
√

8nW d
1 (P, P ′)

≤2εn0.5S−0.25.

(76)
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Therefore, when n ≤
√
S

400ε2 , for any c ∈ {−1, 1},

‖ E
σ∼P

[(
µ2 ◦ Pεc,σ

)n]− E
σ∼P ′

[(
µ2 ◦ Pεc,σ′

)n]‖TV ≤ 0.1.

By Lemma E.3, we have

‖ E
σ∼P ′

[(
µ2 ◦ Pε1,σ′

)n]− E
σ∼P ′

[(
µ2 ◦ Pε−1,σ′

)n]‖TV ≤ 0.1 + 0.1 + 0.1 + 0.1 = 0.4.

Thus using the same argument in eq. (70), In detail, denote the distribution of A(D) by Xc, where D ∼ Eσ
(
µ2 ◦ Pεc,σ

)n
,

σ ∼ {−1, 1}S , the above inequality implies P [X−1 6= X1] ≤ 0.4, and therefore we have

Ec,σED [Ec,σ (A(D))] =
1

2
(Eσ,D [E1,σ (A(D))] + Eσ,D [E−1,σ (A(D))])

=
1

6
+
ε2

24
(P [X1 6= 1] + P [X−1 6= −1])

=
1

6
+
ε2

24
(P [X1 6= 1] + P [X−1 6= −1] + P [X1 6= X−1])− ε2

24
P [X1 6= X−1]

≥1

6
+
ε2

24
− ε2

24
× 0.4

=
1

6
+

1

40
ε2

=Ec,σ
[

min
c′∈{−1,1}

Ec,σ (fc′)

]
+
ε2

40
.

(77)

F. Auxiliary Results
In this section, we prove some auxiliary lemmas. Appendix F.1 considers the relation between Bellman error and subopti-
mality in values (Lemma 3.2). Appendix F.2 provides a supporting lemma used in the proof of Theorem 5.5. Appendix F.3
presents a full version of Proposition 5.6.

F.1. Connections between Bellman error and suboptimality in value (Lemma 3.2)

In this part, we present several possible ways to connect Bellman error E(f) with the suboptimality gap V ?1 (s1)− V πf1 (s1).

Via concentrability coefficient

Lemma 3.2 (Bellman error to value suboptimality). Under Assumption 1, for any f ∈ F , we have that ,

V ?1 (s1)− V πf1 (s1) ≤ 2H
√
C · E(f), (3)

where C is the concentrability coefficient in Assumption 1.

Lemma 3.2 gives a feasible method to upper bound V ?1 (s1) − V πf1 (s1) with E(f) using the concentrability coefficient
introduced in Assumption 1. We provide the proof of Lemma 3.2 below.

Proof of Lemma 3.2. The proof of Lemma 3.2 is analogous to Theorem 2 in (Xie & Jiang, 2020b). We place it here for the
self-containedness of our paper. In discussions below, we omit the subscript h in policy πfh and simply write πf to ease the
notation. We first note that since πf is greedy w.r.t f , therefore,

V ?1 (s1)− V πf1 (s1) ≤ V ?1 (s1)− f1

(
s1, π

?(s1)
)

+ f1

(
s1, πf (s1)

)
− V πf1 (s1). (78)
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Consider any policy π. Since fH+1 = 0 and V π1 (s1) = E
[∑H

h=1 rh
∣∣ s1, π

]
by definition, we have

f1

(
s1, π(s1)

)
− V π1 (s1) = E

[
H∑
h=1

(
fh(sh, ah)− Eπh

[
rh + fh+1

(
sh+1, ah+1

) ∣∣ sh, ah])
∣∣∣∣∣ s1, π

]
.

Therefore, combined with the fact πf is the greedy policy w.r.t. f , we can show that

f1

(
s1, π

?(s1)
)
− V ?1 (s1) ≥E

[
H∑
h=1

(
fh − T ?h fh+1

)
(sh, ah)

∣∣∣∣∣ s1, π
?

]
, (79)

f1(s1, πf (s1))− V πf1 (s1) =E

[
H∑
h=1

(
fh − T ?h fh+1

)
(sh, ah)

∣∣∣∣∣ s1, πf

]
. (80)

Plugging eqs. (79) and (80) into eq. (78) yields

V ?1 (s1)− V πf1 (s1) ≤ −E

[
H∑
h=1

(
fh − T ?h fh+1

)
(sh, ah)

∣∣∣∣∣ s1, π
?

]
+ E

[
H∑
h=1

(
fh − T ?h fh+1

)
(sh, ah)

∣∣∣∣∣ s1, πf

]
.

Under Assumption 1, by Cauchy-Swartz inequality, it holds that for any policy π:∣∣∣∣∣E
[

H∑
h=1

(
fh − T ?h fh+1

)
(sh, ah)

∣∣∣∣∣ s1, π

]∣∣∣∣∣ ≤
√√√√H

H∑
h=1

E

[(
fh − T ?h fh+1

)2
(sh, ah)

∣∣∣∣∣ s1, π

]

≤
√
CH

√√√√ 1

H

H∑
h=1

∥∥fh − T ?h fh+1

∥∥2

µh
,

which finishes the proof.

Via a weaker concentrability assumption We observe that Lemma 3.2 does not necessarily need an assumption as strong
as Assumption 1. In fact, the inequality V ?1 (s1)− V πf1 (s1) ≤ 2H

√
C · E(f) still holds if

E
[(
fh − T ?h fh+1

)
(sh, ah)

∣∣ s1, π
]
≤
√
C
∥∥fh − T ?h fh+1

∥∥
µh

for π = π? or π = πf for f ∈ F . (81)

If the function class F and T ?F =
{
T ?f = (T ?1 f2, . . . , T ?HfH+1)

∣∣ f ∈ F} have good structures, we may have a tighter
estimate of the required C. For illustrative purpose, we take a simple example where Fh is a subset of a finite dimensional
linear space and T ?h fh+1 ∈ Fh for any fh+1 ∈ Fh+1. Let φ : S ×A → Rd be a basis of Fh with ‖φ(s, a)‖2 ≤ 1. Define

Σh := Eµh [φφ>] ∈ Rd×d. For any f = w>φ ∈ Fh, ‖f‖∞ ≤ ‖w‖2 ≤ ‖Σ
1
2

hw‖2
√

1/λmin(Σh) = ‖f‖µh
√

1/λmin(Σh).
Therefore, eq. (81) holds for C = maxh∈[H]{1/λmin(Σh)}.

F.2. Proof of Supporting Lemmas in Minimax Algorithm Analysis

Lemma F.1. Suppose Assumption 4 holds. Denote f† := minf∈F E(f). For h ∈ [H], it holds that∥∥fh − f†h∥∥2

ρh
≤ C̃H(H − h+ 1)

∥∥(f − T ?f)− (f† − T ?f†)∥∥2

µ
for ρh = µh or νh × Unif(A), (82)

and
∥∥T ?h fh+1 − T ?h f

†
h+1

∥∥2

µh
≤ C̃H(H − h)

∥∥(f − T ?f)− (f† − T ?f†)∥∥2

µ
. (83)

Proof. 1. Let πf be the greedy policy associated with f ∈ F . Since fH+1 = f†H+1 = 0, we have

fh(s, a)− f†h(s, a) =E

[
H∑
τ=h

[(
fτ
(
sτ , aτ

)
− E

[
rτ + fτ+1

(
sτ+1, aτ+1

) ∣∣ sτ , aτ ])
−
(
f†τ
(
sτ , aτ

)
− E

[
rτ + f†τ+1

(
sτ+1, aτ+1

) ∣∣ sτ , aτ ])]
∣∣∣∣∣ sh = s, ah = a, πf

]
.

(84)
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Note that
E
[
rτ + fτ+1

(
sτ+1, πfτ+1(sτ+1)

) ∣∣ sτ , aτ ] = T ?τ fτ+1(sτ , aτ ),

E
[
rτ + f†τ+1

(
sτ+1, πfτ+1(sτ+1)

) ∣∣ sτ , aτ ] ≤ T ?τ f†τ+1(sτ , aτ ).
(85)

Combining eqs. (84) and (85), we learn that

fh(s, a)− f†h(s, a) ≤ E

[
H∑
τ=h

[(
fτ − T ?τ fτ+1

)
−
(
f†τ − T ?τ f

†
τ+1

)]
(sτ , aτ )

∣∣∣∣∣ sh = s, ah = a, πf

]
. (86)

By symmetry, it also holds that

f†h(s, a)− fh(s, a) ≤ E

[
H∑
τ=h

[(
f†τ − T ?τ f

†
τ+1

)
−
(
fτ − T ?τ fτ+1

)]
(sτ , aτ )

∣∣∣∣∣ sh = s, ah = a, πf†

]
. (87)

Under Assumption 4, by Cauchy-Swartz inequality, for any policy π:

E(sh,ah)∼µh

(
E

[
H∑
τ=h

[(
fτ − T ?τ fτ+1

)
−
(
f†τ − T ?τ f

†
τ+1

)]
(sτ , aτ )

∣∣∣∣∣ sh, ah, π
])2

≤(H − h+ 1)E

[
H∑
τ=h

[(
fτ − T ?τ fτ+1

)
−
(
f†τ − T ?τ f

†
τ+1

)]2
(sτ , aτ )

∣∣∣∣∣ (sh, ah) ∼ µh, π

]

≤C̃(H − h+ 1)

H∑
τ=h

∥∥(fτ − T ?τ fτ+1

)
−
(
f†τ − T ?τ f

†
τ+1

)∥∥2

µτ

≤C̃H(H − h+ 1)
∥∥(f − T ?f)− (f† − T ?f†)∥∥2

µ
.

Therefore, eqs. (86) and (87) imply eq. (82).

2. We now consider
∥∥T ?h fh+1 − T ?h f

†
h+1

∥∥
µh

. Take π̃h+1(s) := arg maxa∈A
{
fh+1(s, a) ∨ f†h+1(s, a)

}
. Then we have

∣∣Vfh+1
(s)− Vf†h+1

(s)
∣∣ ≤ ∣∣fh+1

(
s, π̃h+1(s)

)
− f†h+1

(
s, π̃h+1(s)

)∣∣.
It follows that ∥∥T ?h fh+1 − T ?h f

†
h+1

∥∥
µh

=
∥∥E[Vfh+1

(s′)− Vf†h+1
(s′)

∣∣ s, a]∥∥
µh

≤
∥∥Vfh+1

− Vf†h+1

∥∥
νh
≤
∥∥fh+1 − f†h+1

∥∥
νh×π̃h+1

.

Similar to eqs. (86) and (87), we find that∥∥fh+1 − f†h+1

∥∥2

νh×π̃h+1

≤ max
π=πf or π

f†
E(sh+1,ah+1)∼νh×π̃h+1

(
E

[
H∑

τ=h+1

[(
fτ − T ?τ fτ+1

)
−
(
f†τ − T ?τ f

†
τ+1

)]
(sτ , aτ )

∣∣∣∣∣ sh+1, ah+1, π

])2

≤(H − h) max
π=πf or π

f†
E(sh+1,ah+1)∼νh×π̃h+1

E

[
H∑

τ=h+1

[(
fτ − T ?τ fτ+1

)
−
(
f†τ − T ?τ f

†
τ+1

)]2
(sτ , aτ )

∣∣∣∣∣ sh+1, ah+1, π

]

≤C̃(H − h)

H∑
τ=h+1

∥∥(fτ − T ?τ fτ+1

)
−
(
f†τ − T ?τ f

†
τ+1

)∥∥2

µτ
≤ C̃H(H − h)

∥∥(f − T ?f)− (f† − T ?f†)∥∥2

µ
.

Therefore, we conclude that
∥∥T ?h fh+1 − T ?h f

†
h+1

∥∥2

µh
≤ C̃H(H − h)

∥∥(f − T ?f)− (f† − T ?f†)∥∥2

µ
.
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F.3. Proof of Proposition 5.6

Lemma F.2 (Full version of Proposition 5.6). Let F̃h+1 be any subset of Fh+1. We have the following inequality,

Rµhn
({
T ?h fh+1

∣∣ fh+1 ∈ F̃h+1

})
≤ Rνhn

(
VF̃h+1

)
≤
√

2ARνh×Unif(A)
n

(
F̃h+1

)
.

Proof. 1. Due to the symmetry of Rademacher random variables,

Rµhn
({
T ?h fh+1

∣∣ fh+1 ∈ F̃h+1

})
=Rµhn

({
rh + E

[
Vfh+1

(s′h)
∣∣ sh, ah] ∣∣∣ fh+1 ∈ F̃h+1

})
=Rµhn

({
E
[
Vfh+1

(s′h)
∣∣ sh, ah] ∣∣∣ fh+1 ∈ F̃h+1

})
.

By definition,

Rµhn
({

E
[
Vfh+1

(s′h)
∣∣ sh, ah] ∣∣∣ fh+1 ∈ F̃h+1

})
= Eµh

[
sup

fh+1∈F̃h+1

n∑
k=1

σkE
[
Vfh+1

(s′k,h)
∣∣ sk,h, ak,h]].

Switching the order of supremum and the inner expectation, we derive that

Rµhn
({

E
[
Vfh+1

(s′h)
∣∣ sh, ah] ∣∣∣ fh+1 ∈ F̃h+1

})
≤ E

[
sup

fh+1∈F̃h+1

n∑
k=1

σkVfh+1
(s′k,h)

]
= Rνhn

(
VF̃h+1

)
.

2. For notational convenience, let A = [A]. Consider a vector function ~fh+1 : S → RA defined as ~fh+1(s) :=(
fh+1(s, 1), fh+1(s, 2), . . . , fh+1(s,A)

)> ∈ RA. Then for any fh+1, f
′
h+1 ∈ Fh+1,

∣∣Vfh+1
(s) − Vf ′h+1

(s)
∣∣ ≤ ‖~fh+1 −

~f ′h+1‖∞ ≤ ‖~fh+1 − ~f ′h+1‖2, i.e. the mapping RA 3 ~fh+1(s) 7→ Vfh+1
(s) is 1-Lipschitz. By Lemma G.7, we have

Rνhn
(
VF̃h+1

)
≤
√

2E

[
sup

fh+1∈F̃h+1

n∑
k=1

∑
a∈A

σk,afh+1(s′k, a)

]
,

where s′1, s
′
2, . . . , s

′
n are i.i.d. samples generated from νh. Let a′1, a

′
2, . . . , a

′
n ∈ A be random variables such that P(a′k =

a | s′k) = A−1 for a ∈ A. It follows that

E

[
sup

fh+1∈F̃h+1

n∑
k=1

∑
a∈A

σk,afh+1(s′k, a)

]
≤ AE

[
1

A

∑
a∈A

sup
fh+1∈F̃h+1

n∑
k=1

σk,afh+1(s′k, a)

]

=AE

[
sup

fh+1∈F̃h+1

n∑
k=1

σk,a′kfh+1(s′k, a
′
k)

]
= ARνh×Unif(A)

n

(
F̃h+1

)
.

Therefore,Rνhn
(
VF̃h+1

)
≤
√

2ARνh×Unif(A)
n

(
F̃h+1

)
.

G. Useful Results for (Local) Rademacher Complexity
In this section, we sumarize some useful results for (local) Rademacher complexity that are used throughout our analysis.

G.1. Concentration with Rademacher Complexity

Lemma G.1 below shows some uniform concentration inequalities with Rademacher complexity.

Lemma G.1. Let F be a class of functions with ranges in [a, b]. With probability at least 1− δ,

Pf ≤ Pnf + 2Rn(F) + (b− a)

√
2 log(2/δ)

n
, for any f ∈ F .

Also, with probability at least 1− δ,

Pnf ≤ Pf + 2Rn(F) + (b− a)

√
2 log(2/δ)

n
, for any f ∈ F .
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Proof. Consider the empirical process supf∈F (Pf − Pnf). By McDiarmid’s inequality, with probability at least 1− δ,

sup
f∈F

(
Pf − Pnf

)
≤ E sup

f∈F

(
Pf − Pnf

)
+ (b− a)

√
2 log(2/δ)

n
. (88)

The basic property of Rademacher complexity ensures that

E sup
f∈F

(
Pf − Pnf

)
≤ 2Rn(F). (89)

Combining eqs. (88) and (89), we finish the proof.

G.2. Concentration with Local Rademacher complexity

In this part, we present some auxiliary results regarding local Rademacher complexity. In particular, Lemma G.2 guarantees
the well-definedness of critical radius, Theorem G.3 provides concentration inequalities and Lemma G.5 gives some useful
properties of sub-root functions.

G.2.1. WELL-DEFINEDNESS OF CRITICAL RADIUS

Recall that in Definition 2.3, the critical radius r? of local Rademacher complexityRρn({f ∈ F | T (f) ≤ r}) is defined as
the possitive fixed point of some sub-root functions ψ(r). The following Lemma G.2 ensures that r? exists and is unique.

Lemma G.2 (Lemma 3.2 in Bartlett et al. (2005)). If ψ : [0,∞) → [0,∞) is a nontrivial sub-root function, then it is
continuous on [0,∞) and the equation ψ(r) = r has a unique positive solution r?. Moreover, for all r > 0, r ≥ ψ(r) if and
only if r? ≤ r.

G.2.2. CONCENTRATION INEQUALITIES

Throughout the paper, we use Theorem G.3 below to prove uniform concentration with local Rademacher complexity.
Theorem G.3 is a variant of Theorem 3.3 in Bartlett et al. (2005).

Theorem G.3 (Corollary of Theorem 3.3 in Bartlett et al. (2005)). Let F be a class of functions with ranges in [a, b]
and assume that there are some functional T : F → R+ and some constants B and η such that for every f ∈ F ,
Var[f ] ≤ T (f) ≤ B(Pf + η). Let ψ be a sub-root function and let r? be the fixed point of ψ. Assume that ψ satisfies, for
any r ≥ r?, ψ(r) ≥ BRn

({
f ∈ F

∣∣T (f) ≤ r
})

. Then for any θ > 1, with probability at least 1− δ,

Pf ≤ θ

θ − 1
Pnf +

c1θ

B
r? +

(
c2(b− a) + c3Bθ

) log(1/δ)

n
+

η

θ − 1
, for any f ∈ F . (90)

Also, with probability at least 1− δ,

Pnf ≤
θ + 1

θ
Pf +

c1θ

B
r? +

(
c2(b− a) + c3Bθ

) log(1/δ)

n
+
η

θ
, for any f ∈ F .

Here, c1, c2, c3 > 0 are some universal constants.

Proof. Theorem G.3 is proved in the same way as the first part of Theorem 3.3 in Bartlett et al. (2005), by applying the
following Lemma G.4 instead of Lemma 3.8 in Bartlett et al. (2005).

Given a class F , λ > 1 and r > 0, let w(f) := min
{
rλk

∣∣ k ∈ N, rλk ≥ T (f)
}

and set Gr :=
{

r
w(f)f

∣∣ f ∈ F}. Define
V +
r := supg∈Gr Pg − Png and V −r := supg∈Gr Png − Pg.

Lemma G.4 (Corollary of Lemma 3.8 in Bartlett et al. (2005)). Assume that there is a constant B > 0 such that for every
f ∈ F , T (f) ≤ B(Pf + η). Fix θ > 1, λ > 0 and r > 0. If V +

r ≤ r
λBθ , then Pf ≤ θ

θ−1Pnf + r
λBθ + η

θ−1 . Also, if
V −r ≤ r

λBθ , then Pnf ≤ θ+1
θ Pf + r

λBθ + η
θ .

Proof. When V +
r ≤ r

λBθ , following the same reasoning as Lemma 3.8 in Bartlett et al. (2005), we derive that Pf ≤
Pnf + θ−1(Pf + η) under the modified condition T (f) ≤ B(Pf + η). It immediately implies the first statement. Similarly,
the second part is proved by showing that Pnf ≤ Pf + θ−1(Pf + η).
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G.2.3. PROPERTIES OF SUB-ROOT FUNCTIONS

We apply the following Lemma G.5 to simplify the forms of critical radii.

Lemma G.5. If ψ : [0,∞)→ [0,∞) is a nontrivial sub-root function and r? is its positive fixed point, then

1. ψ(r) ≤
√
r?r for any r ≥ r?.

2. For any c > 0, ψ̃(r) := cψ(c−1r) is sub-root and its positive fixed point r̃? satisfies r̃? = cr?.

3. For any C > 0, ψ̃(r) := Cψ(r) is sub-root and its positive fixed point r̃? satisfies r̃? ≤ (C2 ∨ 1)r?.

4. For any ∆r>0, ψ̃(r) := ψ(r+∆r) is sub-root and its positive fixed point r̃? satisfies r̃?≤r?+
√
r?∆r.

If ψi:[0,∞)→ [0,∞),i=1, ...,n are nontrivial sub-root functions and r?i is the positive fixed point of ψi, then

5. ψ̃(r) =
∑n
i=1 ψi(r) is sub-root and its positive fixed point r̃? satisfies r̃? ≤

(∑n
i=1

√
r?i
)2

.

Proof. 1. Since ψ is a sub-root function, we have ψ(r)√
r
≤ ψ(r?)√

r?
for any r ≥ r?. Note that r? > 0 is the fixed point and

ψ(r?)√
r?

=
√
r?. Therefore, ψ(r) ≤

√
r?r for r ≥ r?.

2. It is evident that ψ̃ is sub-root. Additionally, if r ≥ cr?, then by Lemma G.2, we have ψ̃(r) = cψ(c−1r) ≤ c(c−1r) = r.
In contrast, if 0 < r < cr?, then ψ̃(r) = cψ(c−1r) > c(c−1r) = r. To this end, we can conclude that r̃? = cr?.

3. We use part 1 and derive that if r̃? ≥ r? then r̃? = ψ̃(r̃?) = Cψ(r̃?) ≤ C
√
r?r̃?, which further implies r̃? ≤ C2r?.

Therefore, r̃? ≤ (C2 ∨ 1)r?.

4. If r̃? + ∆r ≥ r?, then we have r̃? = ψ̃(r̃?) = ψ(r̃? + ∆r) ≤
√
r?(r̃? + ∆r) due to part 1. It follows that

r̃? ≤ 1
2

(
r? +

√
(r?)2 + 4r?∆r

)
≤ r? +

√
r?∆r.

5. If r̃? ≥ maxi∈[n] r
?
i , then we apply part 1 and obtain r̃? = ψ̃(r̃?) =

∑n
i=1 ψi(r̃

?) ≤
∑n
i=1

√
r?i r̃

?. Hence, r̃? ≤(∑n
i=1

√
r?i
)2

.

G.3. Contraction property of Rademacher complexity

Our analyses use contraction properties of Rademacher complexity. See Lemmas G.6 and G.7.

Lemma G.6 (Contraction property of Rademacher complexity, Ledoux & Talagrand (2013), Theorem A.6 in Bartlett et al.
(2005)). Suppose F ⊆ {f : X → R}. Let φ : R→ R be a contraction such that |φ(x)−φ(y)| ≤ |y− y′| for any y, y′ ∈ R.
Then for any X1, X2, . . . , Xn ∈ X ,

R̂X(φ ◦ F) = Eσ
[

sup
f∈F

1

n

n∑
i=1

σiφ
(
f(Xi)

)]
≤ Eσ

[
sup
f∈F

1

n

n∑
i=1

σif(Xi)

]
= R̂X(F).

Lemma G.7 (Vector-form contraction property of Rademacher complexity, Maurer (2016)). Suppose F is a collection
of vector-valued functions f : X → Rd and h : Rd → R is L-Lipschitz with respect to the Euclidean norm, i.e.∣∣h(y)− h(y′)

∣∣ ≤ L‖y − y′‖2 for any y, y′ ∈ Rd. Then for any X1, X2, . . . , Xn ∈ X ,

R̂X(h ◦F) =Eσ
[

sup
f∈F

1

n

n∑
i=1

σih
(
f(Xi)

)]

≤
√

2LEσ

[
sup
f∈F

1

n

n∑
i=1

d∑
j=1

σi,jfj(Xi)

]
≤
√

2L

d∑
j=1

R̂X
({
fj
∣∣f ∈ F

})
.


