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A. Non-cardinal Theories
It may be objected that some ethical theories (e.g. variants
of deontology such as the categorical imperative (Kant & Pa-
ton, 1964)) appear to be better represented ordinally rather
than cardinally. MacAskill (2014) proposes that the Borda
count (Pacuit, 2019) is a principled way of obtaining a car-
dinal utility function from a purely ordinal theory under
circumstances of moral uncertainty. Thus, for simplicity
and because it is often possible to convert ordinal theories
to a cardinal representation, our work focuses on cardinal
utility functions only. However, handling these seemingly
ordinal theories more directly is an interesting avenue for
future work, for which work on ordinal RL (Wirth et al.,
2017; Zap et al., 2019) could serve as a starting point. It
has also been argued that many seemingly ordinal theories
are in fact better represented lexicographically (MacAskill,
2014) (a combination of ordinal and cardinal representa-
tion), suggesting lexicographic RL (Gábor et al., 1998) as
an alternative starting point.

B. Stochastic Voting
The most prominent stochastic voting system is Random
Dictator (RD) (Gibbard, 1977), in which a theory is picked
at random (with probability corresponding to its credence) to
be dictator. This system does not fail the Non-dictatorship
axiom because the dictator is not predetermined prior to
voting. RD is particularly appealing because it is the only
stochastic voting system that satisfies the axioms in Gibbard
(1977), a set of axioms closely related to Arrow’s. However,
RD suffers from the flaw of No Compromise: it is impossible
for RD to ever select an action that is not the most preferred
action of any theory. This may lead to absurd results when
theories strongly disagree on which action is best but where
an obvious compromise exists that would almost entirely
satisfy all theories, as depicted in SI Tab. 1(a).
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Sewell et al. (2009) show that by relaxing Gibbard’s ax-
ioms, it is possible to design a stochastic voting system
that still satisfies all of Arrow’s axioms but does not suf-
fer from No Compromise. However, there is still a more
general objection to stochastic voting systems as a whole.
This objection can be illustrated by the “doomsday button”
scenario described in SI Tab. 1(b): suppose a situation in
which the agent has access to an action that is considered
extremely negative by the theories that represent the over-
whelming majority of credence (in SI Tab. 1(b), 99.9% of
the credence is allocated to theories that find Action C very
undesirable), but in which a given theory with extremely low
credence strongly favors this “doomsday button” action (as
an example, the “doomsday button” may be an action that
shuts down the entire Internet forever, and the low-credence
ethical theory may be one antagonistic to all technology).
In this situation, a stochastic voting system which satisfies
any reasonable definition of the principle of Proportional
Say will have a non-zero chance of pressing the doomsday
button. Indeed, if the decision is repeated often enough, for
example if stochastic voting is applied at every time step of
an episode, it is asymptotically guaranteed that the button
will eventually be pressed.

(a) Compromise example
Act. A Act. B Act. C

Th. 1 0 99 100
Th. 2 100 99 0

(b) “Doomsday button” example
Act. A Act. B Act. C Credence

Th. 1 0 50 -1,000 39.9%
Th. 2 100 50 -10,000 60%
Th. 3 0 0 0 0.1%

Table 1. Simple situations in which stochastic voting exhibits
significant flaws. (a) A voting system suffering from the No
Compromise flaw will never pick action B, even though it seems
optimal under at least some sets of credences. (b) Most theories
strongly dislike action C, but Theory 3 favors it and has very low
credence.

A possible solution to this issue would be to ensure that
the random selection is performed only once, for instance
by performing stochastic voting over all possible policies
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before deploying the agent instead of over all possible ac-
tions at every step once the agent is deployed. However,
this prospect seems doubtful in practice, as many agents
might be deployed by many different teams with potentially
different credences in various moral theories, thereby in-
stantiating many independent draws of chances to press the
button. Further, even if such a single choice was practical,
it then complicates updating the credences under which the
choice was made, i.e. as the system designer’s or society’s
views change, as each update seemingly would risk another
chance of pressing the button.

C. Budget Scaling and Theory Individuation
Here we show an example in which the budget scaling for-
mulation of the principle of Proportional Say (Sec. 4.2) is
highly sensitive to theory individuation.

Suppose an agent is facing the classic trolley problem
(Fig. 1(a)), and has 40% credence in deontology and 60%
credence in utilitarianism. Suppose that the voting cost
function is quadratic, and that only positive votes are permit-
ted (this latter assumption merely simplifies the illustrative
example without loss of generality). Because the decision
situation in the classic trolley problem is assumed to be
the only one the theory will face, theories will spend their
entire budget voting for their preferred option. In the budget
scaling formulation, the budget for deontology would be
0.4, for a vote in favor of “Do Nothing” of

p
0:4 � 0:63,

and the budget for utilitarianism would be 0.6, for a vote
in favor of “Switch” of

p
0:6 � 0:77. Therefore, “Switch”

will win with 55% of the vote.

Now suppose the system designer is made aware of a subtle
distinction between two forms of deontology, so deontology
is now split into deontology A, with a 20% credence, and
deontology B, also with 20% credence. However, the pref-
erences of both variants of deontology still favor the “Do
Nothing” option in the classic trolley problem scenario. As
a result, in the budget scaling scenario, the budget for each
variant of deontology is 0.2, for a total vote of 2

p
0:2 � 0:89

in favor of “Do Nothing”, while utilitarianism (which re-
mains unsplit) still provides the same

p
0:6 � 0:77 in favor

of “Switch.” Therefore, “Do Nothing” wins with 54% of
the vote in this scenario.

Thus, even though it would seem like the split of deontol-
ogy into deontology A and deontology B should have been
inconsequential (since both versions have the same prefer-
ences as before in the case at hand), it in fact completely
reversed the outcome of the vote in the budget scaling for-
mulation. This is the problem of theory individuation. In
the context of moral uncertainty, this problem can be highly
significant, as there exist countless variants of most ethical
theories, and the possibility that a given ethical theory will

later be found to correspond to two different theories when
analyzing a particular edge-case is ever-present. As a re-
sult, this work only analyzes the vote scaling formulation of
the principle of Proportional Say, as that formulation is not
vulnerable to theory individuation in situations where the
preferences of the individualized theories are unchanged.

D. From Nash Voting to Variance Voting
Here we show that, under certain assumptions, if votes
are forced to represent a theory’s preferences, Nash voting
produces the same votes as variance voting. We assume an
environment with a discrete action space of k actions, and a
episode length of n. Without loss of generality, we assume a
total budget of nk (different budgets would results in votes
being scaled by the same constant factor across theories).

First, we define what it means for votes to represent a the-
ory’s preferences. As mentioned in Sec. 3, any affine trans-
formation of the preferences of a theory effectively repre-
sents the same theory. As such, we would like the votes
at state s to be an affine transformation of the preferences
Qi(s; a) of the theory at state s, or

Vi(s; a) =
Qi(s; a)� �i(s)

�i
; (1)

Thus, in the context in which votes are forced to represent
preferences, Nash voting controls the parameters of the
affine transformation �i and �i(s) (rather than the votes
directly). Here, the voting cost is quadratic, and we make
the strong simplifying assumption that the sequence of states
visited during the episode is fixed. The cost is thus:

Costi(s) =
X
a

Vi(s; a)2 =
X
a

[Qi(s; a)� �i(s)]2

�2
i

: (2)

The use of a function �i(s) instead of a constant �i comes
from the observation that whatever value �i takes will not
have a direct effect on the outcome of the vote, as each
action will receive an equal bonus/penalty from �i. Thus,
making it conditional on the state provides an additional
affordance to minimize cost while not affecting the notion
that votes ought to represent preferences.

The Nash voting agent attempts to maximize its voting im-
pact while keeping its total cost across timesteps within the
nk budget. Since �i(s) has no impact on the outcome of the
vote, it should be chosen purely to minimize Ci(s). Thus it
can be shown by differentiation that

�i(s) = �i(s) =
1

k

X
a

Qi(s; a):

To maximize its voting power, Nash voting agent would
maximize the magnitude of its votes, while staying within
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the nk budget, thus we need the sum of costs across
timesteps

P
s Cost(s) to be equal to nk, or

X
s

X
a

[Qi(s; a)� �i(s)]2

�2
i

= nk:

Rearranging gives

�2
i =

1

n

X
s

1

k

X
a

[Qi(s; a)� �i(s)]2 ;

so, defining �2
i (s) = 1

k

P
a [Qi(s; a)� �i(s)]2 (the vari-

ance of the Q-values at state s), we get

�i =

s
1

n

X
s

�2
i (s) =

q
Es�S [�2

i (s)]; (3)

which is the form of variance voting as presented in this
work.

E. Implementation Details
In both Nash voting and variance voting, the current object
on each tile of the grid world environment is given as a
one-hot encoded vector. Additionally, the state contains the
value of X (the number of people on the tracks) as well as
the current credences. The action space always has a size
of 4 (up, down, left, right). If the agent takes an action that
runs into one of the boundaries of the environments, the
effect is to stay in place.

All experiments are trained for 10 million timesteps, with
decision boundaries plotted every 500,000 steps. Since our
plots are qualitative, a single training run is used for each
variant. The figures presented in the paper correspond to
the last decision boundary plot, except in unstable cases
(SI K). In both Nash voting and variance voting, training is
done with 32 actors running concurrently, and with a learn-
ing rate of 0.001. All hyperparameters were set somewhat
arbitrarily early in the implementation process and are not
heavily tuned. At each episode during training, X is sam-
pled uniformly (and continuously, so that X need not be an
integer) from 1 to 10. Each training run was performed on a
single CPU and all runs took less than 24 hours. Figures are
plotted by running one (deterministic) episode per possible
combination of 300 credence allocations and 300 values of
X .

E.1. Nash Voting

In this work, Nash voting is implemented using a simple
form of multi-agent RL, in which multiple reinforcement
learning agents compete each to maximize their own re-
wards. In our implementation, the two agents are imple-
mented as two separate neural networks (each with 2 hidden

layers of 64 nodes with ReLU (Nair & Hinton, 2010) ac-
tivations) trained using PPO (Schulman et al., 2017) from
the same experience and at the same frequency of training,
namely one episode of training every 128 timesteps for each
environment, for a total training batch size of 4,096.

In an environment with k actions, the action space of each
Nash voting agent is a vector of k continuous value, cor-
responding to the votes for (or against) each action. If the
votes at a given timestep exceed the remaining budget, they
are scaled so as to exactly match the remaining budget, leav-
ing no further budget for future timesteps. While the policy
is stochastic during training (sampled from a normal distri-
bution, the mean and standard deviation of which are the
outputs of the policy network), it was forced to be deter-
ministic when generating the decision boundary plots (by
setting the action to the mean output by the policy network).

As well as the state at the current timestep, agents are pro-
vided with their current remaining budget as an input. In
iterated Nash voting, the state also contains the number of
remaining trolley problems in the episode. In Nash voting
with unknown adversaries, an additional one-hot input is
supplied specifying whether the agent should act as utilitar-
ian, deontologist, or altered deontologist.

E.2. Variance-SARSA

Variance-SARSA is implemented following Algorithm 1.
Each theory is associated with a separate Q(s; a) and �2

network. One iteration of training for both the �2 models
and the Q(s; a) models occurs every 32 timestep for each
environment, for a training batch size of 32. The Q(s; a)
networks are fully connected networks with 2 hidden layers
with 32 nodes and ReLU activations. The �2 also have 2
hidden layers with 32 nodes and ReLU activations, as well
as an exponential output activation to ensure a strictly pos-
itive output value. During training, �-greedy exploration
with � starting at 0.1 and decaying linearly to 0 was per-
formed. When generating the decision boundary plots, the
deterministic policy was used without added stochasticity.

F. Further experiments
F.1. MEC and Incomparability

We first illustrate the problems arising when applying MEC
with incomparable theories. Fig. 1(a) shows a set of pref-
erences for the “classic” version of the trolley problem
(Fig. 1(a)), with a single version of utilitarianism for which
the choice-worthiness is the negative of the number of peo-
ple harmed in the environment, and two versions of deon-
tology: in the first, switching corresponds to a -1 choice-
worthiness, while the second is “boosted” so that switching
is given a -10 choice-worthiness.
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Algorithm 1 Variance-SARSA
1: function Train(N;K) fTrain for N steps with batch

size Kg
2: LQ  0
3: L�2  0
4: for i 2 [1 : : : N ] do
5: If start of a new episode, randomly sample new cre-

dences C
6: if rand() < � then
7: a0  random action
8: else
9: a0  VarianceVote(s, C)

10: end if
11: for all theories i do
12: if i > 1 then
13: fUpdate Q function lossg
14: LQ  LQ + (Qi(s; a; C) � (Wi(s; a; s

0) +

iQi(s

0; a0; C)))2

15: end if
16: fUpdate variance lossg
17: L�2  L�2 +�

�2
i (C)� 1

k

P
a(Qi(s; a)� �i(s))2

�2

18: end for
19: a0  a
20: Take action a in current state s, observe next state s0

21: if i mod K then
22: Update Q based on LQ and �2 based on L�2

23: LQ  0
24: L�2  0
25: end if
26: end for
27:
28: function VarianceVote(s, C) fVariance voting for state

s with credences Cg
29: V  f0; 0; � � � ; 0g
30: for all theory i do
31: �i  1

jAj
P
aQi(s; a; C)

32: for each action a do
33: Va  Va + Ci

Qi(s;a;C)��ip
�2

i
(C)+"

34: end for
35: end for
36: return arg maxa Va

These two options correspond to the same underlying prefer-
ence function, and because it is unclear how to compare the
units used by utilitarianism (number of people harmed in
this case) and those used by deontology (in this case some
measure of how much the agent caused the harms that did
occur to happen), there is no fact of the matter as to which
of the two representations for deontology is more correct in
this context. However, as SI Fig. 1(b) and 1(c) demonstrate,
the choice that is made has a strong impact on the final out-
come. By contrast, variance voting produces the same result
no matter which scale is used for deontology (SI Fig. 1(d)).

Crash into 1 Crash into X
Utilitarianism -1 -X
Deontology -1 0

Boosted Deontology -10 0
(a) Preferences in the classic trolley problem.
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(b) MEC (deontology)

0 50 100
Credence (deontology)

10

7

4

1

(c) MEC (boosted
deontology)

0 50 100
Credence (deontology)

10
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(d) Variance voting
(both)

Figure 1. MEC is sensitive to the particular scale of utility
functions. MEC produces inconsistent results between utilitar-
nism and deontology depending on whether the deontological
theory is scaled by a factor of 1 (a) or 10 (b). However, because
there is not truth of the matter as to how the scale of units used by
the deontological theory compare to that of the utiliarian theory,
rescaling should have no impact on the final results. Variance
voting produces the same result no matter the rescaling (c).

F.2. Q-Learning and the Illusion of Control

It has been recognized in the multi-agent literature (Rus-
sell & Zimdars, 2003) that aggregating preferences ob-
tained using Q-learning produces a phenomenon known
as the illusion of control: the Q-learning target yi =
r + 
i maxa′ Qi(s

0; a0) implicitly assumes that the action
that would be taken by the policy in the next state would
be whichever maximizes the reward for theory i. However,
the preferred next state action might vary across different
theories, and thus which one is ultimately taken will depend
on the relative credences of the theories.

This issue can be illustrated using the guard trolley problem
(Fig. 1(c)): in this problem, the agent is given the option to
push a large man to save the people on the tracks, but to do
so it must first tell a lie to a guard protecting the large man.
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As can be seen in SI Tab. 2(a), utilitarianism is indifferent to
lying to the guard, while deontology views it as negative, but
not nearly as bad as pushing the large man. As a result, the
possibility of lying to the guard only to fail to push the large
man is strictly dominated as it satis�es neither utilitarianism
nor deontology, while the options of doing nothing at all
or both lying the guard and pushing the large man are both
possible depending on the stakes and credences involved.

As seen in SI Fig. 2(b), however, when the preferences of the
different theories are trained using traditional Q-learning
instead of Variance-SARSA, lying to the guard without
pushing the large man is the outcome in many cases. This
is because in the �rst step, utilitarianism's vote for lying is
excessively high as the Q function for utilitarianism mis-
takenly believes it will be able to push the large man in the
following step. Instead, unless the credence of utilitarianism
is particularly high, it will get outvoted in step 2. SI Fig. 2(c)
shows that when using Variance-SARSA, this illusion of
control does not occur and the “Lie Only” option is never
chosen. Like Variance-SARSA, Nash voting is immune to
the illusion of control (SI Fig. 2(d)).

Both Variance-SARSA and Nash voting suffer from mild
stability issues (SI K) in this particular problem, due to
the fact that that the votes near the decision boundary need
to be resolved with high precision to avoid the dominated
“lie only” outcome, which is not perfectly achieved by the
hyperparameters used in these experiments.

Lie to the guard Push L Crash into X
Util. 0 -1 -X

Deont. -0.5 -4 0
(a) Preferences in the guard trolley problem.

(b) Q-learning (c) Variance-
SARSA

(d) Nash voting

Figure 2.Q-learning suffers from the illusion of control. (a)
The value function is learned with Q-learning for each theory,
resulting in the undesirable outcome where the “Lie only” option
is often selected. (b) The use of Variance-SARSA results in “Lie
only” never being chosen. (c) Nash voting is also largely immune
to this outcome. “Lie only” is selected in rare cases in both (b) and
(c), but this results from minor training instabilities rather than it
being the optimal outcome for these methods (SI K).

G. Removal of irrelevant alternatives

It may be objected that a trivial solution to “doomsday”
problem introduced in Sec. 5.2 exists: it is obvious based
from the preferences of the agents that “doomsday” is a
strictly dominated option, and could therefore be taken out
of the voting entirely before computing variances. However,
this objection does not address the general issue, as adding
a third theory with a preference for doomsday with even a
small credence would force us to bring doomsday back as
an option and thus the issue would come back. It may be
possible to �nd alternate ways to avoid taking the dooms-
day option (or other irrelevant alternatives) into account
when computing the variances (such as by only considering
actions actually taken by the current policy), a possibility
which we leave to future work. Another solution would be
to use Nash voting, which is indeed immune to this issue,
but suffers from the No Compromise and Stakes Insensitiv-
ity issues mentioned in Sections 5.1 and 5.2. A full solution
to this issue would require further work, and may not be
possible without producing other undesirable side-effects
due to Arrow's theorem.

H. Convergence of Variance-Sarsa and
Outline of Variance-PG

s0

s1

s2

X

X

X

X

a0 (0,0)

a1 (0,0)

a0 (0,100)

a1 (-4,80)

a0 (100,0)

a1 (80,-4)

Figure 3.An MDP in which Variance-Sarsa cannot converge.
The X's correspond to terminal states. Above each arrow is the
action (a0 or a1) followed by the choice-worthiness of taking the
given action in that state according to each theory (e.g. the choice
worthiness of takinga0 in s1 is 0 according to Theory 1 and 100
according to Theory 2).

Although Variance-Sarsa converges in all the examples pre-
sented in this work, through exploiting the determinisic
nature of Variance-Sarsa's policy it is possible to construct
pathological examples in which convergence is impossible.

Fig. 3 shows such an example. We will suppose that Theory
1 and Theory 2 both have a credence of 0.5. Sincea0 is
dominant in boths1 ands2, if we assume no discounting we
haveQ1(s0; a0) = 0 , Q1(s0; a1) = 100, Q2(s0; a0) = 100
andQ2(s0; a1) = 0 , while the Q-values ats1 ands2 are
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simply the direct choice-worthiness values at those states.

Now suppose that at a particular time, the deterministic
policy found by Variance-Sarsa is to choosea0 at s0. Then
the� 2

i will be the average of the variances of the Q-values at
s0 ands1 since those two states are visited equally often, and
s2 is never visited. We can thus calculate that� 2

1 = 1252
and� 2

2 = 1300.

Assuming" = 0 for simplicity, calculating the votes for
the action to take ats0 gives a total vote of approximately
-0.01317 in favor ofa0 and 0.01317 in favor ofa1 (intu-
itively, the magnitudes of the Q-values are equal ats0 but
Theory 1 has lower variance, so its preferred action pre-
vails). Thus, the variances produced when a deterministic
policy choosesa0 ats0 require a change of policy to choose
a1 instead ats0. The symmetric nature of the MDP, how-
ever, implies that choosinga1 in s0 will produce variances
that will favor switching to choosinga0 instead. Hence, an
algorithm producing deterministic policies such as Variance-
Sarsa will cycle between choosinga0 anda1 at s0, and
thus never converge in this example MDP. Note that such
cyclingis a common pathology in multi-agent RL (MARL),
and that Variance-Sarsa is in effect a MARL algorithm (e.g.
the dynamics of� 2

i can be seen to arise from interactions
between the policies of each theory; see also Sec. 4.3 where
we show that variance voting arises from Nash voting under
some constraints).

A solution to this particular example would be an algo-
rithm capable of reaching a stochastic policy. In partic-
ular, a policy which chooses actiona0 and a1 50% of
the time each would be at equilibrium in the example
above. We hypothesize that such a policy could be trained
using an actor-critic policy gradient algorithm (Sutton &
Barto, 1998) in whichQi and� 2

i are learned in the same
way as Variance-Sarsa but where the Variance-Sarsa vote
replaces the action value in the policy gradient update,
i.e. the policy� � (ajs) would be updated in the direction�

P
i Ci

Q i (s;a ) � � i (s)p
� 2

i + "

�
r � log � � (ajs). We call this possi-

ble algorithm Variance-PG and hypothesize that it would
always converge to a stable equilibrium under the assump-
tion of perfect training.

I. Quadratic Cost in Nash Voting

The results in Fig. 2(b), 2(c) and 4(d) are identical whether
an absolute value cost or a quadratic cost is used. SI Fig. 4
shows the three cases in which different results are obtained
with a quadratic cost function. In SI Fig. 4(a), the com-
promise solution is produced near the decision boundary,
which might indicate that Nash voting with a quadratic cost
does not suffer from No Compromise. However, the high
instability of Nash voting in this particular problem (SI

(a) Double trolley
problem (Fig. 3(b)).

(b) Double trolley
problem with
unknown adversary
(Fig. 3(c)).

(c) Guard trol-
ley problem (SI
Fig. 2(d)).

Figure 4.Experiments with signi�cant differences between
Nash voting with quadratic cost and Nash voting with abso-
lute value cost.Each sub�gure corresponds to a particular Nash
voting experiment from the main paper, but uses a quadratic cost
instead of an absolute value cost.

Fig. 11) as well as the fact that Nash voting with quadratic
cost produces the strictly dominated “Lie Only” solution
in the guard trolley problem (SI Fig. 4(c)) suggest that this
apparently positive outcome is likely due to training insta-
bilities rather than genuine robustness to No Compromise.
In SI Fig. 4(b), the solution to the double trolley problem
with unknown adversary has an extremely poorly de�ned
decision boundary. All examples are highly unstable, as
shown in SI Fig. 11, 12 and 14.

J. Related work in philosophy and machine
ethics

The question of moral uncertainty has only recently been of
focused interest within moral philosophy (MacAskill, 2014;
Lockhart, 2000; Sepielli, 2013), and this work is among the
�rst to connect it to machine learning (Bogosian, 2017), and
the �rst to offer a concrete implementation.

One hope is that working towards concrete implementations
of moral uncertainty may also offer philosophical insights,
as computational implementation requires notions to be-
come workably precise – in the words of Daniel Dennett, AI
“makes philosophy honest (Dennett, 2006).” In this way, this
paper relates to computational philosophy (Grim & Singer,
2020; Thagard, 1993), wherein computational techniques
are used to advance philosophy. For example, agent-based
works that study the evolution of cooperation (Nitschke,
2005) or that model arti�cial morality (Danielson, 2002),
have connections to the study of ethics. Differing from those
works, our approach focuses on integrating multiple human
ethical views into a single agent.

This paper can be seen as �tting into the �eld of machine
ethics (Allen et al., 2006; Wallach & Allen, 2008), which
seeks to give moral capabilities to computational agents.
Many approaches in machine ethics seek to create an agent



Reinforcement Learning Under Moral Uncertainty

that embodies aparticular moral theory – e.g. agents that
implement versions of utilitarianism (Anderson et al., 2005),
deontology (Hooker & Kim, 2018), and prima facie duties.
Our work complements such approaches by seeking to com-
bine multiple ethical theories within an agent. Additionally,
like Abel et al. (2016), we attempt to highlight practical
bridges between machine ethics and RL.

K. Instability

We observe empirically that the decision boundary does not
always reach a stable equilibrium during training. Thus, in
the case of unstable experiments, the decision boundary plot
that (according to a subjective assessment) best represents
the equilibrium point was used in the main text instead of
the decision plot produced at the end of training. This SI
section provides the full sets of 20 decision plots for all
unstable experiments.

The instability phenomenon is most common in Nash voting
(SI Fig. 8, 6 7 and 9), though it occasionally occurs in
variance voting (SI Fig. 5). Further, SI Fig. 9 and 13 show
the outcome of an experiment not included in the main text
in which iterated Nash voting (presented in Sec. 5.1) is used
on the double trolley problem (Sec. 5.2). In this experiment,
Nash voting is completely unstable and it is unclear whether
a stable equilibrium exists at all. By contrast, the only
unstable case in variance voting (SI Fig. 5) may be alleviated
by tweaking the hyperparameters (for example by annealing
the learning rate to ensure convergence), since it merely
oscillates around an equilibrium instead of converging to it.
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(a) 0.5M iterations (b) 1.0M iterations (c) 1.5M iterations (d) 2.0M iterations (e) 2.5M iterations

(f) 3.0M iterations (g) 3.5M iterations (h) 4.0M iterations (i) 4.5M iterations (j) 5.0M iterations
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Figure 5.Instability of variance voting in the guard trolley problem (SI Fig. 2(c)).
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Figure 6.Instability of iterated Nash voting (Fig. 2(c)).
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Figure 7.Instability of Nash voting with unknown adversary (Fig. 3(c)).
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Figure 8.Instability of Nash voting in the guard trolley problem (SI Fig. 2(d)).


