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A. Appendix
A.1. Proof of Lemma 1

This section presents the detailed proof for Lemma 1. To begin with, we provide some technical auxiliary lemmas and the
associated proof. We start with bounding the ensemble average of local optimal gradients.

The core update law for CGA is:

Lemma 2. Let all assumptions hold. Let gi be the unbiased estimate of∇fi(xi) at the point xi such that E[gi] = ∇fi(xi),
for all i ∈ [N ] := {1, 2, ..., N}. Thus the following relationship holds

E
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Proof.
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(16)

(a) refers to the fact that the inequality ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2. (b) holds as ‖
∑N
i=1 ai‖2 ≤ N

∑N
i=1 ‖ai‖2. The

second term in the second inequality is the conclusion of Lemma 1 in (Yu et al., 2019) (c) follows from Assumption 3.

Multiplying the update law by 1
N 11>, where 1 is the column vector with entries being 1, we obtain:

v̄k = βv̄k−1 − α
1

N

N∑
i=1

g̃ik−1

x̄k = x̄k−1 + v̄k

(17)

We define an auxiliary sequence such that

z̄k :=
1

1− β
x̄k −

β

1− β
x̄k−1 (18)

Where k > 0. If k = 0 then z̄k = x̄k. For the rest of the analysis, the initial value will be directly set to 0.

Lemma 3. Define the sequence {z̄k}k≥0 as in Eq. 18. Based on CGA, we have the following relationship

z̄k+1 − z̄k = − α

1− β
1

N

N∑
i=1

g̃ik. (19)
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Proof. Using mathematical induction we have:

k = 0 :

z̄k+1 − z̄k = z̄1 − z̄0 =
1

1− β
x̄1 −

β

1− β
x̄0 − x̄0 =

1

1− β
(x̄1 − x̄0) =

1

1− β
(v̄1) =

−α
N(1− β)

N∑
i=1

g̃i0

k ≥ 1 :

z̄k+1 − z̄k =
1

1− β
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β

1− β
x̄k −

1

1− β
x̄k +

β

1− β
x̄k−1 =

1

1− β
((x̄k+1 − x̄k)− (β(x̄k − x̄k−1))) =

1

1− β
(v̄k+1 − β(v̄k))︸ ︷︷ ︸
−α 1

N

∑N
i=1 g̃ik

=
−α

N(1− β)

N∑
i=1

g̃ik

(20)

Lemma 4. Define respectively the sequence {x̄k}k≥0 as in Eq. 17 and the sequence {z̄k}k≥0 as in Eq. 18. For all K ≥ 1,
CGA ensures the following relationship

K−1∑
k=0

‖z̄k − x̄k‖2 ≤
α2β2

(1− β)4

K−1∑
k=0

∥∥∥∥ 1

N

N∑
i=1

g̃ik

∥∥∥∥2. (21)

Proof. As v̄0 = 0, we can apply 17 recursively to achieve an update rule for v̄k. Therefor, we have :

v̄k = −α
k−1∑
τ=0

βk−1−τ

[
1

N

N∑
i=1

g̃iτ

]
∀k ≥ 1 (22)

Also, based on Eq. 18 we have:

z̄k − x̄k =
β

1− β
[x̄k − x̄k−1] =

β

1− β
v̄k (23)

Based on Equations 22 and 23 we have:

z̄k − x̄k =
−αβ
1− β

k−1∑
τ=0

βk−1−τ

[
1

N

N∑
i=1

g̃iτ

]
∀k ≥ 1 (24)

We define sk =
∑k−1
τ=0 β

k−1−τ = 1−βk
1−β ∀k ≥ 1. We have:

||z̄k − x̄k||2 =
α2β2
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1

N

N∑
i=1
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(1− β)2
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∥∥∥∥
[

1

N

N∑
i=1

g̃iτ

]∥∥∥∥2 =
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τ=0
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∥∥∥∥
[

1

N

N∑
i=1
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]∥∥∥∥2 ≤
α2β2
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βk−1−τ
∥∥∥∥
[

1

N
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i=1

g̃iτ

]∥∥∥∥2
(25)
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Setting K ≥ 1, As z̄0 − x̄0 = 0, by summing Eq. 25 over k ∈ {1, 2, . . . ,K − 1}:

K−1∑
k=0

||z̄k − x̄k||2 ≤
α2β2

(1− β)3

K−1∑
k=1

k−1∑
τ=0

βk−1−τ
∥∥∥∥
[

1

N

N∑
i=1

g̃iτ

]∥∥∥∥2

=
α2β2

(1− β)3

K−2∑
τ=0

(∥∥∥∥
[

1

N

N∑
i=1

g̃iτ

]∥∥∥∥2 K−1∑
l=τ+1

βl−1−τ
)

a
≤

α2β2

(1− β)4

K−2∑
τ=0

∥∥∥∥
[

1

N

N∑
i=1

g̃iτ

]∥∥∥∥2 ≤ α2β2

(1− β)4

K−1∑
τ=0

∥∥∥∥
[

1

N

N∑
i=1

g̃iτ

]∥∥∥∥2
(26)

Here (a) refers to
∑K−1
l=τ+1 β

l−1−τ = 1−βK−1−τ

1−β ≤ 1
1−β .

Before proceeding to prove Lemma 1, we introduce some key notations and facts that serve to characterize the lemma.

We define the following notations:

G̃k , [g̃1
k, g̃

2
k, ..., g̃

N
k ]

Vk , [v1
k,v

2
k, ...,v

N
k ]

Xk , [x1
k,x

2
k, ...,x

N
k ]

Gk , [g1
k,g

2
k, ...,g

N
k ]

Hk , [∇f1(x1
k),∇f2(x2

k), ...,∇fN (xNk )]

(27)

We can observe that the above matrices are all with dimension d×N such that any matrix A satisfies ‖A‖2F =
∑N
i=1 ‖ai‖2,

where ai is the i-th column of the matrix A. Thus, we can obtain that:

‖Xk(I−Q)‖2F =

N∑
i=1

‖xik − x̄k‖2. (28)

Fact 1. Define Q = 1
N 11>. For each doubly stochastic matrix Π, the following properties can be obtained

• QΠ = ΠQ;

• (I−Q)Π = Π(I−Q);

• For any integer k ≥ 1, ‖(I−Q)Π‖S ≤ (
√
ρ)k, where ‖ · ‖S is the spectrum norm of a matrix.

Fact 2. Let Ai, i ∈ {1, 2, ..., N} be N arbitrary real square matrices. It follows that

‖
N∑
i=1

Ai‖2F ≤
N∑
i=1

N∑
j=1

‖Ai‖F‖Aj‖F. (29)

The properties shown in Facts 1 and 2 have been well established and in this context, we skip the proof here. We are now
ready to prove Lemma 1.

Proof. Since Xk = Xk−1Π + Vk we have:

Xk(I−Q) = Xk−1(I−Q)Π + Vk(I−Q) (30)
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Applying the above equation k times we have:

Xk(I−Q) = X0(I−Q)Πk +

k∑
τ=1

Vτ (I−Q)Πk−τ X0=0
=

k∑
τ=1

Vτ (I−Q)Πk−τ (31)

As V̄k = βV̄k−1 − α 1
N

∑N
i=1 G̃i

k−1
V0=0

= −α 1
N

∑N
i=1 G̃i

k−1, we can get:

Xk(I−Q) = −α
k∑
τ=1

τ−1∑
l=0

G̃lβ
τ−1−l(I−Q)Πk−τ = −α

k∑
τ=1

τ−1∑
l=0

G̃lβ
τ−1−lΠk−τ−l(I−Q)

− α
k−1∑
n=1

G̃n[

k∑
l=n+1

βl−1−nΠk−1−n(I−Q) = −α
k−1∑
τ=0

1− βk−τ

1− β
G̃τ (I−Q)Πk−1−τ .

(32)

Therefore, for k ≥ 1, we have:

E
[∥∥∥∥Xk(I−Q)

∥∥∥∥2
F

]
= α2E

[∥∥∥∥ k−1∑
τ=0

1− βk−τ

1− β
G̃τ (I−Q)Πk−1−τ

∥∥∥∥2
F

]
a
≤ 2α2E

[∥∥∥∥ k−1∑
τ=0

1− βk−τ

1− β
(G̃τ −Gτ )(I−Q)Πk−1−τ

∥∥∥∥2
F

]
︸ ︷︷ ︸

I

+ 2α2E
[∥∥∥∥ k−1∑

τ=0

1− βk−τ

1− β
Gτ (I−Q)Πk−1−τ

∥∥∥∥2
F

]
︸ ︷︷ ︸

II

(33)

(a) follows from the inequality ‖A + B‖2F ≤ 2‖A‖2F + 2‖B‖2F.

We develop upper bounds of term I:

E
[∥∥∥∥ k−1∑

τ=0

1− βk−τ

1− β
(G̃τ −Gτ )(I−Q)Πk−1−τ

∥∥∥∥2
F

]
a
≤
k−1∑
τ=0

E
[∥∥∥∥1− βk−τ

1− β
(G̃τ −Gτ )(I−Q)Πk−1−τ

∥∥∥∥2
F

]
b
≤ 1

(1− β)2

k−1∑
τ=0

ρk−1−τE
[∥∥∥∥G̃τ −Gτ

∥∥∥∥2
F

]
c
≤ 1

(1− β)2

k−1∑
τ=0

ρk−1−τNε2
d
≤ Nε2

(1− β)2(1− ρ)

(34)

(a) follows from Jensen inequality. (b) follows from the inequality | 1−β
k−τ

1−β | ≤
1

1−β . (c) follows from Assumption 3 and
Frobenius norm. (d) follows from Assumption 4.

We then proceed to find the upper bound for term II.

E
[∥∥∥∥ k−1∑

τ=0

1− βk−τ

1− β
Gτ (I−Q)Πk−1−τ

∥∥∥∥2
F

]
a
≤
k−1∑
τ=0

k−1∑
τ ′=0

E
[∥∥∥∥1− βk−τ

1− β
Gτ (I−Q)Πk−1−τ

∥∥∥∥
F∥∥∥∥1− βk−τ

1− β
Gτ ′(I−Q)Πk−1−τ ′

∥∥∥∥
F

]
≤ 1

(1− β)2

k−1∑
τ=0

k−1∑
τ ′=0

ρ(k−1−
τ+τ′

2 )E
[
‖Gτ‖F‖Gτ ′‖F

]
b
≤

1

(1− β)2

k−1∑
τ=0

k−1∑
τ ′=0

ρ(k−1−
τ+τ′

2 )

(
1

2
E[‖Gτ‖2F] +

1

2
E[‖Gτ ′‖2F]

)
=

1

(1− β)2

k−1∑
τ=0

k−1∑
τ ′=0

ρ(k−1−
τ+τ′

2 )E[‖Gτ‖2F]

c
≤ 1

(1− β)2(1−√ρ)

k−1∑
τ=0

ρ(
k−1−τ

2 )E[‖Gτ‖2F]

(35)
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(a) follows from Fact 2. (b) follows from the inequality xy ≤ 1
2 (x2 + y2) for any two real numbers x, y. (c) is derived using∑k−1

τ1=0 ρ
k−1− τ1+τ

2 ≤ ρ
k−1−τ

2

1−√ρ .

We then proceed with finding the bounds for E[‖Gτ‖2F]:

E[‖Gτ‖2F] = E[‖Gτ −Hτ + Hτ −HτQ + HτQ‖2F]

≤ 3E[‖Gτ −Hτ‖2F] + 3E[‖Hτ (I −Q)‖2F] + 3E[‖HτQ‖2F]
a
≤ 3Nσ2 + 3Nδ2 + 3E[‖ 1

N

N∑
i=1

∇fi(xiτ )‖2]
(36)

(a) holds because E[‖HτQ‖2F] ≤ E[‖ 1
N

∑N
i=1∇fi(xiτ )‖2]

Substituting (36) in (35):

E
[∥∥∥∥ k−1∑

τ=0

1− βk−τ

1− β
Gτ (I−Q)Πk−1−τ

∥∥∥∥2
F

]
≤ 1

(1− β)2(1−√ρ)

k−1∑
τ=0

ρ(
k−1−τ

2 )

[
3Nσ2 + 3Nδ2 + 3E[‖ 1

N

N∑
i=1

∇fi(xiτ )‖2]

]

≤ 3N(σ2 + δ2)

(1− β)2(1−√ρ)2
+

3N

(1− β)2(1−√ρ)

k−1∑
τ=0

ρ(
k−1−τ

2 )E[‖ 1

N

N∑
i=1

∇fi(xiτ )‖2]

(37)

substituting (37) and (34) into the main inequality (33):

E
[∥∥∥∥Xk(I−Q)

∥∥∥∥2
F

]
≤ 2α2Nε2

(1− β)2(1− ρ)
+

2α2

(1− β)2(1−√ρ)

(
3N(σ2)

1−√ρ
+

3N(δ2)

1−√ρ
+

3N

k−1∑
τ=0

ρ(
k−1−τ

2 )E[‖ 1

N

N∑
i=1

∇fi(xiτ )‖2]

)
=

2α2

(1− β)2

(
Nε2

1− ρ
+

3Nσ2

(1−√ρ)2
+

3Nδ2

(1−√ρ)2

)
+

6Nα2

(1− β)2(1−√ρ)

k−1∑
τ=0

ρ(
k−1−τ

2 )E[‖ 1

N

N∑
i=1

∇fi(xiτ )‖2]

(38)

Summing over k ∈ {1, . . . ,K − 1} and noting that E
[∥∥∥∥X0(I−Q)

∥∥∥∥2
F

]
= 0:

K−1∑
k=1

E
[∥∥∥∥Xk(I−Q)

∥∥∥∥2
F

]
≤ CK +

6Nα2

(1− β)2(1−√ρ)

K−1∑
k=1

k−1∑
τ=0

ρ(
k−1−τ

2 )E[‖ 1

N

N∑
i=1

∇fi(xiτ )‖2] ≤

CK +
6Nα2

(1− β)2(1−√ρ)

K−1∑
k=0

1− ρ(K−1−k
2 )

1−√ρ
E[‖ 1

N

N∑
i=1

∇fi(xik)‖2] ≤

CK +
6Nα2

(1− β)2(1−√ρ)

K−1∑
k=0

E[‖ 1

N

N∑
i=1

∇fi(xik)‖2]

(39)

Where C = 2α2

(1−β)2

(
Nε2

1−ρ + 3Nσ2

(1−√ρ)2 + 3Nδ2

(1−√ρ)2

)
.
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Dividing both sides by N :

K−1∑
k=1

1

N
E
[∥∥∥∥Xk(I−Q)

∥∥∥∥2
F

]
≤

2α2

(1− β)2

(
ε2

1− ρ
+

3σ2

(1−√ρ)2
+

3δ2

(1−√ρ)2

)
K +

6α2

(1− β)2(1−√ρ)

K−1∑
k=0

E[‖ 1

N

N∑
i=1

∇fi(xik)‖2]

(40)

We immediately have:

K−1∑
k=0

1

N

N∑
i=1

E
[∥∥∥∥x̄k − xik

∥∥∥∥2] ≤
2α2

(1− β)2

(
ε2

1− ρ
+

3σ2

(1−√ρ)2
+

3δ2

(1−√ρ)2

)
K +

6α2

(1− β)2(1−√ρ)

K−1∑
k=0

E[‖ 1

N

N∑
i=1

∇fi(xik)‖2]

(41)

A.2. Proof for Theorem 1

Proof. Using the smoothness properties for F we have:

E[F(z̄k+1)] ≤ E[F(z̄k)] + E[〈∇F(z̄k), z̄k+1 − z̄k〉] +
L

2
E[‖z̄k+1 − z̄k‖2] (42)

Using Lemma 3 we have:

E[〈∇F(z̄k), z̄k+1 − z̄k〉] =
−α

1− β
E[〈∇F(z̄k),

1

N

N∑
i=1

g̃ik〉] =

−α
1− β

E[〈∇F(z̄k)−∇F(x̄k),
1

N

N∑
i=1

(g̃ik〉]︸ ︷︷ ︸
I

− α

1− β
E[〈∇F(x̄k),

1

N

N∑
i=1

(g̃ik〉]︸ ︷︷ ︸
II

(43)

We proceed by analysing (I):

−α
1− β

E[〈∇F(z̄k)−∇F(x̄k),
1

N

N∑
i=1

(g̃ik〉] ≤

(1− β)

2βL
E[‖∇F(z̄k)−∇F(x̄k)‖2] +

βLα2

2(1−β)3
E[‖ 1

N

N∑
i=1

g̃ik‖2] ≤

(1− β)L

2β
E[‖z̄k − x̄k‖2] +

βLα2

2(1− β)3
E[‖ 1

N

N∑
i=1

g̃ik‖2]

(44)
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For term (II) we have:

〈∇F (x̄k) ,
1

N

N∑
i=1

g̃ik〉 = 〈∇F (x̄k) ,
1

N

N∑
i=1

(
g̃ik − gik + gik

)
〉 =

〈∇F (x̄k) ,
1

N

N∑
i=1

(
g̃ik − gik

)
〉︸ ︷︷ ︸

?

+ 〈∇F (x̄k) ,
1

N

N∑
i=1

g̃ik〉︸ ︷︷ ︸
??

(45)

We first analyse (?):

−α
(1− β)

E[〈∇F (x̄k) ,
1

N

N∑
i=1

(
g̃ik − gik

)
〉] ≤ (1− β)α2

2βL
E[‖∇F(x̄k)‖2] +

βL

2(1− β)3
E[‖ 1

N

N∑
i=1

(g̃ik − gik)‖2] (46)

This holds as 〈a,b〉 ≤ 1
2‖a‖

2 + 1
2‖b‖

2 where a = −α
√
1−β

βL ∇F(x̄k) and b = −
√
βL

(1−β)
3
2

1
N

∑N
i=1(g̃ik − gik).

Analysing (??):

E
[
〈∇F (x̄k) ,

1

N

N∑
i=1

g̃ik〉
]

= E
[
〈∇F(x̄k),

1

N

N∑
i=1

∇fi(xik)〉
]

(47)

The above equality holds because x̄k and xik are determined by ζk−1 = [ζ0, . . . , ζk−1] which is independent of ζk, and
E[gik|ζk−1] = E[gik] = ∇fi(xik). With the aid of the equity 〈a,b〉 = 1

2 [‖a‖2 + ‖b‖2 − ‖a− b‖2], we have :

〈∇F (x̄k) ,
1

N

N∑
i=1

∇fi
(
xik
)
〉 =

1

2

(
‖∇F (x̄k) ‖2 + ‖ 1

N

N∑
i=1

∇fi(xik)‖2 − ‖∇F(x̄k)− 1

N

N∑
i=1

∇fi(xik)‖2
)

a
≥

1

2

(
‖∇F(x̄k)‖2 + ‖ 1

N

N∑
i=1

∇fi(xik)‖2 − L2 1

N

N∑
i=1

‖x̄k − xik‖2
) (48)

(a) follows because ‖∇F(x̄k)− 1
N

∑N
i=1∇fi(xik)‖2 = ‖ 1

N

∑N
i=1∇fi(x̄k)− 1

N

∑N
i=1∇fi(xik)‖2 ≤ 1

N

∑N
i=1 ‖∇fi(x̄k)−

∇fi(xik)‖2 ≤ 1
N

∑N
i=1 L

2‖x̄k − xik‖2.

Substituting (48) into (47) and (46), (47) into (45) and (44), (45) into (43):

E[〈∇F(z̄k), z̄k+1 − z̄k〉] ≤
(1− β)L

2β
E[‖z̄k − x̄k‖2] +

βLα2

2(1− β)3
E[‖ 1

N

N∑
i=1

(g̃ik)‖2] +

(
(1− β)α2

2βL
− α

2(1− β)

)

E[‖∇F(x̄k)‖2]− α

2(1− β)
E[‖ 1

N

N∑
i=1

∇fi(xik)‖2] +
βL

2(1− β)3
E[‖ 1

N

N∑
i=1

(g̃ik − gik)‖2] +
αL2

2(1− β)

1

N

N∑
i=1

E[‖x̄k − xik‖2]

(49)

Lemma 3 states that:

E[‖z̄k+1 − z̄k‖2] =
α2

(1− β)2
E[‖ 1

N

N∑
i=1

g̃ik‖2]. (50)
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Substituting (49),(50) in (42):

E[F(z̄k+1)] ≤ E[F(z̄k)] +
(1− β)L

2β
E[‖z̄k − x̄k‖2] +

βLα2

2(1− β)3
E[‖ 1

N

N∑
i=1

(g̃ik)‖2] +

(
(1− β)α2

2βL
− α

2(1− β)

)

E[‖∇F(x̄k)‖2]− α

2(1− β)
E[‖ 1

N

N∑
i=1

∇fi(xik)‖2] +
βL

2(1− β)3
E[‖ 1

N

N∑
i=1

(g̃ik − gik)‖2]+

αL2

2(1− β)

1

N

N∑
i=1

E[‖x̄k − xik‖2] +
α2

(1− β)2
E[‖ 1

N

N∑
i=1

g̃ik‖2].

(51)

Rearranging the terms and dividing by C1 = α
2(1−β) −

(1−β)α2

2βL to find the bound for E[‖∇F(x̄k)‖2]:

E[‖∇F(x̄k)‖2] ≤ 1

C1

(
E[F(z̄k)]− E[F(z̄k+1)]

)
+ C2 E[‖ 1

N

N∑
i=1

(g̃ik)‖2] + C3 E[‖z̄k − x̄k‖2]

− C6 E[‖ 1

N

N∑
i=1

∇fi(xik)‖2] + C4 E[‖ 1

N

N∑
i=1

(g̃ik − gik)‖2] + C5

N∑
i=1

E[‖x̄k − xik‖2]

(52)

Where C2 =
(

βLα2

2(1−β)3 + α2L
(1−β)2

)
/C1, C3 = (1−β)L

2β /C1, C4 = βL
2(1−β)3 /C1, C5 = αL2

2(1−β)/C1, C6 = α
2(1−β)/C1.

Summing over k ∈ {0, 1, . . . ,K − 1}:

K−1∑
k=0

E
[
‖∇F (x̄k)‖2

]
≤ 1

C1

(
E [F (z̄0)]− E [F (z̄k)]

)
− C6

k−1∑
k=0

E

∥∥∥∥∥ 1

N

N∑
i=1

∇fi
(
xik
)∥∥∥∥∥

2
+ C2

k−1∑
k=0

E

∥∥∥∥∥ 1

N

N∑
i=1

g̃ik

∥∥∥∥∥
2


+ C3

k−1∑
k=0

E
[
‖z̄k − x̄k‖2

]
+ C4

k−1∑
k=0

E

∥∥∥∥∥ 1

N

N∑
i=1

(
g̃ik − gik

)∥∥∥∥∥
2
+ C5

k−1∑
k=0

1

N

N∑
l=1

E
[∥∥x̄k − xik

∥∥2]
(53)

Substituting Lemma 1, Lemma 2, and Lemma 4 and Assumption 3 into the above equation we have:

K−1∑
k=0

E
[
‖∇F (x̄k)‖2

]
≤ 1

C1

(
E [F (z̄0)]− E [F (z̄k)]

)
−
(
C6 − C5

6α2

(1− β)(1−√ρ)
− 2C2 − 2C3

α2β2

(1− β)4

)
k−1∑
k=0

E

∥∥∥∥∥ 1

N

N∑
i=1

∇fi
(
xik
)∥∥∥∥∥

2
+

(
C2 + C3

α2β

(1− β)4

)(
2σ2

N
+ 2ε2

)
K + C4ε

2K + C5
2α2

(1− β)2

(
ε2

1− ρ
+

3σ2

(1−√ρ)2
+

3δ2

(1−√ρ)2

)
K

(54)

Dividing both sides by K:

1

K

K−1∑
k=0

E
[
‖∇F (x̄k)‖2

]
≤ 1

C1K

(
F (x̄0)−F?

)
+

(
C2 + C3

α2β

(1− β)4

)(
2σ2

N
+ 2ε2

)
+ C4ε

2+

C5
2α2

(1− β)2

(
ε2

1− ρ
+

3σ2

(1−√ρ)2
+

3δ2

(1−√ρ)2

)
K

(55)
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The above follows from the fact that z̄0 = x̄0 and
(
C6 − C5

6α2

(1−β)(1−√ρ) − 2C2 − 2C3
α2β2

(1−β)4

)
≥ 0.

Therefor we have :

1

K

K−1∑
k=0

E
[
‖∇F (x̄k)‖2

]
≤ 1

C1K
(F (x̄0)−F∗) +

(
2C2 + C3

α2β

(1− β)4
+ C4 + C5

2α2

(1− β)2(1− ρ)

)
ε2+(

2

N

(
C2 + C3

α2β

(1− β)4

)
+ C5

6α2

(1− β)2(1−√p)2

)
σ2 + C5

6α2

(1− β)2(1−√ρ)2
δ2

(56)

A.3. Discussion on the Step Size

Recalling the conditions for the step size α in Theorem 1,

1− 6α2L2

(1− β)(1−√ρ)2
− 4Lα

(1− β)2
≥ 0.

Solving the last inequality, combining the fact that α > 0, we have then the specific form of α∗

α∗ =
(1−√ρ)

√
16(1−√ρ)2 + 24(1− β)3 − 4(1−√ρ)2

12L(1− β)
.

Therefore, if the step size α is defined as

α ≤ min

{
βL

(1− β)2
,

(1−√ρ)
√

16(1−√ρ)2 + 24(1− β)3 − 4(1−√ρ)2

12L(1− β)

}
,

Eq. 56 naturally holds true.

A.4. Proof for Corollary 1

Proof. According to Eq. 56, on the right hand side, there are four terms with different coefficients with respect to the step
size α. We separately investigate each term in the following. As C1 = O(

√
N√
K

). Therefore,

F(x̄0)−F∗

C1K
= O(

1√
NK

).

While for the second term, we have

C2 = O(

√
N√
K

), C3 = O(

√
K√
N

), C4 = O(

√
K√
N

), C5 = O(1),

such that

2C2ε
2 = O(

√
N

K1.5
), C3

α2β

(1− β)4
ε2 = O(

√
N

K1.5
), C4ε

2 = O(
1√
NK

), C5
2α2

(1− β)2(1− ρ)
ε2 = O(

N

K2
).

Similarly, we can obtain for the third term and the last term,

2

N

(
C2 + C3

α2β

(1− β)4

)
σ2 = O(

1√
NK

), C5
6α2

(1− β)2(1−√ρ)2
σ2 = O(

N

K
),

and

C5
6α2

(1− β)2(1−√ρ)2
δ2 = O(

N

K
).

Hence, By omitting the constant N in this context, there exists a constant C > 0 such that the overall convergence rate is as
follows:

1

K

K−1∑
k=0

E
[
‖∇F (x̄k)‖2

]
≤ C

(
1√
NK

+
1

K
+

1

K1.5
+

1

K2

)
, (57)

which suggests when N is fixed and K is sufficiently large, CGA enables the convergence rate of O( 1√
NK

).
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A.5. Additional CIFAR-10 Results

In this section, we provide more experimental results for CIFAR10 dataset trained using a CNN architecture and more
complex VGG11 model architecture:

Additional CIFAR10 results trained using CNN :

We start by providing the corresponding accuracy plots for Figure 2 in the main paper:
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Figure 5. Average training and validation accuracy for (a) CGA method on IID (b) CGA method on non-IID data distributions (c) different
methods on non-IID data distributions for training 5 agents using CNN model architecture
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Figure 6. Average training loss for (a) different topologies trained using CGA algorithm (b) individual agents along with the average
model during training using CGA algorithm (log scale)

Based on Figure 5(a), (b) CGA achieves a high accuracy for different graph topologies when learning from both IID and
non-IID data distributions. However other methods i.e. DPMSGD suffer from maintaining the high accuracy when learning
from non-IID data distributions. The adverse effect of non-IIDness in the data can be more elaborated upon by looking at
Figure 7. Comparing (a) with (b) and (c) with (d) we can see that although the migration from IID to non-IID affects all
the methods, CGA suffers less than other methods for different combinations of graph topology and graph type. The same
observation can be made by looking at Figure 8 which shows the accuracy obtained for different methods w.r.t the graph
type.

While Figure 2(a) harps on the phenomenon of faster convergence with sparser graph topology which is an observation that
have been made by earlier research works in Federated Learning (McMahan et al., 2017) by reducing the client fraction
which makes the mixing matrix sparser and decentralized learning (Jiang et al., 2017). However, as Figure 6(a) shows,
by training for more epochs, all converge to similar loss values. Figure 6 shows that the loss value associated with the
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consensus model is very close to the loss values corresponding to all other agents which means the projected gradient using
QP is capturing the correct direction.

(a) (b) (c) (d)

Figure 7. Average testing accuracy for different methods w.r.t the number of learning agents learning from (a) IID data distributions for
Ring graph topology (b) non-IID data distributions for Ring graph topology (c) IID data distributions for Bipartite graph topology (d)
non-IID data distributions for Bipartite graph topology

(a) (b) (c) (d)

Figure 8. Average testing accuracy for different methods w.r.t the graph topology learning from (a) IID data distributions learning from
10 agents (b) non-IID data distributions learning from 10 agents(c) IID data distributions learning from 40 agents (d) non-IID data
distributions learning from 40 agents

CIFAR10 with VGG11:

We now extend our experimental analysis by using a more complex model architecture (e.g. VGG11) for CIFAR10 dataset.
Tables 4 and 5 summarize the performance of CGA compared to other methods. Similar to CNN model architecture, CGA
can maintain the performance when migrating from IID to non-IID data distributions. However, we observe that as VGG11
model is much more complex than CNN, all the methods suffer from an increase in the number of learning agents and
complexity of graph topology.

A.6. MNIST Results

Same as what we did for CIFAR-10, we are comparing different methods performance on MNIST dataset. The results are
summarized in Tables 6 and 7. Although the accuracies are generally high when learning from MNIST dataset, and most of
the methods work in most of the settings, we can see that although CGA can maintain the model performance while learning
from non-IID data, DPMSGD, SGP and SwarmSGD suffer from non-IIDness in the data specially when the number of
agents and the graph topology combinations become more complex.
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Table 4. Model Accuracy Comparison for training CIFAR10 using VGG11 with IID data distribution
Model Fully-connected Ring Bipartite

DPMSGD
67.8% (5)
60.8% (10)
59.8% (40)

61.9% (5)
60.5% (10)
60.1% (40)

61.0% (5)
60.7% (10)
60.1% (40)

SGP
72.5% (5)
70.3% (10)
41.1% (40)

72.0% (5)
42.8% (10)
41.6% (40)

71.1% (5)
70.2% (10)
41.5% (40)

SwarmSGD
75.8% (5)
71.5% (10)
21.8% (40)

73.1% (5)
71.4% (10)
20.6% (40)

78.3% (5)
70.1% (10)
20.3% (40)

CGA (ours)
81.1% (5)
68.8% (10)
21.9% (40)

81.8% (5)
68.3% (10)
18.5% (40)

81.5% (5)
68.2% (10)
20.3% (40)

Table 5. Model Accuracy Comparison for training CIFAR10 with non-IID data distribution using VGG11
Model Fully-connected Ring Bipartite

DPMSGD
Diverges (5)
Diverges (10)
12% (40)

Diverges (5)
Diverges (10)
Diverges (40)

Diverges (5)
10% (10)
10.7% (40)

SGP
20.4% (5)
10.1% (10)
Diverges (40)

20.8% (5)
10.0% (10)
10.0% (40)

20.3% (5)
Diverges (10)
10.1% (40)

SwarmSGD
19.4% (5)
10.0% (10)
9.9% (40)

19.9% (5)
Diverges (10)
10.2% (40)

20.2% (5)
Diverges (10)
10% (40)

CGA (ours)
74.6% (5)
69.8% (10)
12.8% (40)

75.8% (5)
38.9% (10)
20.5% (40)

77.5% (5)
18.7% (10)
23.6% (40)

Table 6. Model Accuracy Comparison for training MNIST using CNN with IID data distribution
Model Fully-connected Ring Bipartite

DPSGD
98.8% (5)
98.6% (10)
96.9% (40)

98.8% (5)
98.5% (10)
96.8% (40)

98.8% (5)
98.5% (10)
96.8% (40)

SGP
96.2% (5)
93.2% (10)
71.4% (40)

96.3% (5)
93.2% (10)
71.4% (40)

96.2% (5)
93.2% (10)
71.4% (40)

SwarmSGD
98.4% (5)
96.1% (10)
38.3% (40)

98.4% (5)
96.1% (10)
38.3% (40)

98.5% (5)
96.0% (10)
39.7% (40)

CGA (ours)
98.6 % (5)
98.2% (10)
94.7% (40)

98.7% (5)
98.3% (10)
95.5% (40)

98.7% (5)
98.6% (10)
96.8% (40)
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Table 7. Model Accuracy Comparison for training MNIST with non-IID data distribution using CNN
Model Fully-connected Ring Bipartite

DPSGD
98.3% (5)
87.1% (10)
85.3% (40)

98.2% (5)
74.5% (10)
72.5% (40)

98.2% (5)
70.9% (10)
34.3% (40)

SGP
95.9% (5)
92.7% (10)
71.2% (40)

96.0% (5)
91.3% (10)
74.6% (40)

95.9% (5)
90.2% (10)
62.2% (40)

SwarmSGD
98.2% (5)
93.2% (10)
24.8% (40)

98.1% (5)
90.9% (10)
33.5% (40)

98.2% (5)
91.4% (10)
18.3% (40)

CGA (ours)
98.6% (5)
98.2% (10)
94.1% (40)

98.5% (5)
96.2% (10)
91.6% (40)

98.5% (5)
96.2% (10)
91.8% (40)


