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Abstract

Stochastic Neural Networks (SNNs) that inject
noise into their hidden layers have recently been
shown to achieve strong robustness against ad-
versarial attacks. However, existing SNNs are
usually heuristically motivated, and often rely
on adversarial training, which is computationally
costly. We propose a new SNN that achieves
state-of-the-art performance without relying on
adversarial training, and enjoys solid theoretical
justification. Specifically, while existing SNNs
inject learned or hand-tuned isotropic noise, our
SNN learns an anisotropic noise distribution to op-
timize a learning-theoretic bound on adversarial
robustness. We evaluate our method on a num-
ber of popular benchmarks, show that it can be
applied to different architectures, and that it pro-
vides robustness to a variety of white-box and
black-box attacks, while being simple and fast to
train compared to existing alternatives.

1. Introduction

It has been shown that deep convolutional neural networks,
while displaying exceptional performance in computer vi-
sion problems such as image recognition (He et al., 2016),
are vulnerable to input perturbations that are imperceptible
to the human eye (Szegedy et al., 2014). The perturbed input
images, known as adversarial examples, can be generated by
single-step (Goodfellow et al., 2015) and multi-step (Madry
et al., 2018; Kurakin et al., 2017; Carlini & Wagner, 2017)
updates using both gradient-based optimization methods and
derivative-free approaches (Chen et al., 2017). This vulner-
ability raises the question of how one can go about ensuring
the security of machine learning systems, thus preventing a
malicious entity from exploiting instabilities (Biggio et al.,
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2013). In order to tackle this problem, many adversarial
defense algorithms have been proposed in the literature.
Among them, Stochastic Neural Networks (SNNs) that in-
ject fixed or learnable noise into their hidden layers have
shown promising results (Liu et al., 2018; 2019; He et al.,
2019; Jeddi et al., 2020; Yu et al., 2021).

In this paper, we identify three limitations of the current
state-of-the-art stochastic defense methods. First, most con-
temporary adversarial defense methods use a mixture of
clean and adversarial (or even purely adversarial) samples
during training, i.e., adversarial training (Goodfellow et al.,
2015; Madry et al., 2018; Liu et al., 2019; Mustafa et al.,
2019; He et al., 2019; Jeddi et al., 2020). However, gener-
ating strong adversarial examples during training leads to
significantly higher computational cost and longer training
time. Second, many existing adversarial defenses (Mustafa
et al., 2019), and especially stochastic defenses (Jeddi et al.,
2020) are heuristically motivated. Although they may be
empirically effective against existing attacks, they lack the-
oretical support. Third, the noise incorporated by existing
stochastic models is isotropic (i.e., generated from a mul-
tivariate Gaussian distribution with a diagonal covariance
matrix), meaning that it perturbs the learned features of dif-
ferent dimensions independently. Our theoretical analysis
will show that this is a strong assumption and best perfor-
mance is expected from anisotropic noise.

We address the aforementioned limitations and propose an
SNN that makes use of learnable anisotropic noise. We
theoretically analyse the margin between the clean and ad-
versarial performance of a stochastic model and derive an
upper bound on the difference between these two quantities.
This novel theoretical insight suggests that the anisotropic
noise covariance in an SNN should be optimized to align
with the classifier weights, which has the effect of tight-
ening the bound between clean and adversarial perfor-
mance. This leads to an easy-to-implement regularizer,
which can be efficiently optimized on clean samples alone
without need for adversarial training. We show that our
method, called Weight-Covariance Alignment (WCA), can
be applied to architectures of varied depth and complexity
(namely, LeNet++ and ResNet-18), and achieves state-of-
the-art robustness across several widely used benchmarks,
including CIFAR-10, CIFAR-100, SVHN and F-MNIST.
Moreover, this high level of robustness is demonstrated for
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both white-box and black-box attacks. We name our pro-
posed model WCA-Net.

The contributions of our paper are summarized as follows:

* While the majority of existing stochastic defenses are
heuristically motivated, our proposed method is de-
rived by optimizing a learning theoretic bound, provid-
ing solid justification for its robust performance.

¢ To the best of our knowledge, we are the first to propose
a stochastic defense with learned anisotropic noise.

* WCA only requires clean samples for training, unlike
most of the current state-of-the art defenses that depend
on costly adversarial training.

* We demonstrate the state-of-the-art performance of our
method on various benchmarks and provides resilience
to both white- and black-box attacks.

2. Related Work
2.1. Adversarial Attacks

We consider the standard threat model, where the attacker
can construct norm-bounded perturbations to a clean input.
First-order white-box adversaries use the gradient with re-
spect to the input image to perturb it in the direction that
increases misclassification probability. The attack can also
be targeted or untargeted, depending on whether a specific
misclassification is required (Goodfellow et al., 2015; Ku-
rakin et al., 2017; Madry et al., 2018; Carlini & Wagner,
2017). By default, we consider the untargeted variants of
these attacks. The simplest first-order adversary is the Fast
Gradient Sign Method (FGSM), proposed in Goodfellow
et al. (2015). The attack adds a small perturbation to the
input in the direction indicated by the sign of the gradient
of the classification loss, L, w.r.t. the input, X, controlled by
an attack strength ,
X' =x+  sign(rkL(h(x);y));

where h is the target model. Kurakin et al. (2017) upgraded
this single-step attack to a multi-step version named Basic
Iterative Method (BIM) with iterative updates and smaller
step size at each update. Though BIM works effectively,
Madry et al. (2018) demonstrated that randomly initializing
the perturbation generated by BIM, and then making multi-
ple attempts to construct an adversarial example results in
a stronger adversarial attack known as Projected Gradient
Descent (PGD). Another white-box attack of slightly dif-
ferent nature is the C&W attack (Carlini & Wagner, 2017),
which aims to find an input perturbation that maximizes
the following objective:

L(h(x+ );y) i ip
sit: x+ 2][0;1]™
where p is commonly chosen from f0; 2; 1.g.

Different from the white-box attacks, black-box attacks
assume the details of the targeted model are unknown, and
one can only access the model through queries. Therefore,
in order to attack a target model in this case, one typically
trains a substitute of it (Papernot et al., 2017) and generates
an attack using the queried prediction of the target model
and the local substitute. Also, instead of training a substitute
for the target model, zero-order optimization methods (Chen
et al., 2017; Su et al., 2019) have been proposed to estimate
the gradients of the target model directly. In this paper, we
demonstrate that our proposed method is robust against both
white- and black-box attacks.

2.2. Stochastic Adversarial Defense

Recent work has shown that SNNs yield promising perfor-
mance in adversarial robustness. This can be achieved by
injecting either fixed (Liu et al., 2018) or learnable (He
et al., 2019; Jeddi et al., 2020; Yu et al., 2021) noise into the
models.

The idea behind Random Self Ensemble (RSE) (Liu et al.,
2018) is that one can simulate an ensemble of virtually in-
finite models while only training one. This is achieved by
injecting additive spherical Gaussian noise into various lay-
ers of a network and performing multiple forward passes at
test time. Though simple, it effectively improves the model
robustness in comparison to a conventional deterministic
model. RSE treats the variance of the injected noise as a hy-
perparameter that is heuristically tuned, rather than learned
in conjunction with the other network parameters. In con-
trast, He et al. (2019) propose Parametric Noise Injection
(PNI), where a fixed spherical noise distribution is controlled
by a learnable “intensity” parameter, further improving
model robustness. The authors show that the noise can be
incorporated into different locations of a neural network, i.e.,
it is applicable to both feature activations and model weights.
The injected noise is trained together with the model param-
eters via adversarial training. Learn2Perturb (L2P) (Jeddi
et al., 2020) is a recent extension of PNI. Instead of learning
a single spherical noise parameter, L2P learns a set of pa-
rameters defining an isotropic noise perturbation-injection
module. The parameters of the perturbation-injection mod-
ule and the model are updated alternatingly in a manner
named “alternating back-propagation” by the authors, using
adversarial training. Finally, SE-SNN (Yu et al., 2021) intro-
duces fully-trainable stochastic layers, which are trained for
adversarial robustness by adding a regularization term to the
objective function that maximizes the entropy of the learned
noise distribution. Unlike the other SNNs, but similarly to
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ours, SE-SNN only requires clean training samples. 3.1. Weight-Covariance Alignment

Although conceptually related to the aforementionedNon-stochastic methods for defending against adversarial
stochastic defense methods, WCA-Net differs in severaéxamples typically try to guarantee that the prediction for
important aspects: WCA-Net is the rst stochastic modelan input image cannot be changed. In contrast, a defense
to inject learnabl@nisotropicnoise into the latent features. that is stochastic should aim to minimize the probability that
Our approach is derived from from optimization of a learn-the prediction can be changed. In this Section, we present
ing theoretic bound on the adversarial generalisation pe theoretical analysis of the probability that the prediction
formance of SNNs, which motivates the use of anisotropiamf an SNN will be changed by an adversarial attack. For
noise. WCA-Net does not require adversarial training andsimplicity, we restrict our analysis to the case of binary
can be optimized with clean samples alone, and is thereforelassi cation.

simpler and more ef cient to train. .
P Denoting a feature extractor &s we de ne an SNNh,

Another class of stochastic defenses apply noise to the inputained for binary classi cation as

images, rather than injecting noise to intermediate activa-

tions (Pinot et al., 2019; Cohen et al., 2019; Li et al., 2019; h(x)= w' (f(x)+ 2+b; 2z N (0;) ;
Lee et al., 2019). From a theoretical point of view, this can
be seen as “smoothing” the function implemented by th
neural network in order to reduce the amount the outpu
of the network can change when the input is changed onl
slightly. This type of defense can be considered a black-box
Fle_fe_nse, in the_ sense that it does not _actually mv_olve regu- mn(%y) = yh(%):
arizing the weights of the network — it only modi es the

input. While interesting, it has primarily been applied in scefory 2 f 1;1g. It is positive if the prediction is correct
narios where one is using a model-as-a-service frameworlgnd negative otherwise.

and cannot be sure if the model was trained with some sorth ity in which . dis the diff .
of adversarial defense or not (Cohen et al., 2019). The quantity in which we are interested Is the difference in

probabilities of misclassi cation when the model is and is
not under adversarial attackwhich is given by

herew is the weight vector of the classi cation layer and
is the bias. We denote the non-stochastic versioh, of
here the value ot is always a vector of zeros, &s The
argin of a prediction is given by

3. Methods
. . . _ Gl (x;y)= max P(mp(x+ ; 0
Based on theoretical analysis of how the injected noise P (xy) ~kkp (M ( y) )
can impact generalisation performance, further expanded P(Mn(xy) O):
in Section 3.1, we propose a weight-covariance alignment ’ '
loss term that encourages the weight vectors associated withur main theoretical result, given below, shows how one
the nal ”near CIaSSi Cation |ayer to be aligned W|th the can take an adversarial robustness bourﬁi’-x; ), for the
covariance matrix of the injected noise. Consequently, OUfeterministic version of a network, and transform it to a
theory leads us to use anisotropic noise, rather than thggund onG for the stochastic version of the network.
isotropic noise typically employed by previous approache o h
S'Theorem 1. The quantityGy.

Our method ts into the family of SNNs that apply additive bounded as

noise to the penultimate activations of the network. Consider Tx )
the functionf (%), which implements the feature extractor Gh (x p_P * ).
portion of the network i.e., everything except the nal clas- p: (1Y) 2wl w
si cation layer. Our WCA-Net architecture is de ned as

)

(%), as de ned above, is

where the robustness of the deterministic versioh of
h()= W)+ 2+Db 2z N (0;) ; known to be bounded §B(%)  h(x+ 7)j N(x; ) for

whereW andbare the parameters of the nal linear layer, anyk’k,
is the vector of additive noise. The objective function used

to train this model is The proof is provided in the supplemental material. We
_ _ can see from Theorem 1 that increasing the bi-linear form,
L=Llc L weas 1) w' w, of the noise distribution covariance and the classi er

where Lc and Lwca represent the classi cation loss reduces the gap between clean and robust performance. As
(e.g. softmax composed with cross entropy) and weightsuch, we de ne the loss term,

covariance alignment term respectively. We describe each
of our technical contributions in the remainder of this Sec-

X Lwea = In(w' w); 3)
tion.

i=1
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whereC is the number of classes in the classi cation prob-this allows one to learn variance jointly with the other net-
lem, andw; is the weight vector of the nal layer that is work parameters with backpropagation. In order to sample
associated with class We found that including the loga- anisotropic noise, one can instead sample a vector of zero
rithm results in balanced growth rates betweenltgeand  mean unit variance and multiply this vector by a lower tri-
Lwca terms in Eq. 1 as training progresses, hence improvangular matrixL . This lower triangular matrix is related to
ing the reliability of training loss convergence. the covariance matrix as

The key insight of Theorem 1, operationalized by Eg. 3, is = L LT:

that the noise and weights should co-adapt to align the noise ) ) _ N
and weight directions. We call this loss Weight-CovarianceTh'S_guar3”t695 that the covariance matrix remains positive
Alignment (WCA) because it is maximized when eaghis ~ Semi-de nite after each gradient update.

well-aligned with the eigenvectors of the covariance matrix.

This WCA loss term runs into the risk of maximizing the 4. Experiments

magnitude ofw, rather than encouraging alignment or in-|n thjs Section we present the experiments that demonstrate

creasing the scale of the noise. To avoid the uncontrollablgne ef cacy of our model and verify our theoretical analysis.
scaling of network parameters, it is common practice to

penalize large weights by means'éfregularization: 4.1. Experimental Setup

— T \ay-
L=Llc L wea + W W, DatasetsFor comparison against the current state-of-the-art

where controls the strength of the penalty. In our case, we2nd for our ablation study we use four benchmarks: CIFAR-
apply the'2 penalty when updating the parameters of thel0: CIFAR-100 (Krizhevsky et al., 2009), SVHN (Net-
classi cation layer and the covariance matrix. Another apZ€r €t al., 2011) and Fashion-MNIST (Xiao et al., 2017).
proach to limiting parameter magnitude would be to enforce“!FAR-10 and CIFAR-100 contain 60K 32x32 color images,
norm constraints om and , e.g., using a projected subgra- 50K for training and 10K fo_r testing, evenly spread across
dient method at each update. We provide more details of9 and 100 cla§ses res_pecuvely. SVHN can be considered a
this alternative in the supplementary material. EmpiricallyMre challenging version of MNIST (LeCun et al,, 2010);
we found that the penalty-based approach outperformed thiécontains aimost 100K 32x32 color images of digits (0-9)

constraint-based approach, so we focus on the former bgPllected from Google's Street View imagery, with roughly
default. 3K for training and 26K for testing. Fashion-MNIST is

a collection of 70K 28x28 grayscale images of clothing,
60K for training and 10K for testing, also spread across 10

3.2. Injecting Anisotropic Noise
classes.

P v S o (o S0 oy Modsls o ll bechmats xcet FNST e use 3
2015 el 2020 o 0, 2020 v ke v g rlatiely simperdataset, e use et (Wen
e e oy for dimensionaly educton; i endes us 0 ays
to be axis-aligned. I.e., prior work suffers from the inability rfiugr:naa:edailrsnoennasti):)yr;zlliztfldog?f\ll:rflzgfj’;n:)t(:lr);ggﬂa}gﬂeosriy?f the

to simultaneously optimise alignment between noise an - . . . . .
y op 9 restriction for the dimensionality of the penultimate layer is

weights (required to minimise the adversarial gap boundefﬂqat it needs to be a number greater or equal to the number
by Theorem 1), and freedom to place weight vectors o . g d . .
of classes in the task, so as to allow the covariance matrix

of anisotropic noise in combination with WCA encourages‘?0 align with at least one classi er vector. The two hyper-
parameters of note across all of our experiments are the

lignment of the weight v rs with th variance matrix . \ . .
alignment of the weight vectors with the covariance mat learning rate and? penalty (i.e., weight decay), the exact

eigenvectors, while allowing non-axis aligned weights, thusvalues of which are provided in the supplementary material
providing more freedom about where to place the classi ca- P PP y '

tion decision boundaries. 41.1. ATACKS

Previous approaches are able to train the variance of eaw luat thod using th hite-b d .
dimension of the isotropic noise via the use of the “repa- © evaluale our method using three White-box adversaries.

rameterization trick” (Kingma & Welling, 2014), where FGng/Ié\(/Bvoogfelll_O\_N;tvsl., 2015)2,0PlC75D (Mgdry etb?l" 5%18)
one samples noise from a distribution with zero mean and" (Carlini agner, ). and one black-box

unit variance, then rescales the samples to get the desired 32x32 for the benchmarks with 10 classes, 256x256 for the
variance. Because the rescaling process is differentiableenchmarks with 100 classes.
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attack: the One-Pixel attack (Su et al., 2019). Table 1.Comparison of state-of-the-art SNNs for FGSM and PGD

We parameterize the attacks following the literature (Heattacks on CIFAR-10 and CIFAR-100 with a ResNet-18 backbone.
et al., 2019; Jeddi et al., 2020). More speci cally, FGSM Performance of Adv-BNN, PNI and L2P extracted from Jeddi et al.
and PGD are set with an attack strength of 8=255  (2020).

for CIFAR-10, CIFAR-100 and SVHN, and = 0:3 for
F-MNIST. PGD has a step size of= =10and number CIFAR-10 CIFAR-100

of stepsk = 10 for all benchmarks as per He et al. (2019). _Methed  Clean FGSM_PGD Clean FGSM PGD
C&W has a learning rate of =5 10 4, number of iter- ~ Adv-BNN 822~ 60.0 536 580 300  27.0

X = R _ 3 . PNI 87.2 581 494 610 27.0 220

aftlonsk = 1000, initial constantc = _10 and maximum Lop 853 624 561 500 300 260

binary stepsina = 9 same as Jeddi et al. (2020). SE-SNN 923 743 - - - .
IAAT - 63.9 - 18.5

For the parameters of the One-Pixel attack we tried to repli- \yca et 9'3_2 776 714 704 515 127
cate the experimental setup described in the supplementary
material of Jeddi et al. (2020) for attack strengths of 1, 2

and 3 pixels. We followed their setup with population SizeTable 2.Comparison of state-of-the-art SNNs for white box C&W

N =400 and maxjmum number of iterf_;ltiomax =75.  attack and black box n-Pixel attack on CIFAR-10 with a ResNet-
However, we noticed that the more pixels we added tag backbone. Performance of competing methods extracted
our attack the weaker the attack became, which is countefrom Jeddi et al. (2020).

intuitive. We attribute that to the small number of iterations;
every added pixel substantially increases the search space of  Attack Strength Adv-BNN  PNI  L2P WCA-Net
the differential evolution algorithm, and 75 iterations are no

: . Clean 82.2 87.2 853 932
longer enough to converge when the number of pixels is 2 0. g 61 840 89
and 3. Therefore we maintain a population siz&lof 400, " 1 /8.1 184, 4
. ; ) = =1 65.1 340 76.4 78.4
but increase the number of iterationskg,, = 1000. For =< -0 49.1 160 665 719
reproducibility purposes, we further clarify that for the dif- © -5 16.0 0.08 348 550
o1~ 0:7, a mutation constant o < 0.5, and the ol 517 6 509 645 %08
o - £ 2pixels 646  39.0 60.1 855
ing criterion for convergence: o 3pixels 59.7 354 539 812
p VarEx 1 X . = 5pixels - - - 64.3
ar — X) ;
EX)  foqq  E®
x2 X
whereX denotes the populatiof(X ) the energy of the  their SNN.Learn2Perturb (L2P) (Jeddi et al., 2020): im-
population andE(x) the energy of a single sample. proves PNI by learning an isotropic perturbation injection

Expectation over Transformation Due to the noise in- module. Furthermore, there are parti_al comparisons against
jected by SNNSs, the gradients used by white-box attack®E-SNN(Yu etal., 2021) andAAT (Xie et al., 2019). Al

are stochastic (Athalye et al., 2018). As a result, the tru€XPETiments use a ResNet-18 backbone and are conducted
gradients cannot be correctly estimated for attacks that use” CIFAR-10 for fair comparison.

only one sample to compute the perturbation. To avoid this

issue, we apply Expectation over Transformation (EoT) fol-4'2'1' WHITE-BOX ATTACKS

lowing Athalye et al. (2018). When generating an attack, wewe rst compare our proposed WCA-Net to the existing
compute gradients of multiple forward passes using Montestate-of-the-art methods in the white-box attack setting.
Carlo sampling and perturb the inputs using the averagegirom the results in Table 1, we can see that our WCA-Net
gradient at each update. We empirically found that a reliablshows noticeable improvement of 15%over the strongest
number of MC samples is 50 (as we observed performancgompetitor, L2P. Moreover, we nd that our method does

begins to saturate from around 35 and converges at 40); thuget sacri ce its performance on clean data to afford such
we use 50 across all experiments. strong robustness.

An important aspect of WCA that needs to be assessed is its
potential to scale with the number of classes. For this reason
Competitors We compare the performance of WCA-Net to we conduct experiments on CIFAR-100, comparing against
three recent state-of-the-art stochastic defenses to verify itsur previously mentioned competitors, plus IAAT (Xie etal.,
ef cacy. AdvBNN (Liu et al., 2019): adversarially trains a 2019), all of which use a ResNet-18 backbone in their ar-
Bayesian neural network for defeng&I (He et al., 2019): chitectures. From Table 1 we can see that the adversarial
learns an “intensity” parameter to control the variance ofrobustness of WCA-Net outperforms the other methods.

4.2. Comparison to Prior Stochastic Defenses
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Table 3.Comparison of WCA-Net to recent state-of-the-art, both Table 4.Evaluation of WCA-Net with a ResNet-18 backbone on
stochastic and non-stochastic, on CIFAR-10. All competitorsCIFAR-10, against the white-box PG# and black-box Square
evaluate their models on the untargeted PGD attack, with attackttack, for different values of attack strength

strength = 8=255, and number of iterationks 2 f 7; 10; 20g. =255 Clean 1 2 4 8 16 32 64 128
Some results are extracted from He et al. (2019). AT: Use of NoDef. 933 453 146 O 0 0 0 0 0
adversarial training. WCA 932 732 722 721 712 69.7 564 282 105

NoDef. 933 329 317 124 6.0 12 0 0 0

Square | PGDygo

Defense Architecture AT Clean PGD WCA 932 517 517 504 490 488 443 369 286
RSE (Liu et al., 2018) ResNext 7 87.5 40.0
DP (Lécuyer et al., 2019) 28-10 Wide ResNe? ~ 87.0  25.0
TRADES (Zhang et al., 2019) ResNet-18 X 849 56.6 .
PCL (Mustafaetal., 2019)  ResNet-110 X 919 467 4.3. Comparison to State of the Art
PNI (He et al., 2019) ResNet-20 (4x) X 87.7 49.1 . . . . X .
Adv-BNN (Liu etal., 2019)  VGG-16 X 772 546 Direct comparison to a wider range of competitors is dif-
kAZ:R(TJ?S\?i etal., fogg)zo) lseslll\lett-ljg § gg-g ggg cult due to the variety of backbones and settings used.
ang etal., esNet- . . . .

BPFC (Addepalli et al,, 2020) ResNet-18 7 824 417 Nevertheless, Tgble 3 provides comparison to recent state of
RLFLAT (Song etal., 2020)  32-10 Wide ResNeiX 827 58.7 the art stochastic and non-stochastic defenses. We can see
M (Pang etal., 2020) ResNet-50 7 82 645 that WCA-Net achieves excellent performance including
SADS (S. & Babu, 2020) 28-10 Wide ResNeX ~ 82.0 456 . :

comparing to methods that use bigger backbones and make
WCA-Net ResNet-18 7 932 714

the stronger assumption of adversarial training.

4.4. Further Analysis

Ablation Study We perform an ablation study on four

benchmarks, CIFAR-10, CIFAR-100, SVHN and F-MNIST,
We also present the evaluation of our method against thto investigate the contribution of anisotropic noise, as shown
C&W attack in Table 2. Here, the con dence leveindi-  in Table 5. For each benchmark, we evaluate a “clean” base-
cates the attack strength. Our WCA-Net achieves the bedine architecture, consisting only of the backbone and the
performance, with the accuracy degrading gracefully as thelassi cation layer. We then evaluate a variant of WCA-Net

con dence increases. with isotropic, and one with anisotropic noise. We observe
that our anisotropic noise provides consistent bene t to ad-
4.2.2. B ACK-BOX ATTACKS versarial robustness.

To further verify the robustness of our WCA-Net, we con-Another important observation is that there is no trade-off
duct experiments on a black-box attack, the One-Pixel abetween the robust and clean performance of our models;
tack (Su et al., 2019). This attack is derivative-free andooth the isotropic and anisotropic variants of WCA-Net
relies on evolutionary optimization, and its attack strengthmaintain the clean performance of the baseline defenseless
is controlled by the number of pixels it compromises. Wemodel.

]Eollilc;\fvs\]eicgdgtt. al. EIZOZO) and (ionS|d|<ter f'xel ntumberssmA" the FGSM and PGD attacks in Table 5 use attack strength
£ 90, iionally, we report resufts for a SWonger o= _ g 55 For completeness, we report the performance of

Gemonsirates the Srongestrobsingss n all cases, snowigly 1S VAans above against FGSM and PGD vith vrious
’ —2n _
13%to  22%improvement over the best competitor drtack strengths = 2, n 2 f 0::79 on CIFAR-10 shown

in Figure 1. From these results, we can see the overall trend

Adv-BNN. Importantly, these results show th‘f’“ the r_ob USt'here is consistent with the observations in Table 5. Also, we
ness of our method does not rely on stochastic gradients.

can see that the performance of our variants degrades more

423 SRONGERATTACKS gracefully than the defenseless baseline.

t!c defenses we outline as direct compejutors. These are: subset of ImageNet with 10 classes and full-resolution
(i) PGDygo; a stronger variant of PGD with 100 random

, . images, and (i) mini-ImageNet (Vinyals et al., 2016), a large
restarts and (ii) the Square Attack (Andrlgshchenko et al. ubset of ImageNet with 100 classes and 84x84 images,
2020); a black-box attack that compromises the attackea

: . i esigned to be more challenging than CIFAR-100. The
image in small localized square-shaped updates. We present
the results of our evaluation in Table 4. 2https://github.com/fastai/imagenette
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Table 5.Ablation study for FGSM and PGD attacks on CIFAR-10, CIFAR-100, SVHN and F-MNIST. For CIFAR-10, CIFAR-100 and
SVHN we use a ResNet-18, and for F-MNIST a LeNet++ backbone.

CIFAR-10 CIFAR-100 SVHN F-MNIST
Model Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD
No Defense 93.3 14.9 3.9 72.2 12.3 1.2 93.4 55.6 23.5 90.8 26.4 12.0

WCA-Net Isotropic 93.1 60.7 56,9 701 27.5 21.8 934 450 40.1 901 63.5 37.2
WCA-Net Anisotropic ~ 93.2 77.6 71.4 701 515 427 934 87.6 85.7 901 65.2 485

makes sense as critiqued in Athalye et al. (2018); one gra-

Table 6.Control experiments on CIFAR-10 for further analysis. . . :
i . ) , dient sample is not enough to construct an effective attack.
See Sec. 4.4. AT: Training purely with adversarial examples.

CT+AT: Training with a mix of clean and adversarial examples. E2: Average multiple noise samples at test timeur
model's forward pass performs the following: (i) Extract

Experiment Clean FGSM PGD features from the penultimate layer of the backbone, (ii)
No Defense 93.3 14.9 3.9 inject additive noise, and (iii) compute the logits. By de-
WCA-Net (Penalty regularizer) 932 77.6 714 fault we draw a single noise sample as suggested by our
WCA-Net (Constraint regularizer) 922 629 53.2 theory. In this experiment, we sample from the distribution
E1: Test without EoT 932 829 751 multiple times and average the nal logits. The more noise
E2: Average multiple noise samples  93.2  70.3  68.8 samples we average, the more we expect the additive noise
E3: Noise trained independently 931 450 416 tolose its regularization effect. The experimental results in
WCA-Net: AT 88.1 754  70.4 Table 6 con rm that using moren(= 10) samples degrades
WCA-Net: CT+AT 90.0 756 707 performance.

E3: Train noise and model independentlyin this experi-
, ~ment, we rst train the model without injecting any noise.
Table 7.Comparison between the undefended ResNet-18 baselmﬁehen keeping the model parameters frozen we train the

and WCA-Net with a ResNet-18 backbone for Imagenette (high- oise independently. In Table 6 we can see that this vari-

res, 10 categories) and mini-ImageNet (large-scale, 100 categories . .
under PGD attack. ant achieves an elementary level of robustness that is better

than the defenseless baseline shown in Table 5, however,
Imagenette mini-ImageNet not as strong as the isotropic baseline. As mentioned in
Model Clean FGSM PGD Clean FGSM PGD Section 3.1, a key insight of Theorem 1 is that the noise and
No Defense 755 8.4 0 51.9 5.0 0 weights should co-adapt. As expected, keeping the weight
WCA-Net 742 593 487 513 416 304 Vvectorsw frozen, overall limits the ways the WCA term
(see Eq. 3) can in ate, thus never realizing its full potential.

Adversarial training Our proposed method only requires
results presented in Table 7 demonstrate that our methazlean data for training. To show this, we adversarially train
generalizes quite well to both high-resolution images as welbur anisotropic WCA-Net in two settings: (i) purely with
as more challenging datasets. adversarial examples and (ii) with a mix of clean and adver-

sarial examples. We train with a PGD attack with 8 =255

Norm-constrained architecture As explained in Sec- _ :
tion 3.1, we control the magnitude of the weights in ourﬁ::g: :)r:t)iﬁ F;%rCetgz;:\T?:;Sir:&T?\t:fmGé (\;vuer Cae?firerﬁatzite
architecture by means of regularization. Another option P 9 9 P

to achieve the same effect is to apply norm constraints o clean data as expected (Goodfellow et al., 2015); while

- " . providing no consistent bene t for adversarial defense.
the classi cation vectorsy, and covariance matrix. A
detailed explanation of how we apply these norm constraints ) . .
is given in the supplementary material. In Table 6 we reporf+->- INspection of Gradient Obfuscation
results of a WCA-Net variant with a norm-constrained reguathalye et al. (2018) proposed a set of criteria to inspect
larizer. Constraint-based regularization still provides goodyhether a stochastic defense method relies on obfuscated
robustness, but is weaker than tRepenalty-based variant. gradients. Following He et al. (2019), we summarize these

E1: Importance of EoT To show the impact of EoT, we criteria as a checklist. If any item in this checklist holds true,
also evaluate the test performance without it. Table 6 show!€ Stochastic defense is deemled unreliable. The following
that the test performance increases without using EoT. Thi@nalysis veri es that our model's strong robustness is not
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Figure 1.Evaluation of our model variants (see Table 5) for dif- Figure 2.Evaluating our bound. Plots of the test set accuracy of
ferent attack strengths=2"; n 2 f 0:::7g, speci cally forthe ~ SVMs trained on the zero and one digits found in MNIST. We
FGSM (left) and PGD (right) attacks on CIFAR-10. Best viewed report the performance of models trained with isotropic (left) and
in color. anisotropic (right) noise, and the worst-case performance accord-
ing to Theorem 1. The anisotropic model provides a more robust
bound than the isotropic model as well as better empirical perfor-
caused by gradient obfuscation. mance. Best viewed in color.

Criterion 1: One-step attacks perform better than iterative
attacks. 4.6. Empirical Evaluation of Theorem 1

Refutation: Knowing that PGD is an iterative variant of To evaluate the tightness of our bound presented in Theo-
FGSM, we use our existing evaluation to refute this criterionrem 1, we train linear Support Vector Machines (SVM) on
From the results in Tables 1, 5 and 6, we can see that ouhe zero and one digits found in the MNIST dataset. Using
WCA-Net performs consistently better against FGSM thara linear model allows us to compute the numerator using
against PGD. the technique of Gouk & Hospedales (2020),

Criterion 2: Black-box attacks perform better than white-
box attacks.

Refutation: From Tables 1 and 2 we observe that FGSMWwherew is the weight vector of the SVM. We use principal
and PGD outperform the 1-pixel attack. In Figure 1 we seecomponents analysis to reduce the images to 32 dimensions,
the effect of increasing the attack strength on both whiteand apply learned isotropic and anisotropic noise to these

box attacks, and they still outperform the stronger 2-, 3- andeduced features before classi cation with the SVM. The
5-pixel attacks. covariance matrix and SVM weights are found by minimiz-

o _ . ing the hinge loss plus the WCA loss term using gradient
Criterion 3: Unbounded attacks do not reach 100% SUCqggcent. Results of attacking these models with PGD, and

cess. the lower bound on performance as computed by Theorem 1,

Refutation: For fair comparison to previous work, FGSM are given in Figure 2. From these plots we can see: (i) the
and PGD in this paper are parameterized following He et aound is not violated at any point, corroborating our analy-
(2019). However, for this check we deliberately increasesis; (i) as the strength of the adversarial attack is increased,
the attack strength of PGD to= 255=255and number of the bound remains non-vacuous for reasonable (i.e., likely
iterations tok = 20. We evaluate all of our models against imperceptible) values of the attack strength; and (iii) the
this attack, and they achieve an accuracy of 0%. model with anisotropic noise is more robust than the model
o ] ) with isotropic noise. This last nding is particularly inter-
Criterion 4: Random sampling nds adversarial examples.eging pecause in the linear model regime PGD attacks are

Refutation: To assess this, we hand-pick 100 CIFAR-10able to nd globally optimal adversarial examples.
test images that our model successfully classi es during
standard testing (100% accuracy), but misclassi es unde4.7. Empirical Observations about WCA

i = 8= 0
FGSM with 8=255(0% accuracy). For each of these Figure 3 shows the effect of our regularization methods

te_st_lmages, we randomly sample 1’00.0. per_turbed_|magev§ith a bivariate Gaussian, by plotting the contours of the
within the same -ball, and replace the original image if any

distribution against the weight vectors of the classi cation

of the samples result in misclassi cation. We then evaluatq . - . .
our model on these 100 images to get a performance of 989 yer. These visualizations are obtained by training our
/CA-Net variants with a LeNet++ backbone on F-MNIST,

Criterion 5: Increasing the distortion bound doesn't in- with a 2-dimensional bottleneck and 2x2 covariance matrix.
crease success.

I1‘(?(; )= kwky;

We show the following: (i) First, in the left of Figure 3,
Refutation: Figure 1 shows that increasing the distortionwe can see that the learned noise is axis-aligned since the
bound increases the attack's success. injected noise is isotropic. Further, we can see that the



