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Abstract
Stochastic Neural Networks (SNNs) that inject
noise into their hidden layers have recently been
shown to achieve strong robustness against ad-
versarial attacks. However, existing SNNs are
usually heuristically motivated, and often rely
on adversarial training, which is computationally
costly. We propose a new SNN that achieves
state-of-the-art performance without relying on
adversarial training, and enjoys solid theoretical
justification. Specifically, while existing SNNs
inject learned or hand-tuned isotropic noise, our
SNN learns an anisotropic noise distribution to op-
timize a learning-theoretic bound on adversarial
robustness. We evaluate our method on a num-
ber of popular benchmarks, show that it can be
applied to different architectures, and that it pro-
vides robustness to a variety of white-box and
black-box attacks, while being simple and fast to
train compared to existing alternatives.

1. Introduction
It has been shown that deep convolutional neural networks,
while displaying exceptional performance in computer vi-
sion problems such as image recognition (He et al., 2016),
are vulnerable to input perturbations that are imperceptible
to the human eye (Szegedy et al., 2014). The perturbed input
images, known as adversarial examples, can be generated by
single-step (Goodfellow et al., 2015) and multi-step (Madry
et al., 2018; Kurakin et al., 2017; Carlini & Wagner, 2017)
updates using both gradient-based optimization methods and
derivative-free approaches (Chen et al., 2017). This vulner-
ability raises the question of how one can go about ensuring
the security of machine learning systems, thus preventing a
malicious entity from exploiting instabilities (Biggio et al.,
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2013). In order to tackle this problem, many adversarial
defense algorithms have been proposed in the literature.
Among them, Stochastic Neural Networks (SNNs) that in-
ject fixed or learnable noise into their hidden layers have
shown promising results (Liu et al., 2018; 2019; He et al.,
2019; Jeddi et al., 2020; Yu et al., 2021).

In this paper, we identify three limitations of the current
state-of-the-art stochastic defense methods. First, most con-
temporary adversarial defense methods use a mixture of
clean and adversarial (or even purely adversarial) samples
during training, i.e., adversarial training (Goodfellow et al.,
2015; Madry et al., 2018; Liu et al., 2019; Mustafa et al.,
2019; He et al., 2019; Jeddi et al., 2020). However, gener-
ating strong adversarial examples during training leads to
significantly higher computational cost and longer training
time. Second, many existing adversarial defenses (Mustafa
et al., 2019), and especially stochastic defenses (Jeddi et al.,
2020) are heuristically motivated. Although they may be
empirically effective against existing attacks, they lack the-
oretical support. Third, the noise incorporated by existing
stochastic models is isotropic (i.e., generated from a mul-
tivariate Gaussian distribution with a diagonal covariance
matrix), meaning that it perturbs the learned features of dif-
ferent dimensions independently. Our theoretical analysis
will show that this is a strong assumption and best perfor-
mance is expected from anisotropic noise.

We address the aforementioned limitations and propose an
SNN that makes use of learnable anisotropic noise. We
theoretically analyse the margin between the clean and ad-
versarial performance of a stochastic model and derive an
upper bound on the difference between these two quantities.
This novel theoretical insight suggests that the anisotropic
noise covariance in an SNN should be optimized to align
with the classifier weights, which has the effect of tight-
ening the bound between clean and adversarial perfor-
mance. This leads to an easy-to-implement regularizer,
which can be efficiently optimized on clean samples alone
without need for adversarial training. We show that our
method, called Weight-Covariance Alignment (WCA), can
be applied to architectures of varied depth and complexity
(namely, LeNet++ and ResNet-18), and achieves state-of-
the-art robustness across several widely used benchmarks,
including CIFAR-10, CIFAR-100, SVHN and F-MNIST.
Moreover, this high level of robustness is demonstrated for
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both white-box and black-box attacks. We name our pro-
posed model WCA-Net.

The contributions of our paper are summarized as follows:

• While the majority of existing stochastic defenses are
heuristically motivated, our proposed method is de-
rived by optimizing a learning theoretic bound, provid-
ing solid justification for its robust performance.

• To the best of our knowledge, we are the first to propose
a stochastic defense with learned anisotropic noise.

• WCA only requires clean samples for training, unlike
most of the current state-of-the art defenses that depend
on costly adversarial training.

• We demonstrate the state-of-the-art performance of our
method on various benchmarks and provides resilience
to both white- and black-box attacks.

2. Related Work
2.1. Adversarial Attacks

We consider the standard threat model, where the attacker
can construct norm-bounded perturbations to a clean input.
First-order white-box adversaries use the gradient with re-
spect to the input image to perturb it in the direction that
increases misclassification probability. The attack can also
be targeted or untargeted, depending on whether a specific
misclassification is required (Goodfellow et al., 2015; Ku-
rakin et al., 2017; Madry et al., 2018; Carlini & Wagner,
2017). By default, we consider the untargeted variants of
these attacks. The simplest first-order adversary is the Fast
Gradient Sign Method (FGSM), proposed in Goodfellow
et al. (2015). The attack adds a small perturbation to the
input in the direction indicated by the sign of the gradient
of the classification loss, L, w.r.t. the input, ~x, controlled by
an attack strength ε,

~x′ = ~x+ ε · sign(∇~xL(h(~x), y)),

where h is the target model. Kurakin et al. (2017) upgraded
this single-step attack to a multi-step version named Basic
Iterative Method (BIM) with iterative updates and smaller
step size at each update. Though BIM works effectively,
Madry et al. (2018) demonstrated that randomly initializing
the perturbation generated by BIM, and then making multi-
ple attempts to construct an adversarial example results in
a stronger adversarial attack known as Projected Gradient
Descent (PGD). Another white-box attack of slightly dif-
ferent nature is the C&W attack (Carlini & Wagner, 2017),
which aims to find an input perturbation δ that maximizes
the following objective:

L(h(~x+ δ), y)− ||δ||p
s.t. ~x+ δ ∈ [0, 1]n,

where p is commonly chosen from {0, 2,∞}.

Different from the white-box attacks, black-box attacks
assume the details of the targeted model are unknown, and
one can only access the model through queries. Therefore,
in order to attack a target model in this case, one typically
trains a substitute of it (Papernot et al., 2017) and generates
an attack using the queried prediction of the target model
and the local substitute. Also, instead of training a substitute
for the target model, zero-order optimization methods (Chen
et al., 2017; Su et al., 2019) have been proposed to estimate
the gradients of the target model directly. In this paper, we
demonstrate that our proposed method is robust against both
white- and black-box attacks.

2.2. Stochastic Adversarial Defense

Recent work has shown that SNNs yield promising perfor-
mance in adversarial robustness. This can be achieved by
injecting either fixed (Liu et al., 2018) or learnable (He
et al., 2019; Jeddi et al., 2020; Yu et al., 2021) noise into the
models.

The idea behind Random Self Ensemble (RSE) (Liu et al.,
2018) is that one can simulate an ensemble of virtually in-
finite models while only training one. This is achieved by
injecting additive spherical Gaussian noise into various lay-
ers of a network and performing multiple forward passes at
test time. Though simple, it effectively improves the model
robustness in comparison to a conventional deterministic
model. RSE treats the variance of the injected noise as a hy-
perparameter that is heuristically tuned, rather than learned
in conjunction with the other network parameters. In con-
trast, He et al. (2019) propose Parametric Noise Injection
(PNI), where a fixed spherical noise distribution is controlled
by a learnable “intensity” parameter, further improving
model robustness. The authors show that the noise can be
incorporated into different locations of a neural network, i.e.,
it is applicable to both feature activations and model weights.
The injected noise is trained together with the model param-
eters via adversarial training. Learn2Perturb (L2P) (Jeddi
et al., 2020) is a recent extension of PNI. Instead of learning
a single spherical noise parameter, L2P learns a set of pa-
rameters defining an isotropic noise perturbation-injection
module. The parameters of the perturbation-injection mod-
ule and the model are updated alternatingly in a manner
named “alternating back-propagation” by the authors, using
adversarial training. Finally, SE-SNN (Yu et al., 2021) intro-
duces fully-trainable stochastic layers, which are trained for
adversarial robustness by adding a regularization term to the
objective function that maximizes the entropy of the learned
noise distribution. Unlike the other SNNs, but similarly to
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ours, SE-SNN only requires clean training samples.

Although conceptually related to the aforementioned
stochastic defense methods, WCA-Net differs in several
important aspects: WCA-Net is the first stochastic model
to inject learnable anisotropic noise into the latent features.
Our approach is derived from from optimization of a learn-
ing theoretic bound on the adversarial generalisation per-
formance of SNNs, which motivates the use of anisotropic
noise. WCA-Net does not require adversarial training and
can be optimized with clean samples alone, and is therefore
simpler and more efficient to train.

Another class of stochastic defenses apply noise to the input
images, rather than injecting noise to intermediate activa-
tions (Pinot et al., 2019; Cohen et al., 2019; Li et al., 2019;
Lee et al., 2019). From a theoretical point of view, this can
be seen as “smoothing” the function implemented by the
neural network in order to reduce the amount the output
of the network can change when the input is changed only
slightly. This type of defense can be considered a black-box
defense, in the sense that it does not actually involve regu-
larizing the weights of the network — it only modifies the
input. While interesting, it has primarily been applied in sce-
narios where one is using a model-as-a-service framework,
and cannot be sure if the model was trained with some sort
of adversarial defense or not (Cohen et al., 2019).

3. Methods
Based on theoretical analysis of how the injected noise
can impact generalisation performance, further expanded
in Section 3.1, we propose a weight-covariance alignment
loss term that encourages the weight vectors associated with
the final linear classification layer to be aligned with the
covariance matrix of the injected noise. Consequently, our
theory leads us to use anisotropic noise, rather than the
isotropic noise typically employed by previous approaches.

Our method fits into the family of SNNs that apply additive
noise to the penultimate activations of the network. Consider
the function, f(~x), which implements the feature extractor
portion of the network i.e., everything except the final clas-
sification layer. Our WCA-Net architecture is defined as

h(~x) = W (f(~x) + ~z) +~b, ~z ∼ N (0,Σ),

where W and~b are the parameters of the final linear layer, ~z
is the vector of additive noise. The objective function used
to train this model is

L = LC − LWCA, (1)

where LC and LWCA represent the classification loss
(e.g. softmax composed with cross entropy) and weight-
covariance alignment term respectively. We describe each
of our technical contributions in the remainder of this Sec-
tion.

3.1. Weight-Covariance Alignment

Non-stochastic methods for defending against adversarial
examples typically try to guarantee that the prediction for
an input image cannot be changed. In contrast, a defense
that is stochastic should aim to minimize the probability that
the prediction can be changed. In this Section, we present
a theoretical analysis of the probability that the prediction
of an SNN will be changed by an adversarial attack. For
simplicity, we restrict our analysis to the case of binary
classification.

Denoting a feature extractor as f , we define an SNN h,
trained for binary classification as

h(~x) = ~wT (f(~x) + ~z) + b, ~z ∼ N (0,Σ),

where ~w is the weight vector of the classification layer and
b is the bias. We denote the non-stochastic version of h,
where the value of ~z is always a vector of zeros, as h̃. The
margin of a prediction is given by

mh(~x, y) = yh(~x),

for y ∈ {−1, 1}. It is positive if the prediction is correct
and negative otherwise.

The quantity in which we are interested is the difference in
probabilities of misclassification when the model is and is
not under adversarial attack δ, which is given by

Ghp,ε(~x, y) = max
~δ:‖~δ‖p≤ε

P (mh(~x+ δ, y) ≤ 0)

−P (mh(~x, y) ≤ 0).
(2)

Our main theoretical result, given below, shows how one
can take an adversarial robustness bound, ∆h̃

p(~x, ε), for the
deterministic version of a network, and transform it to a
bound on G for the stochastic version of the network.

Theorem 1. The quantity Ghp,ε(~x, y), as defined above, is
bounded as

Ghp,ε(~x, y) ≤
∆h̃
p(~x, ε)

√
2π ~wTΣ~w

,

where the robustness of the deterministic version of h is
known to be bounded as |h̃(~x)− h̃(~x+ ~δ)| ≤ ∆h̃

p(~x, ε) for
any ‖~δ‖p ≤ ε.

The proof is provided in the supplemental material. We
can see from Theorem 1 that increasing the bi-linear form,
~wTΣ~w, of the noise distribution covariance and the classifier
reduces the gap between clean and robust performance. As
such, we define the loss term,

LWCA =

C∑
i=1

ln(~wTi Σ~wi), (3)
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where C is the number of classes in the classification prob-
lem, and ~wi is the weight vector of the final layer that is
associated with class i. We found that including the loga-
rithm results in balanced growth rates between the LC and
LWCA terms in Eq. 1 as training progresses, hence improv-
ing the reliability of training loss convergence.

The key insight of Theorem 1, operationalized by Eq. 3, is
that the noise and weights should co-adapt to align the noise
and weight directions. We call this loss Weight-Covariance
Alignment (WCA) because it is maximized when each ~wi is
well-aligned with the eigenvectors of the covariance matrix.

This WCA loss term runs into the risk of maximizing the
magnitude of ~w, rather than encouraging alignment or in-
creasing the scale of the noise. To avoid the uncontrollable
scaling of network parameters, it is common practice to
penalize large weights by means of `2 regularization:

L = LC − LWCA + λ~wT ~w,

where λ controls the strength of the penalty. In our case, we
apply the `2 penalty when updating the parameters of the
classification layer and the covariance matrix. Another ap-
proach to limiting parameter magnitude would be to enforce
norm constraints on ~w and Σ, e.g., using a projected subgra-
dient method at each update. We provide more details of
this alternative in the supplementary material. Empirically,
we found that the penalty-based approach outperformed the
constraint-based approach, so we focus on the former by
default.

3.2. Injecting Anisotropic Noise

In contrast to previous work that only considers inject-
ing isotropic Gaussian noise (Liu et al., 2019; He et al.,
2019; Jeddi et al., 2020; Yu et al., 2021), we make use of
anisotropic noise, providing a richer noise distribution than
previous approaches. Crucially, it also means that the princi-
pal directions in which the noise is generated no longer have
to be axis-aligned. I.e., prior work suffers from the inability
to simultaneously optimise alignment between noise and
weights (required to minimise the adversarial gap bounded
by Theorem 1), and freedom to place weight vectors off
the axis (required for good clean performance). Our use
of anisotropic noise in combination with WCA encourages
alignment of the weight vectors with the covariance matrix
eigenvectors, while allowing non-axis aligned weights, thus
providing more freedom about where to place the classifica-
tion decision boundaries.

Previous approaches are able to train the variance of each
dimension of the isotropic noise via the use of the “repa-
rameterization trick” (Kingma & Welling, 2014), where
one samples noise from a distribution with zero mean and
unit variance, then rescales the samples to get the desired
variance. Because the rescaling process is differentiable,

this allows one to learn variance jointly with the other net-
work parameters with backpropagation. In order to sample
anisotropic noise, one can instead sample a vector of zero
mean unit variance and multiply this vector by a lower tri-
angular matrix, L. This lower triangular matrix is related to
the covariance matrix as

Σ = L · LT .

This guarantees that the covariance matrix remains positive
semi-definite after each gradient update.

4. Experiments
In this Section we present the experiments that demonstrate
the efficacy of our model and verify our theoretical analysis.

4.1. Experimental Setup

Datasets For comparison against the current state-of-the-art
and for our ablation study we use four benchmarks: CIFAR-
10, CIFAR-100 (Krizhevsky et al., 2009), SVHN (Net-
zer et al., 2011) and Fashion-MNIST (Xiao et al., 2017).
CIFAR-10 and CIFAR-100 contain 60K 32x32 color images,
50K for training and 10K for testing, evenly spread across
10 and 100 classes respectively. SVHN can be considered a
more challenging version of MNIST (LeCun et al., 2010);
it contains almost 100K 32x32 color images of digits (0-9)
collected from Google’s Street View imagery, with roughly
73K for training and 26K for testing. Fashion-MNIST is
a collection of 70K 28x28 grayscale images of clothing,
60K for training and 10K for testing, also spread across 10
classes.

Models For all benchmarks except F-MNIST we use a
ResNet-18 (He et al., 2016) backbone, while for F-MNIST,
being a relatively simpler dataset, we use LeNet++ (Wen
et al., 2016). After the backbone we add a penultimate
layer for dimensionality reduction; this enables us to always
train a reasonably-sized covariance matrix regardless of the
original dimensionality of the feature extractor1. The only
restriction for the dimensionality of the penultimate layer is
that it needs to be a number greater or equal to the number
of classes in the task, so as to allow the covariance matrix
to align with at least one classifier vector. The two hyper-
parameters of note across all of our experiments are the
learning rate and `2 penalty (i.e., weight decay), the exact
values of which are provided in the supplementary material.

4.1.1. ATTACKS

We evaluate our method using three white-box adversaries:
FGSM (Goodfellow et al., 2015), PGD (Madry et al., 2018)
and C&W (Carlini & Wagner, 2017), and one black-box

132x32 for the benchmarks with 10 classes, 256x256 for the
benchmarks with 100 classes.
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attack: the One-Pixel attack (Su et al., 2019).

We parameterize the attacks following the literature (He
et al., 2019; Jeddi et al., 2020). More specifically, FGSM
and PGD are set with an attack strength of ε = 8/255
for CIFAR-10, CIFAR-100 and SVHN, and ε = 0.3 for
F-MNIST. PGD has a step size of α = ε/10 and number
of steps k = 10 for all benchmarks as per He et al. (2019).
C&W has a learning rate of α = 5 · 10−4, number of iter-
ations k = 1000, initial constant c = 10−3 and maximum
binary steps bmax = 9 same as Jeddi et al. (2020).

For the parameters of the One-Pixel attack we tried to repli-
cate the experimental setup described in the supplementary
material of Jeddi et al. (2020) for attack strengths of 1, 2
and 3 pixels. We followed their setup with population size
N = 400 and maximum number of iterations kmax = 75.
However, we noticed that the more pixels we added to
our attack the weaker the attack became, which is counter-
intuitive. We attribute that to the small number of iterations;
every added pixel substantially increases the search space of
the differential evolution algorithm, and 75 iterations are no
longer enough to converge when the number of pixels is 2
and 3. Therefore we maintain a population size of N = 400,
but increase the number of iterations to kmax = 1000. For
reproducibility purposes, we further clarify that for the dif-
ferential evolution algorithm we use a crossover probability
of r = 0.7, a mutation constant of m = 0.5, and the follow-
ing criterion for convergence:√

Var(E(X)) ≤
∣∣∣ 1

100N

∑
x∈X
E(x)

∣∣∣,
where X denotes the population, E(X) the energy of the
population and E(x) the energy of a single sample.

Expectation over Transformation Due to the noise in-
jected by SNNs, the gradients used by white-box attacks
are stochastic (Athalye et al., 2018). As a result, the true
gradients cannot be correctly estimated for attacks that use
only one sample to compute the perturbation. To avoid this
issue, we apply Expectation over Transformation (EoT) fol-
lowing Athalye et al. (2018). When generating an attack, we
compute gradients of multiple forward passes using Monte-
Carlo sampling and perturb the inputs using the averaged
gradient at each update. We empirically found that a reliable
number of MC samples is 50 (as we observed performance
begins to saturate from around 35 and converges at 40); thus,
we use 50 across all experiments.

4.2. Comparison to Prior Stochastic Defenses

Competitors We compare the performance of WCA-Net to
three recent state-of-the-art stochastic defenses to verify its
efficacy. AdvBNN (Liu et al., 2019): adversarially trains a
Bayesian neural network for defense. PNI (He et al., 2019):
learns an “intensity” parameter to control the variance of

Table 1. Comparison of state-of-the-art SNNs for FGSM and PGD
attacks on CIFAR-10 and CIFAR-100 with a ResNet-18 backbone.
Performance of Adv-BNN, PNI and L2P extracted from Jeddi et al.
(2020).

CIFAR-10 CIFAR-100
Method Clean FGSM PGD Clean FGSM PGD

Adv-BNN 82.2 60.0 53.6 ∼ 58.0 ∼ 30.0 ∼ 27.0
PNI 87.2 58.1 49.4 ∼ 61.0 ∼ 27.0 ∼ 22.0
L2P 85.3 62.4 56.1 ∼ 50.0 ∼ 30.0 ∼ 26.0
SE-SNN 92.3 74.3 - - - -
IAAT - - - 63.9 - 18.5
WCA-Net 93.2 77.6 71.4 70.1 51.5 42.7

Table 2. Comparison of state-of-the-art SNNs for white box C&W
attack and black box n-Pixel attack on CIFAR-10 with a ResNet-
18 backbone. Performance of competing methods extracted
from Jeddi et al. (2020).

Attack Strength Adv-BNN PNI L2P WCA-Net

Clean 82.2 87.2 85.3 93.2
C

&
W

κ = 0.1 78.1 66.1 84.0 89.4
κ = 1 65.1 34.0 76.4 78.4
κ = 2 49.1 16.0 66.5 71.9
κ = 5 16.0 0.08 34.8 55.0

n-
Pi

xe
l 1 pixel 68.6 50.9 64.5 90.8

2 pixels 64.6 39.0 60.1 85.5
3 pixels 59.7 35.4 53.9 81.2
5 pixels - - - 64.3

their SNN. Learn2Perturb (L2P) (Jeddi et al., 2020): im-
proves PNI by learning an isotropic perturbation injection
module. Furthermore, there are partial comparisons against
SE-SNN (Yu et al., 2021) and IAAT (Xie et al., 2019). All
experiments use a ResNet-18 backbone and are conducted
on CIFAR-10 for fair comparison.

4.2.1. WHITE-BOX ATTACKS

We first compare our proposed WCA-Net to the existing
state-of-the-art methods in the white-box attack setting.
From the results in Table 1, we can see that our WCA-Net
shows noticeable improvement of ∼ 15% over the strongest
competitor, L2P. Moreover, we find that our method does
not sacrifice its performance on clean data to afford such
strong robustness.

An important aspect of WCA that needs to be assessed is its
potential to scale with the number of classes. For this reason
we conduct experiments on CIFAR-100, comparing against
our previously mentioned competitors, plus IAAT (Xie et al.,
2019), all of which use a ResNet-18 backbone in their ar-
chitectures. From Table 1 we can see that the adversarial
robustness of WCA-Net outperforms the other methods.
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Table 3. Comparison of WCA-Net to recent state-of-the-art, both
stochastic and non-stochastic, on CIFAR-10. All competitors
evaluate their models on the untargeted PGD attack, with attack
strength ε = 8/255, and number of iterations k ∈ {7, 10, 20}.
Some results are extracted from He et al. (2019). AT: Use of
adversarial training.

Defense Architecture AT Clean PGD

RSE (Liu et al., 2018) ResNext 7 87.5 40.0
DP (Lécuyer et al., 2019) 28-10 Wide ResNet 7 87.0 25.0
TRADES (Zhang et al., 2019) ResNet-18 X 84.9 56.6
PCL (Mustafa et al., 2019) ResNet-110 X 91.9 46.7
PNI (He et al., 2019) ResNet-20 (4x) X 87.7 49.1
Adv-BNN (Liu et al., 2019) VGG-16 X 77.2 54.6
L2P (Jeddi et al., 2020) ResNet-18 X 85.3 56.3
MART (Wang et al., 2020) ResNet-18 X 83.0 55.5
BPFC (Addepalli et al., 2020) ResNet-18 7 82.4 41.7
RLFLAT (Song et al., 2020) 32-10 Wide ResNet X 82.7 58.7
MI (Pang et al., 2020) ResNet-50 7 84.2 64.5
SADS (S. & Babu, 2020) 28-10 Wide ResNet X 82.0 45.6

WCA-Net ResNet-18 7 93.2 71.4

We also present the evaluation of our method against the
C&W attack in Table 2. Here, the confidence level κ indi-
cates the attack strength. Our WCA-Net achieves the best
performance, with the accuracy degrading gracefully as the
confidence increases.

4.2.2. BLACK-BOX ATTACKS

To further verify the robustness of our WCA-Net, we con-
duct experiments on a black-box attack, the One-Pixel at-
tack (Su et al., 2019). This attack is derivative-free and
relies on evolutionary optimization, and its attack strength
is controlled by the number of pixels it compromises. We
follow Jeddi et al. (2020) and consider pixel numbers in
{1, 2, 3}. Additionally, we report results for a stronger 5-
pixel attack. From Table 2, we can see that our method
demonstrates the strongest robustness in all cases, showing
∼ 13% to ∼ 22% improvement over the best competitor
Adv-BNN. Importantly, these results show that the robust-
ness of our method does not rely on stochastic gradients.

4.2.3. STRONGER ATTACKS

In addition, we evaluate WCA-Net against two stronger at-
tacks that are, in general, common among recent adversarial
robustness literature, but are not mentioned in the stochas-
tic defenses we outline as direct competitors. These are:
(i) PGD100; a stronger variant of PGD with 100 random
restarts and (ii) the Square Attack (Andriushchenko et al.,
2020); a black-box attack that compromises the attacked
image in small localized square-shaped updates. We present
the results of our evaluation in Table 4.

Table 4. Evaluation of WCA-Net with a ResNet-18 backbone on
CIFAR-10, against the white-box PGD100 and black-box Square
Attack, for different values of attack strength ε.

ε/255 Clean 1 2 4 8 16 32 64 128

PG
D

1
0
0 No Def. 93.3 45.3 14.6 0 0 0 0 0 0

WCA 93.2 73.2 72.2 72.1 71.2 69.7 56.4 28.2 10.5

Sq
ua

re No Def. 93.3 32.9 31.7 12.4 6.0 1.2 0 0 0
WCA 93.2 51.7 51.7 50.4 49.0 48.8 44.3 36.9 28.6

4.3. Comparison to State of the Art

Direct comparison to a wider range of competitors is dif-
ficult due to the variety of backbones and settings used.
Nevertheless, Table 3 provides comparison to recent state of
the art stochastic and non-stochastic defenses. We can see
that WCA-Net achieves excellent performance including
comparing to methods that use bigger backbones and make
the stronger assumption of adversarial training.

4.4. Further Analysis

Ablation Study We perform an ablation study on four
benchmarks, CIFAR-10, CIFAR-100, SVHN and F-MNIST,
to investigate the contribution of anisotropic noise, as shown
in Table 5. For each benchmark, we evaluate a “clean” base-
line architecture, consisting only of the backbone and the
classification layer. We then evaluate a variant of WCA-Net
with isotropic, and one with anisotropic noise. We observe
that our anisotropic noise provides consistent benefit to ad-
versarial robustness.

Another important observation is that there is no trade-off
between the robust and clean performance of our models;
both the isotropic and anisotropic variants of WCA-Net
maintain the clean performance of the baseline defenseless
model.

All the FGSM and PGD attacks in Table 5 use attack strength
ε = 8/255. For completeness, we report the performance of
all the variants above against FGSM and PGD with various
attack strengths ε = 2n, n ∈ {0...7} on CIFAR-10 shown
in Figure 1. From these results, we can see the overall trend
here is consistent with the observations in Table 5. Also, we
can see that the performance of our variants degrades more
gracefully than the defenseless baseline.

Large-scale, high-resolution We are further interested to
show that our WCA-Net can handle high-resolution images
and more challenging datasets. For that purpose we evaluate
our method on two additional benchmarks: (i) Imagenette2,
a subset of ImageNet with 10 classes and full-resolution
images, and (ii) mini-ImageNet (Vinyals et al., 2016), a large
subset of ImageNet with 100 classes and 84x84 images,
designed to be more challenging than CIFAR-100. The

2https://github.com/fastai/imagenette

https://github.com/fastai/imagenette
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Table 5. Ablation study for FGSM and PGD attacks on CIFAR-10, CIFAR-100, SVHN and F-MNIST. For CIFAR-10, CIFAR-100 and
SVHN we use a ResNet-18, and for F-MNIST a LeNet++ backbone.

CIFAR-10 CIFAR-100 SVHN F-MNIST

Model Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD

No Defense 93.3 14.9 3.9 72.2 12.3 1.2 93.4 55.6 23.5 90.8 26.4 12.0
WCA-Net Isotropic 93.1 60.7 55.9 70.1 27.5 21.8 93.4 45.0 40.1 90.1 63.5 37.2
WCA-Net Anisotropic 93.2 77.6 71.4 70.1 51.5 42.7 93.4 87.6 85.7 90.1 65.2 48.5

Table 6. Control experiments on CIFAR-10 for further analysis.
See Sec. 4.4. AT: Training purely with adversarial examples.
CT+AT: Training with a mix of clean and adversarial examples.

Experiment Clean FGSM PGD

No Defense 93.3 14.9 3.9
WCA-Net (Penalty regularizer) 93.2 77.6 71.4
WCA-Net (Constraint regularizer) 92.2 62.9 53.2

E1: Test without EoT 93.2 82.9 75.1
E2: Average multiple noise samples 93.2 70.3 68.8
E3: Noise trained independently 93.1 45.0 41.6

WCA-Net: AT 88.1 75.4 70.4
WCA-Net: CT+AT 90.0 75.6 70.7

Table 7. Comparison between the undefended ResNet-18 baseline
and WCA-Net with a ResNet-18 backbone for Imagenette (high-
res, 10 categories) and mini-ImageNet (large-scale, 100 categories)
under PGD attack.

Imagenette mini-ImageNet
Model Clean FGSM PGD Clean FGSM PGD

No Defense 75.5 8.4 0 51.9 5.0 0
WCA-Net 74.2 59.3 48.7 51.3 41.6 30.4

results presented in Table 7 demonstrate that our method
generalizes quite well to both high-resolution images as well
as more challenging datasets.

Norm-constrained architecture As explained in Sec-
tion 3.1, we control the magnitude of the weights in our
architecture by means of `2 regularization. Another option
to achieve the same effect is to apply norm constraints to
the classification vectors ~wi and covariance matrix Σ. A
detailed explanation of how we apply these norm constraints
is given in the supplementary material. In Table 6 we report
results of a WCA-Net variant with a norm-constrained regu-
larizer. Constraint-based regularization still provides good
robustness, but is weaker than the `2 penalty-based variant.

E1: Importance of EoT To show the impact of EoT, we
also evaluate the test performance without it. Table 6 shows
that the test performance increases without using EoT. This

makes sense as critiqued in Athalye et al. (2018); one gra-
dient sample is not enough to construct an effective attack.

E2: Average multiple noise samples at test time Our
model’s forward pass performs the following: (i) Extract
features from the penultimate layer of the backbone, (ii)
inject additive noise, and (iii) compute the logits. By de-
fault we draw a single noise sample as suggested by our
theory. In this experiment, we sample from the distribution
multiple times and average the final logits. The more noise
samples we average, the more we expect the additive noise
to lose its regularization effect. The experimental results in
Table 6 confirm that using more (n = 10) samples degrades
performance.

E3: Train noise and model independently In this experi-
ment, we first train the model without injecting any noise.
Then, keeping the model parameters frozen we train the
noise independently. In Table 6 we can see that this vari-
ant achieves an elementary level of robustness that is better
than the defenseless baseline shown in Table 5, however,
not as strong as the isotropic baseline. As mentioned in
Section 3.1, a key insight of Theorem 1 is that the noise and
weights should co-adapt. As expected, keeping the weight
vectors ~wi frozen, overall limits the ways the WCA term
(see Eq. 3) can inflate, thus never realizing its full potential.

Adversarial training Our proposed method only requires
clean data for training. To show this, we adversarially train
our anisotropic WCA-Net in two settings: (i) purely with
adversarial examples and (ii) with a mix of clean and adver-
sarial examples. We train with a PGD attack with ε = 8/255
and k = 10. From the results in Table 6, we can see that
incorporating adversarial training harms our performance
on clean data as expected (Goodfellow et al., 2015); while
providing no consistent benefit for adversarial defense.

4.5. Inspection of Gradient Obfuscation

Athalye et al. (2018) proposed a set of criteria to inspect
whether a stochastic defense method relies on obfuscated
gradients. Following He et al. (2019), we summarize these
criteria as a checklist. If any item in this checklist holds true,
the stochastic defense is deemed unreliable. The following
analysis verifies that our model’s strong robustness is not
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Figure 1. Evaluation of our model variants (see Table 5) for dif-
ferent attack strengths ε = 2n, n ∈ {0...7}, specifically for the
FGSM (left) and PGD (right) attacks on CIFAR-10. Best viewed
in color.

caused by gradient obfuscation.

Criterion 1: One-step attacks perform better than iterative
attacks.

Refutation: Knowing that PGD is an iterative variant of
FGSM, we use our existing evaluation to refute this criterion.
From the results in Tables 1, 5 and 6, we can see that our
WCA-Net performs consistently better against FGSM than
against PGD.

Criterion 2: Black-box attacks perform better than white-
box attacks.

Refutation: From Tables 1 and 2 we observe that FGSM
and PGD outperform the 1-pixel attack. In Figure 1 we see
the effect of increasing the attack strength on both white-
box attacks, and they still outperform the stronger 2-, 3- and
5-pixel attacks.

Criterion 3: Unbounded attacks do not reach 100% suc-
cess.

Refutation: For fair comparison to previous work, FGSM
and PGD in this paper are parameterized following He et al.
(2019). However, for this check we deliberately increase
the attack strength of PGD to ε = 255/255 and number of
iterations to k = 20. We evaluate all of our models against
this attack, and they achieve an accuracy of 0%.

Criterion 4: Random sampling finds adversarial examples.

Refutation: To assess this, we hand-pick 100 CIFAR-10
test images that our model successfully classifies during
standard testing (100% accuracy), but misclassifies under
FGSM with ε = 8/255 (0% accuracy). For each of these
test images, we randomly sample 1,000 perturbed images
within the same ε-ball, and replace the original image if any
of the samples result in misclassification. We then evaluate
our model on these 100 images to get a performance of 98%.

Criterion 5: Increasing the distortion bound doesn’t in-
crease success.

Refutation: Figure 1 shows that increasing the distortion
bound increases the attack’s success.
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Figure 2. Evaluating our bound. Plots of the test set accuracy of
SVMs trained on the zero and one digits found in MNIST. We
report the performance of models trained with isotropic (left) and
anisotropic (right) noise, and the worst-case performance accord-
ing to Theorem 1. The anisotropic model provides a more robust
bound than the isotropic model as well as better empirical perfor-
mance. Best viewed in color.

4.6. Empirical Evaluation of Theorem 1

To evaluate the tightness of our bound presented in Theo-
rem 1, we train linear Support Vector Machines (SVM) on
the zero and one digits found in the MNIST dataset. Using
a linear model allows us to compute the numerator using
the technique of Gouk & Hospedales (2020),

∆h̃
∞(~x, ε) = ε‖~w‖1,

where ~w is the weight vector of the SVM. We use principal
components analysis to reduce the images to 32 dimensions,
and apply learned isotropic and anisotropic noise to these
reduced features before classification with the SVM. The
covariance matrix and SVM weights are found by minimiz-
ing the hinge loss plus the WCA loss term using gradient
descent. Results of attacking these models with PGD, and
the lower bound on performance as computed by Theorem 1,
are given in Figure 2. From these plots we can see: (i) the
bound is not violated at any point, corroborating our analy-
sis; (ii) as the strength of the adversarial attack is increased,
the bound remains non-vacuous for reasonable (i.e., likely
imperceptible) values of the attack strength; and (iii) the
model with anisotropic noise is more robust than the model
with isotropic noise. This last finding is particularly inter-
esting because in the linear model regime PGD attacks are
able to find globally optimal adversarial examples.

4.7. Empirical Observations about WCA

Figure 3 shows the effect of our regularization methods
with a bivariate Gaussian, by plotting the contours of the
distribution against the weight vectors of the classification
layer. These visualizations are obtained by training our
WCA-Net variants with a LeNet++ backbone on F-MNIST,
with a 2-dimensional bottleneck and 2x2 covariance matrix.

We show the following: (i) First, in the left of Figure 3,
we can see that the learned noise is axis-aligned since the
injected noise is isotropic. Further, we can see that the
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Figure 3. Visualisation of our models on F-MNIST with a 2D
bottleneck. Contours and arrows indicate noise covariance Σ
and weights ~wi. Left: WCA-Net with isotropic noise. Right:
WCA-Net with anisotropic noise. Evidently, our WCA-Net with
anisotropic noise allows covariance to be aligned with off-axis
weights.

weight vectors are near-axis-aligned, as WCA pushes them
to align with the learned noise. (ii) Then, in the right Figure,
due to the combination of anisotropic noise and WCA, our
model has weight-aligned noise, and the weights are free to
be non-axis-aligned. Overall, we observe better alignment
between the learned weight vectors and the eigenvectors of
the covariance matrix in our proposed anisotropic WCA-
Net.

5. Conclusions
In this paper we contribute the first stochastic model for
adversarial defense that features fully-trained, anisotropic
Gaussian noise, is hyperparameter free, and does not rely
on adversarial training. We provide both theoretical support
for the core ideas behind it, and experimental evidence of its
excelling performance. We extensively evaluate WCA-Net
on a variety of white-box and black-box attacks, and further
show that its high performance is not a result of stochastic
(obfuscated) gradients. Thus, we consider the proposed
model to push the boundary of adversarial robustness.
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