Supplementary Material for "On Estimation in Latent Variable Models"

Guanhua Fang, Ping Li
Cognitive Computing Lab
Baidu Research
10900 NE 8th St Bellevue WA 98004 USA
\{guanhuafang, liping11\}@baidu.com

Summary In this supplementary file, we collect the technical proofs for results stated in the main paper. Throughout the sequel, we will adopt the following notations. We let θ denote the generic model parameter. We also let Y be a random variable representing the observed data and Z be a random variable representing the latent unobserved variable. We use y and z to denote their realizations, respectively. Subscript i is used to indicate the i-th individual. We use $\|x\|$ and $\|x\|_{1}$ to represent ℓ_{2} - and ℓ_{1}-norm of vector x. For random sequences a_{n} and $b_{n}, a_{n}=O_{p}\left(b_{n}\right)$ represents that a_{n} is stochastically bounded by $K b_{n}$ for a sufficiently large constant K; $a_{n}=o_{p}\left(b_{n}\right)$ represents a_{n} / b_{n} converges to 0 with probability tending to 1 . Moreover, $a=O(b)$ means there exists a constant K such that $a \leq K b ; a=\Omega(b)$ means there exists a sufficiently large constant K such that $a \geq K b ; a \gg b$ means that there exists a sufficiently K such that $a \geq K b$. We use ∇f ($\nabla^{2} f, \nabla^{3} f$) to represent the first (second, third) derivative of function f with respect to θ. Lastly, constants c, C may be different from the place to place.

1. Proof of Theorem 1

We first define the following additional notations.

- Individualized gradient: $\nabla f_{i}(\theta)=-\nabla \log L_{i}(\theta)$, full gradient: $\nabla F_{n}(\theta)=\frac{1}{n} \sum_{i} \nabla f_{i}(\theta)$. (We may write $\nabla F_{n}(\theta)=$ $\nabla F(\theta)$ for simplicity.)
- Individualized stochastic gradient: $\nabla H_{i}\left(\theta, z_{i}\right)=-\nabla \log p_{\theta}\left(y_{i} \mid z_{i}\right)$, batch stochastic gradient $\nabla H_{B}(\theta)=$ $\frac{1}{n} \sum_{i \in B} \nabla H_{i}\left(\theta, z_{i}\right)$.
- We further write $\nabla f_{i}\left(\theta, \theta^{\prime}\right)=\mathbb{E}_{z_{i} \sim p_{\theta^{\prime}}\left(z \mid y_{i}\right)} \nabla H_{i}\left(\theta, z_{i}\right)$ and $\nabla F_{n}\left(\theta, \theta^{\prime}\right)=\frac{1}{n} \sum_{i} \nabla f_{i}\left(\theta, \theta^{\prime}\right)$. Then it is easy to see that $\nabla f_{i}\left(\theta, \theta^{\prime}\right)=\nabla f_{i}(\theta)$ and $\nabla F_{n}\left(\theta, \theta^{\prime}\right)=\nabla F_{n}(\theta)$.

Bound of v_{t}^{s+1} : We first consider to give the upper bound of $\mathbb{E}\left\|v_{t}^{s+1}\right\|$. (Here expectation \mathbb{E} is the conditional expectation which is only taken over all i_{t}^{s} 's and $z_{i_{t}^{s+1}}$'s given other variables.) For fixed iteration s and update index t, we further define $\zeta_{t}^{s+1}=H\left(\theta_{t}^{s+1}, z_{i_{t}^{s+1}}\right)-H\left(\tilde{\theta}^{s}, z_{i_{t}^{s}}\right)$. Then, by the definition of v_{t}^{s+1}, we have $v_{t}^{s+1}=\xi_{t}^{s+1}+\tilde{\nabla} f^{s+1}=\xi_{t}^{s+1}+\nabla H_{B^{s}}\left(\tilde{\theta}^{s}\right)$ according to the definition of our new notation. By taking expectation with respect to i_{t}^{s+1} and $z_{i_{t}^{s+1}}$, we have

$$
\begin{equation*}
\mathbb{E}_{i_{t}^{s+1}, z_{i_{t}^{s+1}}} v_{t}^{s+1}=\nabla F_{n}\left(\theta_{t}^{s+1}\right)-\nabla F_{n}\left(\tilde{\theta}^{s}, \theta_{t}^{s+1}\right)+\nabla H_{B^{s}}\left(\tilde{\theta}^{s}\right):=H_{t}^{s+1} \tag{8}
\end{equation*}
$$

Thus, we can compute

$$
\begin{align*}
\mathbb{E}_{i_{t}^{s+1}, z_{i_{t}^{s+1}}}\left[\left\|v_{t}^{s+1}\right\|^{2}\right] & =\mathbb{E}_{i_{t}^{s+1}, z_{i_{t}^{s+1}}}\left[\left\|\zeta_{t}^{s+1}+\tilde{\nabla} f^{s+1}\right\|^{2}\right] \\
& =\mathbb{E}_{i_{t}^{s+1}, z_{i_{t}^{s+1}}}\left[\left\|\zeta_{t}^{s+1}+\tilde{\nabla} f^{s+1}-H_{t}^{s+1}+H_{t}^{s+1}\right\|^{2}\right] \\
& \leq 2 \mathbb{E}_{i_{t}^{s+1}, z_{i_{t}^{s+1}}}\left[\left\|H_{t}^{s+1}\right\|^{2}\right]+2 \mathbb{E}_{i_{t}^{s+1}, z_{i}^{s+1}}\left[\left\|\zeta_{t}^{s+1}-\mathbb{E}_{i_{t}^{s+1}, z_{i_{t}^{s+1}}}\left[\zeta_{t}^{s+1}\right]\right\|^{2}\right] \\
& \leq 2\left\|H_{t}^{s+1}\right\|^{2}+2 \mathbb{E}_{i_{t}^{s+1}, z_{i}^{s+1}}\left[\left\|\zeta_{t}^{s+1}\right\|^{2}\right] \\
& \leq 2\left[\left\|H_{t}^{s+1}\right\|^{2}\right]+2 L^{2}\left\|\theta_{t}^{s+1}-\tilde{\theta}^{s}\right\|^{2} \tag{9}\\
& \leq 4\left[\left\|\nabla F_{n}\left(\theta_{t}^{s+1}\right)\right\|^{2}+\|\eta\|^{2}\right]+2 L^{2}\left[\left\|\theta_{t}^{s+1}-\tilde{\theta}^{s}\right\|^{2}\right] \tag{10}\\
& \leq 2 C\left\|\nabla F_{n}\left(\theta_{t}^{s+1}\right)\right\|^{2}+2 L^{2}\left\|\theta_{t}^{s+1}-\tilde{\theta}^{s}\right\|^{2} \tag{11}
\end{align*}
$$

by adjusting constant C and using the fact that $\mathbb{E}\left[\left\|\nabla F\left(\theta_{t}^{s+1}\right)\right\|^{2}\right]=\Omega\left(1 / n_{1}+(m \gamma)^{2}\right)$ before the termination of the algorithm and $\|\eta\|^{2}$ is $O\left(1 / n_{1}+(m \gamma)^{2}\right)$ (which will be shown in the next paragraph). Here (9) uses the fact that the density function is smooth and hence is L-lipschitz continuous for some positive L. Inequality (10) holds due to the fact that $\|a+b\|^{2} \leq\|a\|^{2}+\|b\|^{2}$, where we write $\eta=\nabla F_{n}\left(\theta_{t}^{s+1}\right)-H_{t}^{s+1}$. Therefore, we obtain

$$
\begin{equation*}
\mathbb{E}\left[\left\|v_{t}^{s+1}\right\|^{2}\right]=2 C \mathbb{E}\left\|\nabla F_{n}\left(\theta_{t}^{s+1}\right)\right\|^{2}+2 L^{2} \mathbb{E}\left\|\theta_{t}^{s+1}-\tilde{\theta}^{s}\right\|^{2} \tag{12}
\end{equation*}
$$

Difference between $\nabla F_{n}\left(\theta_{t}^{s+1}\right)$ and H_{t}^{s+1} : By straightforward calculation, we can find that

$$
\begin{align*}
\left\|\nabla F_{n}\left(\theta_{t}^{s+1}\right)-H_{t}^{s+1}\right\| & =\left\|\nabla F_{n}\left(\tilde{\theta}^{s}, \theta_{t}^{s+1}\right)-\nabla H_{B^{s}}\left(\tilde{\theta}^{s}\right)\right\| \\
& =\left\|\nabla F_{n}\left(\tilde{\theta}^{s}, \theta_{t}^{s+1}\right)-\nabla F_{n}\left(\tilde{\theta}^{s}, \tilde{\theta}^{s}\right)+\nabla F_{n}\left(\tilde{\theta}^{s}\right)-\nabla H_{B^{s}}\left(\tilde{\theta}^{s}\right)\right\| \\
& =\left\|\nabla F_{n}\left(\tilde{\theta}^{s}, \theta_{t}^{s+1}\right)-\nabla F_{n}\left(\tilde{\theta}^{s}, \tilde{\theta}^{s}\right)\right\|+\left\|\nabla F_{n}\left(\tilde{\theta}^{s}\right)-\nabla H_{B^{s}}\left(\tilde{\theta}^{s}\right)\right\| \\
& \leq C\left\|\tilde{\theta}^{s}-\theta_{t}^{s+1}\right\|+\left\|\nabla F_{n}\left(\tilde{\theta}^{s}\right)-\nabla H_{B^{s}}\left(\tilde{\theta}^{s}\right)\right\| . \tag{13}
\end{align*}
$$

Note that $\mathbb{E} \nabla F_{n}\left(\tilde{\theta}^{s}\right)=\mathbb{E} \nabla H_{B^{s}}\left(\tilde{\theta}^{s}\right)=\mathbb{E}_{y} \nabla \log L(\theta)$. Therefore, by Hoeffding's concentration inequality, we have that

$$
P\left(\left\|\nabla F_{n}\left(\tilde{\theta}^{s}\right)-\mathbb{E}_{y} \nabla \log L(\theta)\right\| \geq \frac{C_{1}}{\sqrt{n}}\right) \leq \exp \left\{-2 C_{1}^{2} / m_{1}\right\}
$$

and

$$
P\left(\left\|\nabla H_{B^{s}}\left(\tilde{\theta}^{s}\right)-\mathbb{E}_{y} \nabla \log L(\theta)\right\| \geq \frac{C_{2}}{\sqrt{n_{1}}}\right) \leq \exp \left\{-2 C_{2}^{2} / m_{2}\right\}
$$

where m_{1} and m_{2} are the upper bounds for $|\nabla \log L(\theta)|$ and $\left|\nabla \log p_{\theta}(y \mid z)\right|$. Such constants exist by the compactness assumption. Therefore, with high probability, we have that

$$
\begin{align*}
\|\eta\|=\left\|\nabla F_{n}\left(\theta_{t}^{s+1}\right)-H_{t}^{s+1}\right\| & \leq C\left\|\tilde{\theta}^{s}-\theta_{t}^{s+1}\right\|+\frac{C_{1}}{\sqrt{n}}+\frac{C_{2}}{\sqrt{n_{1}}} \\
& \leq C^{\prime}\left(m \gamma+\frac{1}{\sqrt{n_{1}}}\right) \tag{14}
\end{align*}
$$

where the last inequality uses the fact that $\left\|\tilde{\theta}^{s}-\theta_{t}^{s+1}\right\|$ is at most of order $m \gamma$.
By this, we can further obtain that

$$
\begin{align*}
\left\langle\nabla F_{n}\left(\theta_{t}^{s+1}\right), H_{t}^{s+1}\right\rangle & =\left\langle\nabla F_{n}\left(\theta_{t}^{s+1}\right), \nabla F_{n}\left(\theta_{t}^{s+1}\right)\right\rangle-\left\langle\nabla F_{n}\left(\theta_{t}^{s+1}\right), \nabla F_{n}\left(\theta_{t}^{s+1}\right)-H_{t}^{s+1}\right\rangle \\
& \geq\left\|\nabla f\left(\theta_{t}^{s+1}\right)\right\|^{2}-\left\|\nabla F_{n}\left(\theta_{t}^{s+1}\right)\right\|\left\|\nabla F_{n}\left(\theta_{t}^{s+1}\right)-H_{t}^{s+1}\right\| \\
& \geq c\left\|\nabla F_{n}\left(\theta_{t}^{s+1}\right)\right\|^{2} \tag{15}
\end{align*}
$$

by adjusting constant c and using the fact that $\mathbb{E}\left[\left\|\nabla F_{n}\left(\theta_{t}^{s+1}\right)\right\|^{2}\right]=\Omega(\|\eta\|)$ before the termination of the algorithm.

Descent Inequality: By smoothness of $F(\theta)$, we then have

$$
\begin{align*}
\mathbb{E}\left[F\left(\theta_{t+1}^{s+1}\right)\right] & \leq \mathbb{E}\left[F\left(\theta_{t}^{s+1}\right)+\left\langle\nabla F\left(\theta_{t}^{s+1}\right), \theta_{t+1}^{s+1}-\theta_{t}^{s+1}\right\rangle+\frac{L}{2}\left\|\theta_{t+1}^{s+1}-\theta_{t}^{s+1}\right\|^{2}\right] \\
& =\mathbb{E}\left[F\left(\theta_{t}^{s+1}\right)-\gamma\left\langle\nabla F\left(\theta_{t}^{s+1}\right), v_{t}^{s+1}\right\rangle+\frac{L \gamma^{2}}{2}\left\|v_{t}^{s+1}\right\|^{2}\right] \\
& =\mathbb{E}\left[F\left(\theta_{t}^{s+1}\right)-\gamma\left\langle\nabla F\left(\theta_{t}^{s+1}\right), H_{t}^{s+1}\right\rangle+\frac{L \gamma^{2}}{2}\left\|v_{t}^{s+1}\right\|^{2}\right] \tag{16}
\end{align*}
$$

for some constant L.
Consider the following Lyapunov function (Reddi et al., 2016)

$$
R_{t}^{s+1}:=\mathbb{E}\left[F\left(\theta_{t}^{s+1}\right)+c_{t}\left\|\theta_{t}^{s+1}-\tilde{\theta}^{s}\right\|^{2}\right]
$$

where c_{t} is defined recursively in (19). We can compute that

$$
\begin{align*}
& \mathbb{E}\left[\left\|\theta_{t+1}^{s+1}-\tilde{\theta}^{s}\right\|^{2}\right] \\
= & \mathbb{E}\left[\left\|\theta_{t+1}^{s+1}-\theta_{t}^{s+1}\right\|^{2}+\left\|\theta_{t}^{s+1}-\tilde{\theta}^{s}\right\|^{2}+2\left\langle\theta_{t+1}^{s+1}-\theta_{t}^{s+1}, \theta_{t}^{s+1}-\tilde{\theta}^{s}\right\rangle\right] \\
= & \mathbb{E}\left[\gamma^{2}\left\|v_{t}^{s+1}\right\|^{2}+\left\|\theta_{t}^{s+1}-\tilde{\theta}^{s}\right\|^{2}\right]+2 \gamma \mathbb{E}\left[\left\langle H_{t}^{s+1}, \theta_{t}^{s+1}-\tilde{\theta}^{s}\right\rangle\right] \\
\leq & \mathbb{E}\left[\gamma^{2}\left\|v_{t}^{s+1}\right\|^{2}+\left\|\theta_{t}^{s+1}-\tilde{\theta}^{s}\right\|^{2}\right]+2 \gamma \mathbb{E}\left[\frac{1}{2 \beta_{t}}\left\|H_{t}^{s+1}\right\|^{2}+\frac{\beta_{t}}{2}\left\|\theta_{t}^{s+1}-\tilde{\theta}^{s}\right\|^{2}\right] \\
\leq & \mathbb{E}\left[\gamma^{2}\left\|v_{t}^{s+1}\right\|^{2}+\left\|\theta_{t}^{s+1}-\tilde{\theta}^{s}\right\|^{2}\right]+2 \gamma \mathbb{E}\left[\frac{c_{2}}{2 \beta_{t}}\left\|\nabla f\left(\theta_{t}^{s+1}\right)\right\|^{2}+\frac{\beta_{t}}{2}\left\|\theta_{t}^{s+1}-\tilde{\theta}^{s}\right\|^{2}\right] \tag{17}
\end{align*}
$$

where β_{t} will be determined later. Combining (16) and (17), we then have

$$
\begin{align*}
R_{t+1}^{s+1}= & \mathbb{E}\left[F\left(\theta_{t+1}^{s+1}\right)+c_{t+1}\left\|\theta_{t+1}^{s+1}-\tilde{\theta}^{s}\right\|^{2}\right] \\
\leq & \mathbb{E}\left[F\left(\theta_{t}^{s+1}\right)-\gamma\left\langle\nabla F\left(\theta_{t}^{s+1}\right), H_{t}^{s+1}\right\rangle+\frac{L \gamma^{2}}{2}\left\|v_{t}^{s+1}\right\|^{2}\right] \\
& +c_{t+1}\left(\mathbb{E}\left[\gamma^{2}\left\|v_{t}^{s+1}\right\|^{2}+\left\|\theta_{t}^{s+1}-\tilde{\theta}^{s}\right\|^{2}\right]+2 \gamma \mathbb{E}\left[\frac{1}{2 \beta_{t}}\left\|H_{t}^{s+1}\right\|^{2}+\frac{\beta_{t}}{2}\left\|\theta_{t}^{s+1}-\tilde{\theta}^{s}\right\|^{2}\right]\right) \\
= & \mathbb{E}\left[F\left(\theta_{t}^{s+1}\right)-\left(c \gamma-c_{2} \frac{c_{t+1} \gamma}{\beta_{t}}\right)\left\|\nabla F\left(\theta_{t}^{s+1}\right)\right\|^{2}\right. \\
& +\left(\frac{L \gamma^{2}}{2}+c_{t+1} \gamma^{2}\right) \mathbb{E}\left[\left\|v_{t}^{s+1}\right\|^{2}\right]+\left(c_{t+1}+c_{t+1} \gamma \beta_{t}\right) \mathbb{E}\left[\left\|\theta_{t}^{s+1}-\tilde{\theta}^{s}\right\|^{2}\right] \tag{18}
\end{align*}
$$

Together with the bound on $\mathbb{E}\left\|v_{t}^{s+1}\right\|^{2}$, we then have

$$
\begin{aligned}
R_{t+1}^{s+1} \leq & \mathbb{E}\left[F\left(\theta_{t}^{s+1}\right)\right] \\
& -\left(c \gamma-\frac{c_{2} c_{t+1} \gamma}{\beta_{t}}-C \gamma^{2} L-2 C c_{t+1} \gamma^{2}\right) \mathbb{E}\left[\left\|\nabla F\left(\theta_{t}^{s+1}\right)\right\|^{2}\right] \\
& +\left(c_{t+1}\left(1+\gamma \beta_{t}+2 \gamma^{2} L^{2}\right)+\gamma^{2} L^{3}\right) E\left[\left\|\theta_{t}^{s+1}-\tilde{\theta}^{s}\right\|^{2}\right] \\
= & R_{t}^{s+1}-\left(c \gamma-\frac{c_{2} c_{t+1} \gamma}{\beta_{t}}-C \gamma^{2} L-2 C c_{t+1} \gamma^{2}\right) \mathbb{E}\left[\left\|\nabla F\left(\theta_{t}^{s+1}\right)\right\|^{2}\right]
\end{aligned}
$$

where we define the recursive relationship between c_{t} 's, i.e.,

$$
\begin{equation*}
c_{t}=c_{t+1}\left(1+\gamma \beta_{t}+2 \gamma^{2} L^{2}\right)+\gamma^{2} L^{3} \tag{19}
\end{equation*}
$$

For notational simplicity, we define

$$
\Gamma_{t}=c \gamma-\frac{c_{2} c_{t+1} \gamma}{\beta_{t}}-C \gamma^{2} L-2 C c_{t+1} \gamma^{2}
$$

and $\gamma_{\text {min }}=\min _{t} \Gamma_{t}$. We add up (19) over t from 0 to $t-1$ and get

$$
\gamma_{\min } \sum_{t=0}^{m-1} \mathbb{E}\left[\left\|\nabla F\left(\theta_{t}^{s+1}\right)\right\|^{2}\right] \leq R_{0}^{s+1}-R_{m}^{s+1}
$$

Note that $c_{m}=0$, then $R_{m}^{s+1}=\mathbb{E}\left[F\left(\theta_{m}^{s+1}\right)\right]=\mathbb{E}\left[F\left(\tilde{\theta}^{s+1}\right)\right]$ and that $R_{0}^{s+1}=\mathbb{E}\left[F\left(\theta_{0}^{s+1}\right)\right]=\mathbb{E}\left[F\left(\tilde{\theta}^{s}\right)\right]$. Therefore, we have

$$
\begin{equation*}
\frac{1}{T} \sum_{s=0}^{S-1} \sum_{t=0}^{m-1} \mathbb{E}\left[\left\|\nabla F\left(\theta_{t}^{s+1}\right)\right\|^{2}\right] \leq\left(F\left(\theta^{0}\right)-F(\bar{\theta})\right) /\left(T \gamma_{\min }\right) \tag{20}
\end{equation*}
$$

Recall that $T_{\min }(\epsilon)$ is $\arg \min _{t} \min _{s}\left\{\mathbb{E}\left\|\nabla F\left(\theta_{t}^{s}\right)\right\|^{2} \leq \epsilon\right\}$. Then (20) gives us that $T_{\min }(\epsilon) \leq \frac{F\left(\theta^{0}\right)-F(\bar{\theta})}{m \gamma_{\text {min }} \epsilon}$ with high probability. This completes the proof of Theorem 1.

Choice of n_{1}, m and γ : We take β_{t} as the constant β (i.e., free of t and s) and let $r=2 \gamma^{2} L^{2}+\gamma \beta, \gamma=\frac{1}{L n^{\alpha}}, m=n^{\alpha_{1}}$, $n_{1}=n^{2\left(\alpha-\alpha_{1}\right)}$, $\beta=L n^{-\alpha / 2}$. Then r is bounded by $\gamma \beta+L^{2} \gamma^{2}=O(\gamma \beta)$. We can compute c_{0} which is bounded by

$$
\begin{align*}
c_{0} & =L^{3} \gamma^{2} \frac{(1+r)^{m}-1}{r} \\
& \leq L^{3} \gamma^{2} \frac{(1+\gamma \beta)^{m}-1}{\gamma \beta} \\
& =\operatorname{Ln}^{-\alpha / 2}\left((1+\gamma \beta)^{m}-1\right) \\
& \leq \mu L n^{-\alpha / 2} \tag{21}
\end{align*}
$$

where $\mu=O(\gamma \beta m)$ which goes to 0 as $n \rightarrow \infty$. By the definition of $\gamma_{m i n}$, we can compute

$$
\begin{align*}
\gamma_{\min } & =\min _{t}\left\{c \gamma-\frac{c_{2} c_{t+1} \gamma}{\beta_{t}}-C \gamma^{2} L-2 C c_{t+1} \gamma^{2}\right\} \\
& \geq c \gamma-\frac{c_{0} \gamma}{\beta}-\gamma^{2} L-2 c_{0} \gamma^{2} \\
& \geq \frac{c^{\prime}}{L n^{\alpha}} \tag{22}
\end{align*}
$$

holds for some constant c^{\prime}. Here the last inequality holds since that c_{0} / β is upper bounded by some constant times $(1+\gamma \beta)^{m}-1$ which is $o(1), \gamma^{2} L \ll \gamma$ and $\gamma^{2} \ll \gamma$.
Therefore, it gives $T(\epsilon) \leq C \frac{n^{\alpha}\left(F\left(\theta^{0}\right)-F(\bar{\theta})\right)}{m \epsilon}$. This concludes the proof of Theorem 1. Taking $n_{1}=n^{\alpha_{1}}$, then the computational complexity will be $\left(n_{1}+m\right) \frac{n^{\alpha}}{m}$, which is n^{α} if $\alpha_{1} \geq 2 \alpha / 3$ and $n^{2\left(\alpha-\alpha_{1}\right)} n^{\alpha} / n^{\alpha_{1}}=n^{3 \alpha-3 \alpha_{1}}$ if $\alpha_{1}<2 \alpha / 3$. Thus the total computational complexity is simplified as $C \frac{n^{\alpha}\left(F\left(\theta^{0}\right)-F(\bar{\theta})\right)}{\epsilon}$ by taking $m=n^{2 \alpha / 3}$ and $n_{1}=n^{2 \alpha / 3}$. This gives Corollary 1.

2. Proof of Theorem 2

By Corollary 1, we know that $\|\nabla F(\hat{\theta})\|^{2}=O_{p}\left(n^{-2 \alpha / 3}\right)$. By Taylor expansion, we have that

$$
\begin{equation*}
\nabla F(\hat{\theta})=\nabla F(\bar{\theta})+\nabla^{2} F(\check{\theta})(\hat{\theta}-\bar{\theta})=\nabla^{2} F(\check{\theta})(\hat{\theta}-\bar{\theta}) \tag{23}
\end{equation*}
$$

where $\bar{\theta}$ is $\arg \min _{\theta} F(\theta)$ (also known as the maximal likelihood estimator) and $\check{\theta}$ is a point between $\hat{\theta}$ and $\bar{\theta}$. Since both $\hat{\theta}$ and $\check{\theta}$ are consistent estimator for θ^{*}, thus $\nabla^{2} F(\check{\theta})=I\left(\theta^{*}\right)+o_{p}(1)$ where $I\left(\theta^{*}\right)$ is the information matrix. Thus, $\|\hat{\theta}-\bar{\theta}\|^{2}=O_{p}\left(n^{-2 \alpha / 3}\right)$ as well.

Expand $\nabla F(\theta)$ at $\hat{\theta}$, we have

$$
\begin{equation*}
0=\nabla F(\bar{\theta})=\nabla F(\hat{\theta})+\nabla^{2} F(\hat{\theta})(\bar{\theta}-\hat{\theta})+\frac{1}{2} \nabla^{3} F(\xi)(\bar{\theta}-\hat{\theta})^{2} \tag{24}
\end{equation*}
$$

Since we have already know that $|\nabla H(\hat{\theta})-\nabla f(\hat{\theta})|=O_{p}\left(\frac{1}{\sqrt{n}}\right)$ and $\left|\nabla^{2} H(\hat{\theta})-\nabla^{2} f(\hat{\theta})\right|=O_{p}\left(\frac{1}{\sqrt{n}}\right)$. Plugging the formula of $\theta^{r_{1}}$ into (24), we get

$$
\begin{align*}
0 & =O_{p}\left(\frac{1}{\sqrt{n}}\right)+\nabla H(\hat{\theta})+\nabla^{2} F(\hat{\theta})(\bar{\theta}-\hat{\theta})+\frac{1}{2} \nabla^{3} F(\xi)(\bar{\theta}-\hat{\theta})^{2} \\
& =O_{p}\left(\frac{1}{\sqrt{n}}\right)+\nabla^{2} H(\hat{\theta})\left(\hat{\theta}-\theta^{r_{1}}\right)+\nabla^{2} f(\hat{\theta})(\bar{\theta}-\hat{\theta})+\frac{1}{2} \nabla^{3} f(\xi)(\bar{\theta}-\hat{\theta})^{2} \\
& =O_{p}\left(\frac{1}{\sqrt{n}}\right)+\nabla^{2} H(\hat{\theta})\left(\bar{\theta}-\theta^{r_{1}}\right)+\frac{1}{2} \nabla^{3} f(\xi)(\bar{\theta}-\hat{\theta})^{2} \tag{25}
\end{align*}
$$

Then we arrive at

$$
\left\|\bar{\theta}-\theta^{r_{1}}\right\|=\left(\sigma_{\min }\left(\nabla^{2} H(\hat{\theta})\right)\right)^{-1}\left(O_{p}\left(\frac{1}{\sqrt{n}}\right)+\frac{1}{2}\left|\nabla^{3} f(\xi)\right|\|\bar{\theta}-\hat{\theta}\|^{2}\right)
$$

We know that the algorithm returns $\hat{\theta}$ satisfy that $\left\|\hat{\theta}-\theta^{*}\right\|=O_{p}\left(\frac{1}{n^{1 / 3 \alpha}}\right)$. Therefore, we arrive at

$$
\left\|\bar{\theta}-\theta^{r_{1}}\right\|=O_{p}\left(\frac{1}{\sqrt{n}}+n^{-2 \alpha / 3}\right)
$$

Thus, when $3 / 4<\alpha<1$, we get $\left\|\bar{\theta}-\theta^{r_{1}}\right\|=O_{p}\left(\frac{1}{\sqrt{n}}\right)$. It is known that MLE is root n-consistent. Thus we finally get

$$
\left\|\theta^{r_{1}}-\theta^{*}\right\|=O_{p}\left(\frac{1}{\sqrt{n}}\right)
$$

By two-step refinement, we recall the formula

$$
\begin{equation*}
\theta^{r_{2}}=\theta^{r_{1}}-\frac{\nabla H\left(\theta^{r_{1}}\right)}{\nabla^{2} H\left(\theta^{r_{1}}\right)} \tag{26}
\end{equation*}
$$

Next we can show the normality of $\theta^{r_{2}}$. By Taylor expansion, we know

$$
\begin{equation*}
\nabla H\left(\theta^{r_{1}}\right)=\nabla H\left(\theta^{*}\right)+\left(\theta^{r_{1}}-\theta^{*}\right) \nabla H^{2}\left(\theta^{*}\right)+\frac{1}{2}\left(\theta^{r_{1}}-\theta^{*}\right) \nabla^{3} H(\xi) \tag{27}
\end{equation*}
$$

where ξ lies between θ^{*} and $\theta^{r_{1}}$. Put (26) into the above equation, we can get

$$
\begin{align*}
\sqrt{n}\left(\theta^{r_{2}}-\theta^{*}\right)= & \frac{(1 / \sqrt{n}) \nabla H\left(\theta^{*}\right)}{-(1 / n) \nabla^{2} H\left(\theta^{r_{1}}\right)}+\sqrt{n}\left(\theta^{r_{1}}-\theta^{*}\right) \\
& \cdot\left[1-\frac{\nabla^{2} H\left(\theta^{*}\right)}{\nabla^{2} H\left(\theta^{r_{1}}\right)}-\frac{1}{2}\left(\theta^{r_{1}}-\theta^{*}\right) \frac{\nabla^{3} H(\xi)}{\nabla^{2} H\left(\theta^{r_{1}}\right)}\right] \tag{28}
\end{align*}
$$

after simplification. Then, we can see that the first term of (28) converges to $N\left(0, I^{-1}\left(\theta^{*}\right) V\left(\theta^{*}\right) I^{-1}\left(\theta^{*}\right)\right)$. The second term of (28) is $o_{p}(1)$ since that $\sqrt{n}\left(\theta^{r_{1}}-\theta^{*}\right)$ is $O_{p}(1), 1-\frac{\nabla^{2} H\left(\theta^{*}\right)}{\nabla^{2} H\left(\theta^{r_{1}}\right)}=o_{P}(1)$ and $\left(\theta^{r_{1}}-\theta^{*}\right) \frac{\nabla^{3} H(\xi)}{\nabla^{2} H\left(\hat{\theta}^{r_{1}}\right)}$ is $o_{p}(1)$. Lastly, by Slutsky Theorem, we get

$$
\sqrt{n}\left(\theta^{r_{2}}-\theta^{*}\right) \rightarrow N\left(0, I^{-1}\left(\theta^{*}\right) V\left(\theta^{*}\right) I^{-1}\left(\theta^{*}\right)\right)
$$

3. Proof of Theorem 3

We require the following lemmas for convergence analysis under non-smooth setting.
Lemma 1 Let R be a closed convex function and $x, y \in \operatorname{dom}(R)$. Then it holds

$$
\left\|\operatorname{prox}_{R}(x)-\operatorname{prox}_{R}(y)\right\| \leq\|x-y\|
$$

Lemma 2 Let $P(\theta)=F(\theta)+R(\theta)$, where $\nabla F(\theta)$ is L-Lipschitz continuous, and $F(\theta)$ and $R(\theta)$ are strongly convex with parameter μ_{F} and μ_{R}. For any θ in domain and vector v, define

$$
\theta^{+}=\operatorname{prox}_{\gamma R}(\theta-\gamma v), g=\frac{1}{\gamma}\left(\theta-\theta^{+}\right), \Delta=v-\nabla F(\theta)
$$

then it holds that

$$
\begin{equation*}
P(y) \geq P\left(\theta^{+}\right)+g^{T}(y-\theta)+\frac{\eta}{2}\|g\|^{2}+\frac{\mu_{F}}{2}\|y-\theta\|^{2}+\frac{\mu_{R}}{2}\left\|y-\theta^{+}\right\|^{2}+\Delta^{T}\left(\theta^{+}-y\right) \tag{29}
\end{equation*}
$$

for any y in the domain and $0<\gamma<1 / L$.
The proofs of above Lemmas are omitted here. Their proofs can be found in Rockafellar (1970); Xiao and Zhang (2014).
Proof of Main Results Using the update rule, we know

$$
\begin{align*}
\left\|\theta_{t+1}^{s+1}-\theta_{*}\right\|^{2} & =\| \| \theta_{t}^{s+1}-\gamma g_{t}^{s+1}-\theta_{*}\left\|^{2}\right\| \\
& =\left\|\theta_{t}^{s+1}-\theta_{*}\right\|^{2}-2 \gamma\left(g_{t}^{s+1}\right)^{T}\left(\theta_{t}-\theta_{*}\right)+\gamma^{2}\left\|g_{t}^{s+1}\right\|^{2} \tag{30}
\end{align*}
$$

By applying Lemma 2 with $\theta=\theta_{t}^{s+1}, v=v_{t}^{s+1}, \theta^{+}=\theta_{t+1}^{s+1}, g=g_{t}^{s+1}$ and $y=\theta_{*}$, we get

$$
-\left(g_{t}^{s+1}\right)^{T}\left(\theta_{t}^{s+1}-\theta_{*}\right)+\frac{\gamma}{2}\left\|g_{t}^{s+1}\right\|^{2} \leq P\left(\theta_{*}\right)-P\left(\theta_{t+1}^{s+1}\right)-\frac{\mu_{F}}{2}\left\|\theta_{t}^{s+1}-\theta_{*}\right\|^{2}-\frac{\mu_{R}}{2}\left\|\theta_{t+1}^{s+1}-\theta_{*}^{s+1}\right\|^{2}-\Delta_{t}^{T}\left(\theta_{t+1}^{s+1}-\theta_{*}\right)
$$

where $\Delta_{t}^{s+1}=v_{t}^{s+1}-\nabla F\left(\theta_{t}^{s+1}\right)$. Therefore,

$$
\begin{align*}
\left\|\theta_{t+1}^{s+1}-\theta_{*}^{s+1}\right\|^{2} \leq & \left\|\theta_{t}^{s+1}-\theta_{*}^{s+1}\right\|^{2}-\gamma \mu_{F}\left\|\theta_{t}^{s+1}-\theta_{*}\right\|^{2}-\gamma \mu_{R}\left\|\theta_{t+1}^{s+1}-\theta_{*}\right\|^{2} \\
& -2 \gamma\left(P\left(\theta_{t+1}^{s+1}\right)-P\left(\theta_{*}\right)\right)-2 \gamma \Delta_{t}^{T}\left(\theta_{t+1}^{s+1}-\theta_{*}\right) \\
\leq & \left\|\theta_{t}^{s+1}-\theta_{*}\right\|^{2}-2 \gamma\left(P\left(\theta_{t+1}^{s+1}\right)-P\left(\theta_{*}\right)\right)-2 \gamma \Delta_{t}^{T}\left(\theta_{t+1}^{s+1}-\theta_{*}\right) \tag{31}
\end{align*}
$$

We next bound the quantity $-2 \gamma\left(\Delta_{t}^{s+1}\right)^{T}\left(\theta_{t+1}^{s+1}-\theta_{*}\right)$. We define the full proximal gradient update as

$$
\bar{\theta}_{t+1}^{s+1}=\operatorname{prox}_{\gamma R}\left(\theta_{t}^{s+1}-\gamma \nabla F\left(\theta_{t}^{s+1}\right)\right)
$$

though it is not used in algorithm. Then,

$$
\begin{align*}
-2 \gamma\left(\Delta_{t}^{s+1}\right)^{T}\left(\theta_{t+1}^{s+1}-\theta_{*}\right)= & -2 \gamma\left(\Delta_{t}^{s+1}\right)^{T}\left(\theta_{t+1}^{s+1}-\bar{\theta}_{t+1}^{s+1}\right)-2 \gamma\left(\Delta_{t}^{s+1}\right)^{T}\left(\bar{\theta}_{t+1}^{s+1}-\theta_{*}^{s+1}\right) \\
\leq & 2 \gamma\left\|\Delta_{t}^{s+1}\right\|\left\|\theta_{t+1}^{s+1}-\bar{\theta}_{t+1}^{s+1}\right\|-2 \gamma\left(\Delta_{t}^{s+1}\right)^{T}\left(\bar{\theta}_{t+1}^{s+1}-\theta_{*}\right) \\
\leq & 2 \gamma\left\|\Delta_{t}^{s+1}\right\|\left\|\left(\theta_{t}^{s+1}-\gamma v_{t}^{s+1}\right)-\left(\theta_{t}^{s+1}-\gamma \nabla F\left(\theta_{t}^{s+1}\right)\right)\right\| \\
& -2 \gamma\left(\Delta_{t}^{s+1}\right)^{T}\left(\bar{\theta}_{t+1}^{s+1}-\theta_{*}\right) \\
= & 2 \gamma^{2}\left\|\Delta_{t}^{s+1}\right\|^{2}-2 \gamma\left(\Delta_{t}^{s+1}\right)^{T}\left(\bar{\theta}_{t+1}^{s+1}-\theta_{*}\right) \tag{32}
\end{align*}
$$

Thus (31) becomes

$$
\left\|\theta_{t+1}^{s+1}-\theta_{*}\right\|^{2} \leq\left\|\theta_{t}^{s+1}-\theta_{*}\right\|^{2}-2 \gamma\left(P\left(\theta_{t+1}^{s+1}\right)-P\left(\theta_{*}\right)\right)+2 \gamma^{2}\left\|\Delta_{t}^{s+1}\right\|^{2}-2 \gamma\left(\Delta_{t}^{s+1}\right)^{T}\left(\bar{\theta}_{t+1}^{s+1}-\theta_{*}\right)
$$

We take expectation on both sides with respect to i_{t}^{s+1} and $z_{i_{t}^{s+1}}$ to get

$$
\mathbb{E}\left\|\theta_{t+1}^{s+1}-\theta_{*}\right\|^{2} \leq\left\|\theta_{t}^{s+1}-\theta_{*}\right\|^{2}-2 \gamma \mathbb{E}\left(P\left(\theta_{t+1}^{s+1}\right)-P\left(\theta_{*}\right)\right)+\gamma \eta,
$$

where we use the boundness of $\mathbb{E}\left\|\Delta_{t}^{s+1}\right\|$ and $\left\|\theta_{t+1}^{s+1}-\theta_{*}\right\| \leq \eta$. Before the termination of Algorithm 1, we know that $E\left(P\left(\theta_{t+1}^{s+1}\right)-P\left(\theta_{*}\right)\right)=\Omega(\eta)$. Therefore, we have

$$
\begin{equation*}
\mathbb{E}\left\|\theta_{t+1}^{s+1}-\theta_{*}\right\|^{2} \leq\left\|\theta_{t}^{s+1}-\theta_{*}\right\|^{2}-2 c \gamma \mathbb{E}\left(P\left(\theta_{t+1}^{s+1}\right)-P\left(\theta_{*}\right)\right) \tag{33}
\end{equation*}
$$

By summing the above inequality over all s and t, then we get

$$
\begin{equation*}
2 c m T \epsilon \leq \sum_{s=1}^{T} \sum_{t=1}^{m} 2 c \gamma \mathbb{E}\left(P\left(\theta_{t+1}^{s+1}\right)-P\left(\theta_{*}\right)\right) \leq\left\|\theta^{0}-\theta_{*}\right\|^{2} . \tag{34}
\end{equation*}
$$

We get $T(\epsilon) \leq \frac{\left\|\theta^{0}-\theta^{*}\right\|^{2}}{2 c m \epsilon}$. This concludes the proof of Theorem 2 .
Then the total computational complexity is

$$
O\left(\frac{\left\|\theta_{0}-\theta_{*}\right\|^{2}}{m \gamma \epsilon} \max \left\{m, n_{1}\right\}\right)
$$

for any $\epsilon=\Omega\left(\frac{1}{\sqrt{n_{1}}}+m \gamma\right)$. When $m=n^{\alpha_{1}}, n_{1}=m^{2\left(\alpha-\alpha_{1}\right)}$ and $\gamma=n^{-\alpha}$ with $\alpha_{1}=2 / 3 \alpha$, the computational complexity is $O\left(n^{\alpha}\left\|\theta_{0}-\theta_{*}\right\|^{2} / \epsilon\right)$.

4. Proof of Theorem 4

Let S_{1}^{*} be the set of indices corresponding to position of θ^{*} where true value is non-zero and S_{0}^{*} be the set of indices corresponding to position of θ^{*} where true value is zero. For notational simplicity, we define $\theta_{(1)}=\theta\left[S_{1}^{*}\right]$ and $\theta_{(0)}=\theta\left[S_{0}^{*}\right]$. Next, we show that the solution $\hat{\theta}$ with $\hat{\theta}\left[S_{0}^{*}\right]=0$ satisfies Karush-Kuhn-Tucker (KKT) condition. We then can write

$$
\nabla F(\theta)=\binom{\nabla_{1} F(\theta)}{\nabla_{0} F(\theta)}
$$

and write

$$
\nabla^{2} F(\theta)=\left(\begin{array}{ll}
\nabla_{11}^{2} F(\theta) & \nabla_{10}^{2} F(\theta) \\
\nabla_{01}^{2} F(\theta) & \nabla_{00}^{2} F(\theta)
\end{array}\right),
$$

where $\nabla_{1} F(\theta)$ is the subvector of gradient corresponding to $\theta_{(1)}$ and $\nabla_{11}^{2} F(\theta)$ is the block of Hessian matrix corresponding to $\theta_{(1)}$. Rest quantities are defined in the same fashion.
We then recall the irrepresentable condition.

- Assume there exists a positive constant η such that

$$
\begin{equation*}
\left.\mid \nabla_{01} F\left(\theta^{*}\right) \nabla_{11}^{2} F\left(\theta^{*}\right)\right)^{-1} \operatorname{sign}\left(\theta_{(1)}^{*}\right) \mid \preceq 1-\eta . \tag{35}
\end{equation*}
$$

Here the " \preceq " means that the inequality holds element-wisely.
We expand $\nabla F(\hat{\theta})$ at θ^{*} by Taylor expansion. Then we get

$$
\begin{equation*}
\nabla F(\hat{\theta})=\nabla F\left(\theta^{*}\right)+\nabla^{2} F\left(\theta^{*}\right)\left(\hat{\theta}-\theta^{*}\right)+O\left(\left(\hat{\theta}-\theta^{*}\right)^{2}\right) \tag{36}
\end{equation*}
$$

For subvector $\hat{\theta}_{(1)}$ and $\theta_{(1)}^{*}$, we can get the similar equation, that is,

$$
\begin{equation*}
\nabla_{1} F(\hat{\theta})=\nabla_{1} F\left(\theta^{*}\right)+\nabla_{11}^{2} F\left(\theta^{*}\right)\left(\hat{\theta}_{(1)}-\theta_{(1)}^{*}\right)+O\left(\left(\hat{\theta}_{(1)}-\theta_{(1)}^{*}\right)^{2}\right) \tag{37}
\end{equation*}
$$

This implies

$$
\begin{equation*}
\hat{\theta}_{(1)}-\theta_{(1)}^{*}=-\left(\nabla_{11}^{2} F\left(\theta^{*}\right)\right)^{-1}\left(\nabla_{1} F(\hat{\theta})+O_{p}\left(\frac{1}{\sqrt{n}}\right)\right) \tag{38}
\end{equation*}
$$

For those positions in S_{0}^{*}, we can compute

$$
\begin{align*}
\nabla_{0} F(\hat{\theta}) & =-\nabla_{01} F\left(\theta^{*}\right)\left(\nabla_{11}^{2} F\left(\theta^{*}\right)\right)^{-1}\left(\nabla_{1} F(\hat{\theta})+O_{p}\left(\frac{1}{\sqrt{n}}\right)\right)+O\left(\left(\hat{\theta}-\theta^{*}\right)^{2}\right) \\
& =-\nabla_{01} F\left(\theta^{*}\right)\left(\nabla_{11}^{2} F\left(\theta^{*}\right)\right)^{-1} \nabla_{1} F(\hat{\theta})+O_{p}\left(\frac{1}{\sqrt{n}}\right)+O_{p}\left(n^{-\alpha / 3}\right) \tag{39}
\end{align*}
$$

Note that $\nabla_{1} F(\hat{\theta})=\tau \operatorname{sign}\left(\theta_{(1)}^{*}\right)+O_{p}\left(n^{-\alpha / 6}\right)$, we have

$$
\begin{equation*}
\left|\nabla_{0} F(\hat{\theta})\right| \preceq \xi_{c}\left(\tau(1-\eta)+O_{p}\left(n^{-\alpha / 6}\right)\right)+O_{p}\left(\frac{1}{\sqrt{n}}\right)+O_{p}\left(n^{-\alpha / 3}\right)<\tau \tag{40}
\end{equation*}
$$

when $\tau \geq n^{-\alpha / 6}$. Thus, we know that $\hat{\theta}_{(0)}=\mathbf{0}$. This completes the proof.

5. Proof of Results in Network Case

Let d_{i} be the number of nodes that the i-th node connects to and A be the edge list. Let $|A|$ be the cardinality of A and we know $2|A|=\sum d_{i}$. The objective function is

$$
\begin{equation*}
L(\theta)=\sum_{\mathbf{z}} p(\mathbf{z}) \prod_{(i, j) \in A} f\left(\theta \mid z_{i}, z_{j}\right) \tag{41}
\end{equation*}
$$

Thus

$$
\begin{align*}
\nabla \log L(\theta) & =\nabla \log \left\{\sum_{\mathbf{z}} p(\mathbf{z}) \prod_{(i, j) \in A} f_{\theta}\left(y_{i j} \mid z_{i}, z_{j}\right)\right\} \\
& =\sum_{\mathbf{z}}\left\{\nabla \log \left(p(\mathbf{z}) \prod_{(i, j) \in A} f_{\theta}\left(y_{i j} \mid z_{i}, z_{j}\right)\right)\right\} p(\mathbf{z} \mid \theta) \\
& =\sum_{\mathbf{z}}\left\{\nabla \log \prod_{(i, j) \in A} f_{\theta}\left(y_{i j} \mid z_{i}, z_{j}\right)\right\} p(\mathbf{z} \mid \theta) \tag{42}\\
& =\sum_{\mathbf{z}}\left\{\sum_{(i, j) \in A} \nabla \log f_{\theta}\left(y_{i j} \mid z_{i}, z_{j}\right)\right\} p(\mathbf{z} \mid \theta) \tag{43}\\
& =\mathbb{E}_{\mathbf{z}}\left\{\sum_{(i, j) \in A} \nabla \log f_{\theta}\left(y_{i j} \mid z_{i}, z_{j}\right)\right\} \tag{44}
\end{align*}
$$

Next we show the local convergence property of Algorithm 2 under the latent network setting. For any $\theta \in B\left(\theta^{*}, \delta\right)$ with some small radius δ, we can show that $p(\mathbf{z} \mid \theta) \rightarrow \mathbf{1}_{\mathbf{z}=\mathbf{z}^{*}}$ (i.e., a probability mass function which puts total point probability on true latent memberships). More specifically, according to Lemma 3, it gives $d_{T V}\left(p(\mathbf{z} \mid \theta), \mathbf{1}_{\mathbf{z}=\mathbf{z}^{*}}\right) \leq \exp \left\{-c d_{\text {min }}\right\}$ for some positive constant c and $d_{\text {min }}$ is the minimum of d_{i} 's.

We first prove several useful lemmas.
Lemma 3 For any $\theta \in B\left(\theta^{*}, \delta\right)$, there exists a constant c such that

$$
\begin{equation*}
\left\|p(\mathbf{z} \mid \theta)-\mathbf{1}_{\mathbf{z}=\mathbf{z}^{*}}\right\|_{T V} \leq \exp \left\{-c d_{\min }\right\} \tag{45}
\end{equation*}
$$

Proof of Lemma 3 To prove (3), it is equivalent to prove

$$
\begin{equation*}
\sum_{\mathbf{z} \neq \mathbf{z}^{*}} p_{\theta}(\mathbf{z})=p_{\theta}\left(\mathbf{z}^{*}\right) \cdot \exp \left\{-c d_{\min }\right\} \tag{46}
\end{equation*}
$$

where $p_{\theta}(\mathbf{z})=p_{\theta}(\mathbf{z}, \mathbf{y})$ is the complete likelihood function. We omit script \mathbf{y} for notational simplicity.
The main step of the proof is to show that

$$
\begin{equation*}
\log p_{\theta}(\mathbf{z}) \leq \log p_{\theta}\left(\mathbf{z}^{*}\right)-c d_{\min }\left|\mathbf{z}-\mathbf{z}^{*}\right|_{0} \tag{47}
\end{equation*}
$$

holds for all $\mathbf{z} \neq \mathbf{z}^{*}$ with high probability. According to concentration lemma 5, we have

$$
\begin{align*}
& P\left(\left|\log p_{\theta}(\mathbf{z})-\log p_{\theta}\left(\mathbf{z}^{*}\right)-\mathbb{E}\left[\log p_{\theta}(\mathbf{z})-\log p_{\theta}\left(\mathbf{z}^{*}\right)\right]\right| \geq\left|\mathbf{z}-\mathbf{z}^{*}\right|_{0} d_{\min } x\right) \\
\leq & \exp \left\{-\left|\mathbf{z}-\mathbf{z}^{*}\right|_{0} d_{\text {min }} x^{2}\right\} \tag{48}
\end{align*}
$$

by taking $g_{\theta}(z)=\log p_{\theta}(\mathbf{z})-\log p_{\theta}\left(\mathbf{z}^{*}\right)$. By model identifiability, we know that there exists constant c_{0} such that

$$
\begin{equation*}
\mathbb{E}\left[\log p_{\theta}(\mathbf{z})\right]-\mathbb{E}\left[\log p_{\theta}\left(\mathbf{z}^{*}\right)\right] \leq c_{0}\left|\mathbf{z}-\mathbf{z}^{*}\right|_{0} d_{\min } \tag{49}
\end{equation*}
$$

By taking $x=c_{0} / 2$ in (48), we have

$$
\begin{equation*}
\log p_{\theta}(\mathbf{z}) \leq \log p_{\theta}\left(\mathbf{z}^{*}\right)-\frac{c_{0}}{2} d_{\min }\left|\mathbf{z}-\mathbf{z}^{*}\right|_{0} \tag{50}
\end{equation*}
$$

with probability at least $1-\exp \left\{-\left|\mathbf{z}-\mathbf{z}^{*}\right|{ }_{0} d_{\min } c_{0}^{2} / 4\right\}$. Therefore, we have

$$
\begin{align*}
& P\left(\log p_{\theta}(\mathbf{z}) \leq \log p_{\theta}\left(\mathbf{z}^{*}\right)-\frac{c_{0}}{2} d_{\min }\left|\mathbf{z}-\mathbf{z}^{*}\right|_{0}, \text { for any } \mathbf{z}\right) \\
\geq & 1-\sum_{\mathbf{z}} \exp \left\{-\left|\mathbf{z}-\mathbf{z}^{*}\right|_{0} d v c_{0}^{2} / 4\right\} \\
= & 1-\sum_{d=1}^{n} \sum_{\mathbf{z}:\left|\mathbf{z}-\mathbf{z}^{*}\right|_{0}} \exp \left\{-\mid \mathbf{z}-d d v c_{0}^{2} / 4\right\} \\
= & 1-\sum_{d=1}^{n} \frac{n!}{(n-d)!(d)!} \exp \left\{-d d v c_{0}^{2} / 4\right\} \\
\geq & 1-\sum_{d=1}^{n} n^{d} \exp \left\{-d d_{\min } c_{0}^{2} / 4\right\} \tag{51}\\
\geq & 1-\left(1-\exp \left\{-d_{\min } c_{0}^{2} / 4+\log n\right\}\right)^{-1} \exp \left\{-d_{\min } c_{0}^{2} / 4+\log n\right\} \\
\geq & 1-\exp \left\{-c^{\prime} d_{\min }\right\} \tag{52}
\end{align*}
$$

by adjusting the constant c^{\prime} and the fact that $d_{\min } \gg \log n$. This establishes (46) and the lemma follows as well.
Lemma 4 For any $\theta \in B\left(\theta^{*}, \delta\right)$, there exist constants $c^{\prime}, c^{\prime \prime}$ such that

$$
\begin{equation*}
\left\|\nabla L(\theta)-\nabla L\left(\theta \mid \mathbf{z}^{*}\right)\right\| \leq \exp \left\{-c^{\prime} d_{\min }\right\} \tag{53}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\nabla L_{i}(\theta)-\nabla L_{i}\left(\theta \mid \mathbf{z}^{*}\right)\right\| \leq \exp \left\{-c^{\prime} d_{\min }\right\} \tag{54}
\end{equation*}
$$

hold with probability at least $1-\exp \left\{-c^{\prime \prime} d_{\text {min }}\right\}$.
The proof of Lemma 4 is similar to that of Lemma 3. Hence, we omit here.
Lemma 5 Suppose $g_{\theta}(z)$ is any function of form $\sum_{i \in A_{s}} \sum_{j \in A_{i}} \log f_{\theta}\left(y_{i j} \mid z_{i}, z_{j}\right)$, where A_{s} is arbitrary subset of $\{1, \ldots, n\}$. Then it holds that

$$
\begin{equation*}
P\left(\left|g_{\theta}(z)-\mathbb{E} g_{\theta}(z)\right| \geq\left|\bar{A}_{s}\right| x\right) \leq \exp \left\{-C\left|A_{s}\right| d_{\min } x^{2}\right\} \tag{55}
\end{equation*}
$$

for some constant C. Here $\bar{A}_{s}:=\left\{(i, j): i \in A_{s}, j \in A_{i}\right\}$.
Proof of Lemma 5 By boundness assumption, we know there exist constant M such that $\mid \log f_{\theta}\left(y_{i j} \mid z_{i}, z_{j}\right)-$ $\mathbb{E} \log f_{\theta}\left(y_{i j} \mid z_{i}, z_{j}\right) \mid \leq M$. Then, by Hoeffding's inequality, we have

$$
\begin{align*}
P\left(\left|g_{\theta}(z)-\mathbb{E} g_{\theta}(z)\right| \geq\left|\bar{A}_{s}\right| x\right) & \leq \exp \left\{-2 \frac{\left|\bar{A}_{s}\right|^{2} x^{2}}{\left|\bar{A}_{s}\right| M^{2}}\right\} \\
& \leq \exp \left\{-2 \frac{\left|\bar{A}_{s}\right| x^{2}}{M^{2}}\right\} \\
& \leq \exp \left\{-C\left|A_{s}\right| d_{m i n} x^{2}\right\} \tag{56}
\end{align*}
$$

by adjusting the constant C. This concludes the lemma.
We define the following quantities,

$$
\begin{aligned}
& \nabla H(\theta, \mathbf{z}):=\frac{1}{|A|} \sum_{(i, j) \in A} \nabla \log f_{\theta}\left(y_{i j} \mid z_{i}, z_{j}\right), \\
& \nabla H_{i}(\theta, \mathbf{z}):=\frac{1}{d_{i}} \sum_{j:(i, j) \in A} \nabla \log f_{\theta}\left(y_{i j} \mid z_{i}, z_{j}\right),
\end{aligned}
$$

and

$$
\nabla H_{B}(\theta, \mathbf{z}):=\frac{1}{\sum_{i \in B} d_{i}} \sum_{(i, j) \in A, i \in B} \nabla \log f_{\theta}\left(y_{i j} \mid z_{i}, z_{j}\right)
$$

We also define

$$
\begin{aligned}
& \nabla H(\theta):=\frac{1}{|A|} \sum_{(i, j) \in A} \nabla \log f_{\theta}\left(y_{i j} \mid z_{i}^{*}, z_{j}^{*}\right), \\
& \nabla H_{i}(\theta):=\frac{1}{d_{i}} \sum_{j:(i, j) \in A} \nabla \log f_{\theta}\left(y_{i j} \mid z_{i}^{*}, z_{j}^{*}\right),
\end{aligned}
$$

and

$$
\nabla H_{B}(\theta):=\frac{1}{\sum_{i \in B} d_{i}} \sum_{(i, j) \in A, i \in B} \nabla \log f_{\theta}\left(y_{i j} \mid z_{i}^{*}, z_{j}^{*}\right)
$$

Therefore, we can compute

$$
\begin{align*}
\mathbb{E}_{i_{t}^{s+1}, z_{i}^{s+1}} v_{t}^{s+1}= & \frac{1}{2|A|} \sum_{i=1}^{n} \mathbb{E}_{z_{i} \sim p_{\theta_{t}^{s+1}}(z \mid \mathbf{y})} \nabla H_{i}\left(\theta_{t}^{s+1}, \mathbf{z}_{t}^{s+1}\right) \\
& -\frac{1}{2|A|} \sum_{i=1}^{n} \mathbb{E}_{z_{i} \sim p_{\theta_{t}^{s+1}}(z \mid \mathbf{y})} \nabla H_{i}\left(\tilde{\theta}^{s}, \mathbf{z}_{t}^{s+1}\right)+\nabla H_{B}\left(\tilde{\theta}^{s}, \mathbf{z}^{s}\right) \\
= & \nabla H\left(\theta_{t}^{s+1}\right)-\nabla H\left(\tilde{\theta}^{s}\right)+\nabla H_{B}\left(\tilde{\theta}^{s}\right)+O\left(\exp \left\{-c^{\prime} d_{\min }\right\}\right) \\
:= & H_{t}^{s+1} \tag{57}
\end{align*}
$$

according to Lemma 3. We next consider to compute the upper bound of $\mathbb{E}\left[\left\|v_{t}^{s+1}\right\|^{2}\right]$

$$
\begin{align*}
\mathbb{E}\left[\left\|v_{t}^{s+1}\right\|^{2}\right] & =\mathbb{E}\left[\left\|v_{t}^{s+1}-H_{t}^{s+1}+H_{t}^{s+1}\right\|^{2}\right] \\
& \leq 2 \mathbb{E}\left[\left\|H_{t}^{s+1}\right\|^{2}\right]+2 \mathbb{E}\left[\left\|\xi_{t}^{s+1}-\mathbb{E}\left[\xi_{t}^{s+1}\right]\right\|^{2}\right] \\
& \leq 2 \mathbb{E}\left[\left\|H_{t}^{s+1}\right\|^{2}\right]+2 \mathbb{E}\left[\left\|\xi_{t}^{s+1}\right\|^{2}\right] \\
& \leq 4 \mathbb{E}\left[\left\|\nabla \log L\left(\theta_{t}^{s+1}\right)\right\|^{2}\right]+4 \eta^{2}+2 \mathbb{E}\left[\left\|\xi_{t}^{s+1}\right\|^{2}\right] \\
& \leq 4 C \mathbb{E}\left[\left\|\nabla \log L\left(\theta_{t}^{s+1}\right)\right\|^{2}\right]+2 \mathbb{E}\left[\left\|\xi_{t}^{s+1}\right\|^{2}\right] \tag{58}
\end{align*}
$$

where $\xi_{t}^{s+1}=\frac{1}{d_{i}}\left\{\nabla H_{i_{t}}\left(\theta_{t}^{s+1}, z_{i_{t}}\right)-\nabla H_{i_{t}}\left(\tilde{\theta}^{s}, z_{i_{t}}\right)\right\}$ and $\eta=\nabla H_{t}^{s+1}-\nabla \log L\left(\theta_{t}^{s+1}\right)$ is the step error which is order of $\left(m \gamma+\frac{1}{\sqrt{n_{1} n}}\right)$. The last inequality above uses the fact that $\left\|\nabla \log L\left(\theta_{t}^{s+1}\right)\right\|=\Omega(\|\eta\|)$ before the termination of the
algorithm. Since, $\|\eta\|$ can be bounded by

$$
\begin{align*}
\|\eta\|= & \left\|\nabla H_{t}^{s+1}-\nabla \log L\left(\theta_{t}^{s+1}\right)\right\| \\
= & \left\|\nabla H\left(\theta_{t}^{s+1}\right)-\nabla H\left(\tilde{\theta}^{s}\right)+\nabla H_{B^{s}}\left(\tilde{\theta}^{s}\right)-\nabla \log L\left(\theta_{t}^{s+1}\right)\right\|+O\left(\exp \left\{-c^{\prime} d_{\min }\right\}\right) \\
\leq & \left\|\nabla H\left(\theta_{t}^{s+1}\right)-\nabla H\left(\tilde{\theta}^{s}\right)\right\|+\left\|\nabla H_{B^{s}}\left(\tilde{\theta}^{s}\right)-\nabla \log L\left(\tilde{\theta}^{s} \mid \mathbf{z}^{*}\right)\right\| \\
& +\left\|\nabla \log L\left(\tilde{\theta}^{s} \mid \mathbf{z}^{*}\right)-\nabla \log L\left(\theta_{t}^{s+1} \mid \mathbf{z}^{*}\right)\right\| \\
& +\left\|\nabla \log L\left(\theta_{t}^{s+1} \mid \mathbf{z}^{*}\right)-\nabla \log L\left(\theta_{t}^{s+1}\right)\right\|+O\left(\exp \left\{-c^{\prime} d_{\min }\right\}\right) \\
\leq & L\left\|\theta_{t}^{s+1}-\tilde{\theta}^{s}\right\|+O\left(\frac{1}{\sqrt{d_{\min }\left|B^{s}\right|}}\right) \\
& +L\left\|\theta_{t}^{s+1}-\tilde{\theta}^{s}\right\|+O\left(\exp \left\{-c^{\prime} d_{\min }\right\}\right)+O\left(\exp \left\{-c^{\prime} d_{\min }\right\}\right) \tag{59}\\
= & O\left(m \gamma+\frac{1}{\sqrt{n_{1} d_{\min }}}\right) \tag{60}
\end{align*}
$$

Here, (59) uses the fact that $\nabla H(\theta)$ and $\nabla \log L\left(\theta \mid \mathbf{z}^{*}\right)$ are L-Lipschitz continuous for some L and $\| \nabla \log H_{B^{s}}\left(\tilde{\theta}^{s} \mid \mathbf{z}^{*}\right)-$ $\nabla \log L\left(\tilde{\theta}^{s} \mid \mathbf{z}^{*}\right) \|$ is $O_{p}\left(1 / \sqrt{d_{\min }\left|B^{s}\right|}\right)$ by using concentration inequality 5.

As a result, we can obtain

$$
\begin{align*}
\left\langle\nabla \log L\left(\theta_{t}^{s+1}\right), H_{t}^{s+1}\right\rangle & \geq\left\langle\nabla \log L\left(\theta_{t}^{s+1}\right), \nabla \log L\left(\theta_{t}^{s+1}\right)\right\rangle-\left\langle\nabla \log L\left(\theta_{t}^{s+1}\right), \nabla \log L\left(\theta_{t}^{s+1}\right)-H_{t}^{s+1}\right\rangle \\
& \geq\left\|\nabla \log L\left(\theta_{t}^{s+1}\right)\right\|^{2}-\left\|\nabla \log L\left(\theta_{t}^{s+1}\right)\right\|\left\|\nabla \log L\left(\theta_{t}^{s+1}\right)-H_{t}^{s+1}\right\| \\
& \geq c\left\|\nabla \log L\left(\theta_{t}^{s+1}\right)\right\|^{2} \tag{61}
\end{align*}
$$

when $\left\|\nabla \log L\left(\theta_{t}^{s+1}\right)\right\|=\Omega\left(m \gamma+\frac{1}{\sqrt{n_{1} d_{\text {min }}}}\right)$ before the termination of the algorithm.
Under the network setting, we can similarly construct the Lyapunov function as

$$
R_{t}^{s+1}:=\mathbb{E}\left[F\left(\theta_{t}^{s+1}\right)+c_{t}\left\|\theta_{t}^{s+1}-\tilde{\theta}^{s}\right\|^{2}\right]
$$

with c_{t} 's satisfying recursive relationship $c_{t}=c_{t+1}\left(1+\gamma \beta+2 \gamma^{2} L^{2}\right)+\gamma^{2} L^{3}(t=0, \ldots, m-1)$ and $c_{m}=0$. By the same procedure, we then arrive at

$$
\begin{equation*}
\frac{1}{T} \sum_{s=0}^{T-1} \sum_{t=0}^{m-1} \mathbb{E}\left[\left\|\nabla F\left(\theta_{t}^{s+1}\right)\right\|^{2}\right] \leq C \frac{R_{0}^{0}-R_{m}^{T}}{\gamma m T} \leq C \frac{F\left(\theta^{0}\right)-F\left(\theta^{*}\right)}{\gamma m T} \tag{62}
\end{equation*}
$$

holds for some constant C. This leads to the desire result and concludes the proof of Theorem 5.
Finally, we set $n_{1}=n^{2\left(\alpha-\alpha_{1}\right)} / d_{\min }, m=n^{\alpha_{1}}, \gamma=n^{-\alpha}$. Then the total computational complexity will be

$$
\begin{equation*}
\left(m d_{\max }+n_{1} d_{\max }\right) \frac{C}{\gamma m \epsilon} \tag{63}
\end{equation*}
$$

Suppose $d_{\min }, d_{\max } \approx n^{\alpha_{0}}$, then we can choose $\alpha_{1}=\frac{2 \alpha-\alpha_{0}}{3}$. Then $n_{1}=n^{\left(2 \alpha-\alpha_{0}\right) / 3}$ and computational complexity becomes $n^{\alpha+\alpha_{0}} \frac{C}{\epsilon}$, where α should satisfy $\alpha<1$ and $2\left(\alpha-\alpha_{1}\right)>\alpha_{0}$ (i.e., $\alpha>\alpha_{0} / 2$).

References

Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczos, and Alexander J. Smola. Stochastic variance reduction for nonconvex optimization. In Proceedings of the 33rd International Conference on Machine Learning (ICML), pages 314-323, New York City, NY, 2016.

R Tyrrell Rockafellar. Convex Analysis, volume 36. Princeton university press, 1970.
Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization, 24(4):2057-2075, 2014.

