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Abstract

Traditional supervised learning aims to train a
classifier in the closed-set world, where training
and test samples share the same label space. In
this paper, we target a more challenging and re-
alistic setting: open-set learning (OSL), where
there exist test samples from the classes that are
unseen during training. Although researchers
have designed many methods from the algorith-
mic perspectives, there are few methods that pro-
vide generalization guarantees on their ability to
achieve consistent performance on different train-
ing samples drawn from the same distribution.
Motivated by the transfer learning and probably
approximate correct (PAC) theory, we make a
bold attempt to study OSL by proving its general-
ization error−given training samples with size
n, the estimation error will get close to order
Op(1/

√
n). This is the first study to provide

a generalization bound for OSL, which we do
by theoretically investigating the risk of the tar-
get classifier on unknown classes. According to
our theory, a novel algorithm, called auxiliary
open-set risk (AOSR) is proposed to address the
OSL problem. Experiments verify the efficacy of
AOSR. The code is available at github.com/
Anjin-Liu/Openset_Learning_AOSR.

1. Introduction
Supervised learning has achieved dramatic successes in
many applications such as object detection (Simonyan &
Zisserman, 2015), speech recognition (Graves & Jaitly,
2014) and natural language processing (Collobert & Weston,
2008). These successes are partly rooted in the closed-set
assumption that training and test samples share a same la-
bel space. Under this assumption, the standard supervised
learning is also regarded as closed-set learning (CSL) (Geng
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et al., 2018; Yang et al., 2020).

However, the closed-set assumption is not realistic during
the testing phase (i.e., there are no labels in the samples)
since it is not known whether the classes of test samples
are from the label space of training samples. Test samples
may come from some classes (unknown classes) that are not
necessarily seen during training. These unknown classes
can emerge unexpectedly and drastically weaken the per-
formance of existing closed-set algorithms (de O. Cardoso
et al., 2017; Dhamija et al., 2018; Perera et al., 2020).

To solve supervised learning without closed-set assumption,
Scheirer et al. (2013) proposed a new problem setting, open-
set learning (OSL), in which the test samples can come from
any classes, even unknown classes. An open-set classifier
should classify samples from known classes into correct
known classes while recognizing samples from unknown
classes into unknown classes.

Remarkable advances have been achieved in open-set learn-
ing. The key challenge of OSL algorithms is to recognize
the unknown classes accurately. To address this challenge,
different strategies have been proposed such as open-space
risk (Scheirer et al., 2013) and extreme value theory (Jain
et al., 2014; Rudd et al., 2018). Further, to adapt deep net-
works support to OSL, Bendale & Boult (2016), Ge et al.
(2017) proposed OpenMax and G-OpenMax, respectively.

While many OSL algorithms can be roughly interpreted as
minimizing the open-space risk or using the extreme value
theory, several disconnections still form non-negligible gaps
between the theories and algorithms (Boult et al., 2019;
Geng et al., 2018). Very little theoretical groundwork has
been undertaken to reveal the generalization ability of OSL
from the perspective of learning theory.

This work aims to bridge the gap between the theory and al-
gorithm for OSL from the perspective of learning theory. In
particular, our theory answers an important question: under
some assumptions, given training samples with size n, then
there exists an OSL algorithm such that the estimation error
is close to Op(1/

√
n). This result reveals OSL problem can

achieve an order of estimation error that is the same as CSL
(Shalev-Shwartz & Ben-David, 2014).

Since the test samples contain unknown classes, the distri-
bution of test samples is intrinsically different from that of
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training samples. Based on this fact, we aim to establish
the OSL theory from transfer learning (Dong et al., 2019;
2020a;b; 2021; Liu et al., 2019; Lu et al., 2015; Luo et al.,
2020a; Niu et al., 2020; Pan & Yang, 2010; Wang et al.,
2020), which learns knowledge for a given domain from a
different, but relative domain. Using the transfer learning
theory, we focus on constructing a suitable auxiliary domain,
which contains the information of unknown classes. The
construction of auxiliary domain depends on covariate shift
(Santurkar et al., 2018). Transferring information from the
auxiliary domain, we construct the generalization bound
for OSL by using the transfer learning bound developed by
Ben-David et al. (2006), Mansour et al. (2009), Fang et al.
(2020b), Zhong et al. (2020; 2021), Luo et al. (2020b).

Guided by our theory, we then devise an algorithm for
OSL to bring the proposed OSL theory into reality. The
novel algorithm auxiliary open-set risk (AOSR) is a neu-
ral network-based algorithm. AOSR mainly utilizes the
instance-weighting strategy to align training samples and
auxiliary samples generated by an auxiliary domain. Then,
minimizing the auxiliary risk developed by our theory,
AOSR can learn how to recognize unknown classes.

The contributions of this paper are summarized as follows.

•We provide the theoretical analysis for open-set learning
based on transfer learning and PAC theory. This is the first
work to investigate the generalization error bound for open-
set learning.

• Our theory answers an important question: under some
assumptions, there exists an OSL algorithm such that the
order of the estimation error is close to Op(1/

√
n), if given

training samples with size n.

•We conduct experiments on toy and benchmark datasets.
Experiments support our theoretical results and show that
our theoretical guided algorithm AOSR can achieve compet-
itive performance compared with several popular baselines.

2. Related Works
Open-Set Learning Theory. One of the pioneering theo-
retical works in this field was conducted by Scheirer et al.
(2013; 2014). They proposed the open-space risk, which
means that when a sample is far from the training samples,
there is an increased risk that the sample is from unknown
classes. By minimizing the open-space risk, samples from
unknown classes can be recognized. Jain et al. (2014), Rudd
et al. (2018) consider the extreme value theory to solve the
OSL problem. Extreme value theory is a branch of statistics
analyzing the distribution of samples of abnormally high or
low values. Liu et al. (2018) first proposed the PAC guaran-
tees for open-set detection. Unfortunately, the test samples
are required to be used in the training phase. Fang et al.

(2020b) considered the open-set domain adaptation (OSDA)
problem (Busto et al., 2020; Luo et al., 2020b) and proposed
the first estimation for the generalization error of OSDA by
constructing a special term, open-set difference. However,
similar to Liu et al. (2018), test samples are needed during
the training phase.

Open-Set Algorithm. We can roughly separate OSL al-
gorithms into two different categories: shadow algorithms
(e.g., support vector machine (SVM)) and deep learning-
based algorithms. In shadow algorithms, Scheirer et al.
(2013; 2014) proposed the OSL algorithms based on SVM.
Jain et al. (2014), Rudd et al. (2018) proposed OSL algo-
rithms based on extreme value theory. Recently, deep-based
algorithms have been developed dramatically. OpenMax as
the first deep-based algorithm was proposed by Bendale &
Boult (2016), to replace SoftMax in deep networks. Later,
Ge et al. (2017) combined the generative adversarial net-
works (GAN) with OpenMax and proposed G-OpenMax.
Counterfactual image generation proposed by Neal et al.
(2018) is the first OSL algorithm to uses the data augmenta-
tion technique by generating the unknown classes so that the
decision boundaries between unknown and known classes
can be figured out. Oza & Patel (2019) used class condi-
tioned auto-encoders to solve OSL problem, and modeled
reconstruction errors using the extreme value theory to find
the threshold for identifying known/unknown classes.

3. Theoretical Analysis of OSL
In this section, we introduce the basic notations used in
this paper and then provide theoretical analysis for open-set
learning. All proofs can be found in Appendices B-E.

3.1. Problem Setting and Concepts

Here we introduce the definition of open-set learning (OSL).

Definition 1 (Domain). Given a feature (input) space X ⊂
Rd and a label (output) space Y , a domain is a joint distri-
bution PX,Y , where random variables X ∈ X , Y ∈ X .

Known classes are a subset of Y . We define the label space
of known classes as Yk. Then, the unknown classes are from
the space Y/ Yk. The open-set learning problem is defined
as follows.

Problem 1 (Open-Set Learning). Given independent and
identically distributed (i.i.d.) samples S = {(xi,yi)}ni=1

drawn from PX,Y |Y ∈Yk
. The aim of open-set learning is to

train a classifier f using S such that f can classify 1) the
sample from known classes into correct known classes; 2)
the sample from unknown classes into unknown classes.

Note that it is not necessary to classify unknown samples
into correct unknown classes. For the sake of simplicity, we
set all unknown samples are allocated to one big unknown
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class. Hence, without loss of generality, we assume that
Yk = {yc}Cc=1, Y = {yc}C+1

c=1 , where the label yc ∈ RC+1

is a one-hot vector, whose c-th coordinate is 1 and other
coordinates are 0. Label yC+1 represents unknown classes.

Given a loss function ` : RC+1 × RC+1 → R≥0 and any
scoring (hypothesis) function h from {h : X → RC+1},
the partial risks for known classes and unknown classes are

RP,k(h) :=

∫
X×Yk

`(h(x),y)dPX,Y |Y ∈Yk
(x,y),

RP,u(h) :=

∫
X
`(h(x),yC+1)dPX|Y=yC+1

(x).

(1)

Then, the α-risk for PX,Y is

RαP (h) := (1− α)RP,k(h) + αRP,u(h), (2)

where α is the weight estimating the importance of unknown
classes. When α = P (Y = yC+1), it is easy to check that

RαP (h) = E(x,y)∼PX,Y
`(h(x),y).

Similarly, given a different joint distribution QX,Y , we can
define RQ,k(h), RQ,u(h) and RαQ(h).

Based on α-risk, we define almost agnostic probably ap-
proximate correct (PAC) for OSL.

Definition 2 (Almost Agnostic PAC Learnability). A hy-
pothesis class H ⊂ {h : X → RC+1} is almost agnostic
PAC learnable for open-set learning, if given any ε0 > 0,
there exists an OSL algorithm Aε0 such that for given any
joint distribution PX,Y , there exists mH : (0, 1)2 → N with
the following property: for any 0 < ε, δ < 1, when running
the algorithm Aε0 on n > mH(ε, δ) i.i.d. samples drawn
from PX,Y |Y ∈Yk

, the algorithm Aε0 returns a hypothesis ĥ
such that, with probability of at least 1− δ > 0,

RαP (ĥ) ≤ min
h∈H

RαP (h) + ε+ ε0.

Theorems 5 and 6 imply there exists almost agnostic PAC
learnableH for open-set learning under mild assumptions.

3.2. Transfer Between Domains

Since there are no samples regarding the unknown classes,
we cannot directly analyze the partial risk for unknown
classes only using samples S from known classes. To an-
alyze the partial risk for unknown classes, we introduce
an auxiliary domain QX,Y , which is used to transfer the
information from unknown classes.

Definition 3 (Auxiliary Domain). A domain QX,Y defined
over X × Y is called the auxiliary domain for PX,Y , if
QX|Y ∈Yk

= PX|Y ∈Yk
, QY |X = PY |X and PX � QX .

It is clear that PX,Y and QX,Y are same if we restrict both
of them in the support set of known classes.

Remark 1. Since we do not have any information about
samples from unknown classes in the training set, it is
unknown whether QX|Y=yC+1

= PX|Y=yC+1
. In Sec-

tion 3.3, we will introduce how to construct QX,Y such
that QX|Y=yC+1

is a uniform distribution. Namely, any
sample drawn from QX|Y=yC+1

has the same probability.

Then, it is interesting to know the discrepancy between
RαP (h) and RαQ(h) given the same hypothesis h. Before
doing this, the disparity discrepancy between distributions
need to be introduced.

Definition 4 (Disparity Discrepancy (Zhang et al., 2019)).
Given distributions PX , QX over space X , a hypothesis
spaceH ⊂ {h : X → RC+1} and any hypothesis function
h ∈ H, then disparity discrepancy d`h,H(PX , QX) is

sup
h′∈H

∣∣∣ ∫
X
`(h(x),h′(x))d(PX −QX)(x)

∣∣∣. (3)

Using the disparity discrepancy, we can show that

Theorem 1. Given a loss ` satisfying the triangle inequality,
and a hypothesis space H ⊂ {h : X → RC+1}, if QX,Y
is the auxiliary domain for PX,Y , then for any h ∈ H, the
difference |RαP (h)−RαQ(h)| is bounded by

αd`h,H(PX|Y=yC+1
, QX|Y=yC+1

) + αΛ,

where α = Q(Y = yC+1), d`h,H is the disparity discrep-
ancy defined in Definition 4,

Λ := min
h′∈H

(
RP,u(h′) +RQ,u(h′)

)
(4)

is the combined risk for the unknown classes, RαP (h) is the
α-risk for PX,Y and RαQ(h) is the α-risk for QX,Y .

Theorem 1 implies there exists a gap between RαP (h) and
RαQ(h). The gap is related to domain discrepancy for un-
known classes between PX,Y and QX,Y . To further elimi-
nate the gap between RαP (h) and RαQ(h), additional condi-
tions about the hypothesis spaceH are indispensable.

Assumption 1 (Realization for Unknown Classes). A hy-
pothesis H ⊂ {h : X → Y} is realization for unknown
classes, if there exist a hypothesis function h̃ ∈ H and a dis-
tribution P̃ defined over X with supp P̃ = X satisfying for
any h ∈ H, there exists h′ ∈ H such that h′(x) = yC+1,
if h̃(x) = yC+1, otherwise, h′(x) = h(x); and∫

X×Y
`(φ ◦ h̃(x), φ(y))dPY |X(y|x)dP̃ (x) = 0,

where φ is a function defined over Y and defined as follows
φ(y) = yC+1, if y = yC+1; otherwise, φ(y) = y1.

Remark 2. Assumption 1 implies that the hypothesis space
H is complexity enough so that the unknown classes can
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Unknown classes                      Unknown classes

Figure 1. The left figure shows the auxiliary distribution U and marginal distribution PX (red curve: distribution PX ; blue lines:
distribution U introduced in Definition 5; grey regions: the regions for unknown classes). The right figure shows the marginal distribution
Q0,β
U of ideal auxiliary domain generated by U , PX|Y ∈Yk

and L0,β (blue lines and curve: Q0,β
U defined in Definition 5).

be classified perfectly by many hypothesis functions. The
assumption can be regarded as the open-set version of re-
alization assumption (Mohri et al., 2012; Shalev-Shwartz
& Ben-David, 2014). Realization assumption is a basic
concept in learning theory.

Theorem 2. Given a loss ` satisfying `(y,y′) = 0 iff
y = y′, and a hypothesis space H ⊂ {h : X → RC+1}
satisfying Assumption 1, ifQX,Y is the auxiliary domain for
PX,Y and assume PX � QX � P̃ , where P̃ is the distri-
bution introduced in Assumption 1, then for any 0 < α < 1,

min
h∈H

RαQ(h) = min
h∈H

RαP (h),

arg min
h∈H

RαQ(h) ⊂ arg min
h∈H

RαP (h).

3.3. Construction of Ideal Auxiliary Domain

As mentioned above, the auxiliary domain plays an impor-
tant role to address the open-set learning problem from a
transfer learning perspective. Thus, in this subsection, we
first show how to construct an ideal auxiliary domain and
then demonstrate how to estimate the ideal auxiliary domain
via finite samples. Given an auxiliary distribution U such
that PX|Y ∈Yk

� U , we denote r(x) as the density ratio
between PX|Y ∈Yk

and U , i.e., for any U -measurable set A,

PX|Y ∈Yk
(A) =

∫
A

r(x)dU(x),

and denote Q0,β
U as the marginal distribution defined over

X , i.e., for any U -measurable set A,

Q0,β
U (A) := γ

∫
A

L0,β(r(x))dU(x), here (5)

γ =
1

1 + βU(r = 0)
, (6)

L0,β(x) =

{
x+ β, x ≤ 0,

x, x > 0,

and β > 0 is a parameter to tune the density of Q0,β
U for un-

known classes. Then we define the ideal auxiliary domain.

Definition 5 (Ideal Auxiliary Domain (IAD)). Given the
distribution PX,Y defined in Problem 1 and an auxiliary
distribution U defined over X such that PX|Y ∈Yk

� U ,
then the ideal auxiliary domain regarding to PX,Y is

Q0,β
U · PY |X ,

where Q0,β
U is defined in Eq. (5).

In Definition 5, the probability value of distribution Q0,β
U

in space X/ supp r is a constant β. In detail, if PX,Y
has no overlap between known and unknown classes, any
sample from QX|Y=yC+1

shares same probability (see Fig-
ure 1). In addition, an auxiliary distribution U satisfying
PX|Y ∈Yk

� U is needed. The samples drawn from U can
be generated by a gaussian distribution or uniform distribu-
tion with suitable support set.

Given finite samples T := {x̃j}mj=1 drawn (i.i.d.) from
a given distribution U as introduced in Definition 5. We
introduce how to use T and S to construct an approximate
form of Q0,β

U introduced in Definition 5.

To simple, we provide a mild assumption as follows.

Assumption 2. Distributions PX|Y ∈Yk
and U introduced

in Definition 5 are continuous distributions with density
functions p(x) and q(x), respectively.

Remark 3. The assumption that PX|Y ∈Yk
and U are con-

tinuous can be replaced by a weaker assumption: PX|Y ∈Yk
,

U � µ, where µ is a measure defined over X . With the
weaker assumption, all theorems still hold.

Note that the density ratio r = p/q required in Q0,β
U is un-

known. To compute the density ratio r using S and T , the
density ratio estimation methods are indispensable. Con-
sidering the property of statistical convergence, we use ker-
nelized variant of unconstrained least-squares importance
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fitting (KuLSIF) (Kanamori et al., 2012) to estimate the
density ratio in the theoretical part: given RKHS spaceHK ,

min
w∈HK

∑
x∈T w

2(x)

m
− 2

∑
(x,y)∈S w(x)

n
+ λ‖w‖2k, (7)

where λ is the regularization parameter. Then, we assume
ŵ is the solution of Eq. (7).

After instance re-weighting, we regard the following mea-
sure

Q̂τ,βT :=
γ

m

∑
x∈T

Lτ,β(ŵ(x))δx, (8)

as the approximation of Q0,β
U , where γ is defined in Eq. (6),

Lτ,β(x) =


x+ β, x ≤ τ ;

x, 2τ ≤ x;(
1− β

τ

)
x+ 2β, τ < x < 2τ,

and τ > 0 is the threshold to select whether a sample x ∈ T
is from unknown classes or known classes.

3.4. Empirical Estimation for IAD Risk

In this subsection, we first set the ideal auxiliary domain
Q0,β
U ·PY |X as QX,Y , then we analyze the IAD risk RαQ(h)

from an approximate view, where α = 1− 1/
(
1 + βU(r =

0)
)
. In detail, the IAD risk RαQ(h) can be written as follows

RαQ(h) =

∫
X
`(h(x),y)dPY |X(y|x)dQ0,β

U (x). (9)

Then, we use Q̂τ,βT (see Eq. (8)) to construct auxiliary risk
to approximate the IAD risk.

Definition 6 (Auxiliary Risk). Given samples S with size n
drawn from PX,Y |Y ∈Yk

and T with size m drawn from U ,
i.i.d., then the auxiliary risk for a hypothesis function h is

R̂τ,βS,T (h) := R̂S(h) + ∆τ,β
S,T (h), (10)

where

R̂S(h) :=
1

n

∑
(x,y)∈S

`(h(x),y),

∆τ,β
S,T (h) := max{R̂τ,βT (h,yC+1)− R̂S(h,yC+1), 0},

R̂τ,βT (h,yK+1) :=
1

γ

∫
X
`(h(x),yC+1)dQ̂τ,βT (x)

=
1

m

∑
x∈T

Lτ,β(ŵ(x))`(h(x),yC+1),

R̂S(h,yC+1) :=
1

n

∑
(x,y)∈S

`(h(x),yC+1),

here Q̂τ,βT is defined in Eq. (8) and γ is defined in Eq. (6).

Theorem 3 implies that (1− α)R̂τ,βS,T (h) can approximate
RαQ(h) uniformly.

Theorem 3. Assume assumption 2 holds, the feature space
X is compact and the hypothesis space H ⊂ {h : X →
RC+1} has finite Natarajan dimension (Shalev-Shwartz &
Ben-David, 2014). Let the RKHSHK be the Hilbert space
with gaussian kernel. Suppose that loss function is bounded
by c, the density r ∈ HK and set the regularization parame-
ter λ = λn,m in KuLSIF (see Eq. (7)) such that

lim
n,m→0

λn,m = 0, λ−1n,m = O(min{n,m}1−δ),

where 0 < δ < 1 is any constant, then for any 0 ≤ α < 1,

sup
h∈H
|(1− α)R̂τ,βS,T (h)−RαQ(h)|

≤c
(

max{1, β
τ
}+ β

)
Op(λ

1
2
n,m) + γcβU(0 < r ≤ 2τ),

where Op denotes the probabilistic order, γ = 1− α, β =
α

γU(r=0) , R̂τ,βS,T (h) is defined in Eq. (10), and RαQ(h) is the
IAD risk defined in Eq. (9).

Note that U(0 < r ≤ 2τ) → 0, if τ → 0, and Theorem
3 has indicated that if we omit the term (1 − α)cβU(0 <

p/q ≤ 2τ) and setm ≥ n, the gap between (1−α)R̂τ,βS,T (h)

and RαQ(h) is close to Op(1/
√
n) by choosing a small δ.

3.5. Main Theoretical Results

In this subsection, we analyze the relationship between
RαP (h) and R̂τ,βS,T (h) based on Theorems 1, 2 and 3.

Theorem 4 (Uniform Bound Based on Transfer Learning).
Given the same conditions and assumptions in Theorems 1
and 3, then for any 0 ≤ α < 1, h ∈ H,

|(1− α)R̂τ,βS,T (h)−RαP (h)|

≤c
(

max{1, β
τ
}+ β

)
Op(λ

1
2
n,m) + γcβU(0 < r ≤ 2τ)

+αd`h,H(PX|Y=yC+1
, QX|Y=yC+1

) + αΛ,

where λn,m is defined in Theorem 3, γ = 1 − α, β =
α

γU(r=0) , R̂τ,βS,T (h) is defined in Eq. (10), d`h,H is the dispar-
ity discrepancy defined in Definition 4, Λ is the combined
risk defined in Eq. (4) and Op is the probabilistic order
(independent of c, β, τ and α).

Theorem 4 indicates that the gap between (1− α)R̂τ,βS,T (h)
and RαP (h) is controlled by four special terms. The com-
bined risk Λ and domain discrepancy for unknown classes
can be regarded as constants. The other two terms could be
small enough, if n,m→ +∞ and τ is a small value.

Theorem 5 (Estimation Error for OSL). Given the same
conditions and assumptions in Theorems 2 and 3, for any
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0 ≤ α < 1, if we assume ĥ ∈ arg minh∈H R̂
τ,β
S,T (h), then

|RαP (ĥ)−minh∈HR
α
P (h)| has an upper bound

c
(

max{1, β
τ
}+ β

)
Op(λ

1
2
n,m) + 4γcβU(0 < r ≤ 2τ),

where λn,m is defined in Theorem 3, γ = 1 − α, β =
α

γU(r=0) , R̂τ,βS,T (h) is defined in Eq. (10) and Op is the
probabilistic order (independent of c, β, τ and α).

If we select a small τ to make U(0 < r ≤ 2τ) small enough
and set m ≥ n, then under some assumptions, the following
optimization problem

min
h∈H

R̂τ,βS,T (h) (11)

is almost classifier-consistent 1 with estimation error close to
Op(1/

√
n). Additionally, the weight estimation in Theorem

5 is crucial. To weaken the effect of weight estimation in
area supp PX|Y ∈Yk

, we introduce a proxy for R̂τ,βS,T (h).

Definition 7 (Proxy of Auxiliary Risk). Given samples
S with size n drawn from PX,Y |Y ∈Yk

and T with size m
drawn from U , i.i.d., then the auxiliary risk for a hypothesis
function h is

R̃τ,βS,T (h) := R̂S(h) +
αγ′

1− α
R̂τ,βS,T,u(h), (12)

where γ′ = 1/U(r = 0), R̂S(h) is defined in Definition 6,

R̂τ,βS,T,u(h) :=
1

m

∑
x∈T

L−τ,β(ŵ(x))`(h(x),yC+1),

here

L−τ,β(x) =


x+ β, x ≤ τ ;

0, 2τ ≤ x;

−τ + β

τ
x+ 2τ + 2β, τ < x < 2τ.

Then, a result similar to Theorem 5 for auxiliary risk R̃τ,βS,T
is given as follows.

Theorem 6 (Estimation Error for OSL). Given the same
conditions and assumptions in Theorem 5, for any 0 ≤ α <
1, if we assume h̃ ∈ arg minh∈H R̃

τ,β
S,T (h), then |RαP (h̃)−

minh∈HR
α
P (h)| has an upper bound

cγ′
(
1 + τ +

β

τ
+ β

)
Op(λ

1
2
n,m) + 4cγ′αβU(0 < r ≤ 2τ),

where λn,m, β are introduced in Theorem 5, γ′ and R̃τ,βS,T (h)
are defined in Definition 7, and Op is the probabilistic order
(independent of c, β, τ, γ′ and α).

1The learned classifier by the algorithm is infinite-samples
consistent to argminh∈HRαP (h).

4. A Principle Guided OSL Algorithm
Inspired by Theorem 6, we focus on the following problem

min
Θ

(
R̂S(hΘ) + µR̂τ,βS,T,u(hΘ)

)
, (13)

where µ is a positive parameter, R̂τ,βS,T,u(h) is defined in Eq.
(12), hΘ is a hypothesis function based on a neural network,
and Θ is parameters of the neural network. To optimize hΘ

to solve the minimization problem defined in Eq. (13), we
have the following five steps.

Step 1 (Feature Encoding). Train the samples S to get a
closed-set classifier hΘ0 , and designate the output of second
to the last layer (without softmax) l of hΘ0

as the encoded
feature vector, i.e., Xencoder = l(X). The new encoded
feature space is denoted as Xencoder.

Step 2 (Initialize the Auxiliary Domain). Randomly gen-
erate samples T from space Xencoder. By default, we gener-
ate T by uniform distribution and set the size m is 3n. We
update the samples S = {(l(x),y) : (x,y) ∈ S}.

Step 3 (Construct the Auxiliary Domain). Estimate the
weights ŵ with samples S and T as the input. The higher
the weight is, the more likely a generated sample belongs
to the known classes. The parameters selection details are
shown as follows.

Weight estimation algorithm: In the theoretical part, KuLSIF
is selected to estimate weights. Kernel mean matching
(KMM) (Gretton et al., 2012) is also an alternative solution
(Cortes et al., 2008). However, in practice, KuLSIF and
KMM have time complexity O((m+n)2) (Kanamori et al.,
2012), which is not suitable for large datasets. The kernel
bandwidth selection also impacts the overall performance
(Liu et al., 2020). Thus, we recommend using the outlier
sample score (with range [0, 1]) given by isolation forest
(iForest) (Liu et al., 2008) as the sample weights, which has
time complexity O((n+m) log(n+m)). Close to 1 means
known classes while close to 0 means unknown classes.

The τ is a threshold to split the generated samples T into
known and unknown samples. Considering we are using
iForest, based on the predicted sample score [s1, ..., sm]
(descending order), we set τ = s[t∗m], where t ∈ (0, 1)
is the proportion that the generated samples selected as
unknown samples. We set t = 10% as default.

The β and µ control jointly the importance of correctly clas-
sified unknown samples. We set µ as a dynamical parameter
depending on β: µ = nβ

n′+0.0001 , where n′ is number of
samples in training samples actually predicted as unknown.
For example, if β = 0.05, n is 1000, there are 10 samples
in training samples are predicted as unknown, then µ ≈ 5.

Step 4 (SoftmaxC+1). Initialize an open-set learning neu-
ral network with samples S and T as the input and C + 1
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Softmax (Qin et al., 2019) nodes as the output.

Step 5 (Open-set Learning). Train the SoftmaxC+1 neu-
ral network with the cost function defined in Eq. (13) with
both S and T .

5. Experiments and Results
First, we implement AOSR on toy dataset with different
sample size to reveal the relationship between sample size
n and error

(
O(1/

√
n)
)
. Then, we evaluate the efficacy of

AOSR on benchmark datasets.

5.1. Datasets

In this paper, we verify the efficacy of algorithm AOSR on
double-moon dataset and several real world datasets:

• Double-moon dataset (toy). The double-moon dataset
consists of two different clusters. Samples from different
clusters are regarded as known samples with different label.
Samples from other region are regarded as unknown samples
drawn from uniform distribution, i.i.d. The ratio between
the sizes of known and unknown samples is 1.

• Following the set up in Yoshihashi et al. (2019), we use
MNIST (LeCun & Cortes, 2010) as the training samples
and use Omniglot (Ager, 2008), MNIST-Noise, and Noise
(Liu et al., 2021) datasets as unknown classes. Omniglot
contains alphabet characters. Noise is synthesized by sam-
pling each pixel value from a uniform distribution on [0, 1].
MNIST-Noise is synthesized by adding noise on MNIST
test samples. Each dataset has 10, 000 test samples.

• Following Yoshihashi et al. (2019), we use CIFAR-10
(Krizhevsky & Hinton, 2009) as training samples and col-
lect unknown samples from ImageNet and LSUN. We re-
sized/cropped them so that they would be the same size
as the known samples. Hence, we generate four datasets
ImageNet-crop, ImageNet-resize, LSUN-crop and LSUN-
resize as unknown classes. Each dataset contains 10, 000
test samples.

• Following Yoshihashi et al. (2019), Chen et al. (2021),
Sun et al. (2020), we use MNIST (LeCun & Cortes, 2010),
SVHN (Netzer et al., 2011) and CIFAR-10 (Krizhevsky &
Hinton, 2009) to construct different OSL tasks. For MNIST,
SVHN and CIFAR-10, each dataset is randomly divided into
6 known classes and 4 unknown classes. In addition, we
construct CIFAR+10 and CIFAR+50 by randomly selection
6 known classes and 10 or 50 unknown classes from CIFAR-
100 (Krizhevsky & Hinton, 2009).

5.2. Open-set Learning Demonstration

Here we break down the entire learning process and demon-
strate the inter-media process of each step on the toy dataset.

This experiment is aiming to provide an visualization aid on
understanding the open-set learning process.

To start with, we plot the double-moon dataset in Figure
2 (a). The objective of closed-set learning is to build a
classifier that can split the samples with different labels. To
achieve this goal, we build a simple neural network with
sparse categorical cross-entropy as the loss function.

The closed-set learning result is shown in Figure 2 (b). In
this case, the closed-set classifier splits the samples with
different labels well. However, the closed-set classifier does
not consider the boundary of support set for training domain,
that is, any new samples that does not located in the support
set, the closed-set classifier still gives a known label.

Figure 2 (c) is the open-set learning result. To recognize the
unknown samples, the open-set classifier should delineate
a boundary between the known and unknown classes. To
achieve this goal, we use SoftmaxC+1 as the final output
and Eq. (13) as the cost function. The AOSR will push the
neural network to give label yC+1 on unknown samples.

5.3. Experimental Setup

• AOSR has several hyper-parameters: β, t, µ and m.
For all tasks, we set m = 3n, t = 10% as default. µ
is a dynamic parameter depending on β. β is selected
from 0.01 to 2.5. Details on the selection of parameters
are available at github.com/Anjin-Liu/Openset_
Learning_AOSR.

• For datasets MNIST, Omnilot, MNIST-Noise, Noise, we
use the same setting of Yoshihashi et al. (2019) and Sun
et al. (2020) to extract the features. Same as Yoshihashi et al.
(2019), DHRNet-92 is used as the backbone for CIFAR-10,
ImageNet and LSUN datasets. For different tasks MNIST,
SVHN, CIFAR-10, CIFAR+10 and CIFAR+50, the back-
bone is the re-designed VGGNet used by Yoshihashi et al.
(2019) and Sun et al. (2020).

•We select baseline algorithms as follows: SoftMax, Open-
Max (Bendale & Boult, 2016), Counterfactual (Neal et al.,
2018), CROSR (Yoshihashi et al., 2019), C2AE (Oza &
Patel, 2019), and CGDL (Sun et al., 2020).

5.4. Evaluation

Following Yoshihashi et al. (2019), the macro-average F1
scores are used to evaluate OSL. The area under the receiver
operating characteristic (AUROC) (Neal et al., 2018) is
also frequently used (Chen et al., 2020; Neal et al., 2018).
Note that AUROC used in (Chen et al., 2020; Neal et al.,
2018) is suitable for global threshold-based OSL algorithms
that recognize unknown samples by a fix threshold (Neal
et al., 2018). However, AOSR recognizes unknown samples
based on the score of hypothesis function, thus, AOSR uses

https://github.com/Anjin-Liu/Openset_Learning_AOSR
https://github.com/Anjin-Liu/Openset_Learning_AOSR


Learning Bounds for Open-Set Learning

(a) Double-moon dataset (b) Closed-set classification (c) Open-set classification

(d) Error and Sample Size (e) Parameter Analysis for β (f) Parameter Analysis for t

Figure 2. (a) is the training samples for double-moon dataset. (b) is the decision regions under closed-set learning setting for double-moon
dataset. (c) is the decision regions under open-set learning setting for double-moon dataset. (d) is the relationship between error and
sample size. (e) is the parameter analysis for β. (f) is the parameter analysis for t.

Table 1. The performance on dataset CIFAR-10 is evaluated by macro-averaged F1 scores in 11 classes (10 known classes and 1 unknown
class). We report the experimental results reproduced by Yoshihashi et al. (2019). A larger score is better.

Algorithm ImageNet-crop ImageNet-resize LSUN-crop LSUN-resize

Softmax 0.639 0.653 0.642 0.647
Openmax (Bendale & Boult, 2016) 0.660 0.684 0.657 0.668
Counterfactual (Neal et al., 2018) 0.636 0.635 0.650 0.648
CROSR (Yoshihashi et al., 2019) 0.721 0.735 0.720 0.749
C2AE (Oza & Patel, 2019) 0.837 0.826 0.783 0.801
CGDL (Sun et al., 2020) 0.840 0.832 0.806 0.812

Ours (AOSR) 0.798 0.795 0.839 0.838

Table 2. The performance on dataset MNIST is evaluated by macro-
averaged F1 scores in 11 classes.

Algorithm Omniglot MNIST-Noise Noise

Softmax 0.595 0.801 0.829
Openmax 0.780 0.816 0.826
CROSR 0.793 0.827 0.826
CGDL 0.850 0.887 0.859

Ours (AOSR) 0.825 0.953 0.953

different thresholds for different samples. This implies that
AUROC used in (Chen et al., 2020; Neal et al., 2018) may
be not suitable for our algorithm. In this paper, we use
macro-average F1 scores to evaluate our algorithm.

5.5. Experimental Evaluation and Result Analysis

Experiment results on double-moon dataset are summarized
in Figure 2 (d). We implement double-moon dataset with
varying size n 2. We also generate n test samples. For
a different sample size, we run 100 times and report the
mean accuracy and standard error in Figure 2 (d). Based
on Figure 2 (d), the accuracy increases as the increase of
training sample size n increases. When n → 15, 000, the
accuracy approximates at 100%. In particular, the green
curve 0.5/

√
n and the yellow curve 8/

√
n jointly control the

curve of accuracy, implying the error of AOSR is controlled
by O(1/

√
n).

Experiment results on real datasets are summarized in Tables
1, 2 and 3. For all tasks, we run AOSR 5 times and report the

2select n from [1, 5, 9, 15, 20, 30, 50, 70, 90, 120, 150] ∗ 100
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Table 3. The performance on MNIST, SVHN, CIFAR-10, CIFAR+10 and CIFAR+50 are evaluated by macro-averaged F1 scores. We
report the experimental results reported by Sun et al. (2020).

Algorithm MNIST SVHN CIFAR-10 CIFAR+10 CIFAR+50

Softmax 0.768 0.725 0.600 0.701 0.637
Openmax (Bendale & Boult, 2016) 0.798 0.737 0.623 0.731 0.676
CROSR (Yoshihashi et al., 2019) 0.803 0.753 0.668 0.769 0.684
GDFR (Perera et al., 2020) 0.821 0.716 0.700 0.776 0.683
CGDL (Sun et al., 2020) 0.837 0.776 0.655 0.760 0.695

Ours (AOSR) 0.850 0.842 0.705 0.773 0.706

Table 4. Ablation study on dataset MNIST, Omnilot, MNIST-Noise and Noise.

Tasks Only iForest β=0 µ=0 w/KMM w/KuLSIF AOSR

Avg 0.680 0.677 0.677 0.907 0.855 0.910

mean results by using F1 score (Powers, 2020). In general,
AOSR shows the promising performance when compared to
baseline algorithms. The effectiveness of AOSR indicates
that our theory is effective and practical.

Parameter analysis for β and t is given in Figure 2 (e), (f).
We run AOSR with varying values of β, t on MNIST tasks.
From Figure 2 (e), we observe that 1) when β increases from
0.01 to 0.64, the F1 scores for Noise and MNIST-Noise
decrease; 2) as increasing β from 0.01 to 0.16, the F1 score
for Omniglot increases. When β > 1.6, the performance for
Omniglot dramatically dropped to baseline. Additionally,
according to Figure 2 (f), we find that by changing t in the
range of [0.05, 0.30], AOSR achieve stable performance.

Ablation study on datasets MNIST, Omnilot, MNIST-Noise
and Noise is shown in Table 4. By adjusting different com-
ponents of AOSR, Table 4 indicates that each component of
AOSR is important and necessary. Note that if we replace
iForest by KMM in AOSR, the performance (0.907) is close
to AOSR (0.910). This implies that KMM may be a good
choice, if we omit the time complexity of KMM.

6. Discussion
Relation with Generative Models. Algorithms based on
generative models are the mainstream for OSL. CGDL (Sun
et al., 2020), C2AE (Oza & Patel, 2019) and Counterfactual
(Neal et al., 2018) are the representative works based on gen-
erative models. AOSR can be regarded as the weight-based
generative model, but is very different from the mainstream
generative model-based algorithms (feature map-based gen-
erative model (Neal et al., 2018; Oza & Patel, 2019; Sun
et al., 2020)). Form the theoretical perspective, it is neces-
sary to develop theory to guarantee the generalization ability
of feature map-based generative models. Here we propose
an interesting and important problem: how to develop gen-
eralization theory for feature map-based generative models
under open-set assumption ?

Relation with PU Learning. Positive-unlabeled learning
(PU learning) (Niu et al., 2016) is a special binary classi-
fication task, which assumes only unlabeled samples and
positive samples (i.e., samples with positive labels) are avail-
able. Our theory is deeply related to PU learning. If we
regard the known samples S and the auxiliary samples as
the positive samples and the unlabeled samples, respectively.
Then, our theory degenerates into the PU learning theory.

Remaining Problems in OSL Theory. We list several in-
teresting and important problems for OSL theory as follows.
1. How to construct weaker assumption to replace assump-
tion 1 for achieving similar results ?
2. Without assumption 1, what will happen ?
3. Is it possible for OSL to achieve agnostic PAC learnabil-
ity and achieve fast learning rate Op(1/na), for a > 0.5 ?
4. Is it possible to construct OSL learning theory by stability
theory (Bousquet & Elisseeff, 2002) ?

7. Conclusion and Future Work
This paper mainly focuses on the learning theory for open-
set learning. The generalization error bounds proved in
our work provide the first almost-PAC-style guarantee on
open-set learning. Based on our theory, a principle guided
algorithm AOSR is proposed. Experiments on real datasets
indicate that AOSR achieves competitive performance when
compared with baselines. In future, we will focus on devel-
oping more powerful OSL algorithms based on our theory
and dynamic weight technique (Fang et al., 2020a). With the
dynamic weight , we can update the weight for each epoch
and make a better integration between instance-weighting
and deep learning.
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