
Supplementary Material

1 Online Posterior Update for the Inverse Noise Variance
To update qcur(τ), we consider the blending distribution only in terms of the NN output fo and τ ,

p̃(fo, τ) ∝ qcur(fo)qcur(τ)N (yin |fo, τ−1) = N (fo|αn, βn)Gamma(τ |a, b)N (yin |fo, τ−1). (1)

Following the conditional expectation propagation (CEP) framework proposed by Wang and Zhe
(2019), we first derive the conditional moments of τ given fo and then approximate the expectation
of the conditional moments to obtain the moments and update the posterior of τ . Specifically, from
(1), we can easily derive the conditional blending distribution,

p̃(τ |fo) = Gamma(τ |â, b̂) (2)

where â = a+ 1
2 and b̂ = b+ 1

2 (y2in − 2fo + f2o ). We can obtain the conditional moments of τ ,

Ep̃(τ |fo)[τ ] =
â

b̂
, Ep̃(τ |fo)[log(τ)] = Ψ(â)− log(b̂).

where Ψ(·) is the digamma function. Note that these moments are based on the sufficient statistics of
Gamma distribution, which are standard for moment matching in ADF and EP framework. The true
moments can therefore be calculated by taking the expectation of the conditional moments,

Ep̃[τ ] = Ep̃(fo)Ep̃(τ |fo)[τ ] = Ep̃(fo)[
â

b̂
],

Ep̃[log(τ)] = Ep̃(fo)Ep̃(τ |fo)[log(τ)] = Ep̃(fo)[Ψ(â)− log(b̂)].

However, the normalization constant for (1) is intractable and it is difficult to compute the marginal
blending distribution p̃(fo). To overcome this problem, we approximate p̃(fo) with the current
posterior of fo, namely qcur(fo). This is reasonable, because p̃(fo) is an integration of q(fo) and one
new data point; when we have processed many data points, adding one more data point is unlikely to
significantly change the posterior. In other words, we can assume q(fo) and p̃(fo) are close in high
density regions. Hence, we can approximate

Ep̃[τ ] ≈ Eqcur(fo)[
â

b̂
],

Ep̃[log(τ)] ≈ Eqcur(fo)[Ψ(â)− log(b̂)].

A second problem is that due to the nonlinearity of the conditional moments, even with qcur(fo)
(which has a nice Gaussian form), we still cannot analytically compute the expectation. To address
this issue, we further observe that the conditional moments are functions of fo and f2o ,

h1(fo, f
2
o ) =

â

b̂
=

a+ 1
2

b+ 1
2 (y2in − 2fo + f2o )

,

h2(fo, f
2
o ) = Ψ(â)− log(b̂) = Ψ(a+

1

2
)− log

(
b+

1

2
(y2in − 2fo + f2o )

)
.

Define f = [fo, f
2
o ]>. We use a Taylor expansion at the mean of fo and f2o to approximate the

conditional moments,

h1(fo, f
2
o ) ≈ h1(Eqcur [fo],Eqcur [f

2
o ]) + (f − Eqcur [f ])

>∇h1|f=Eqcur [f ]
,

h2(fo, f
2
o ) ≈ h2(Eqcur [fo],Eqcur [f

2
o ]) + (f − Eqcur [f ])

>∇h2|f=Eqcur [f ]
. (3)

We take expectation over the Taylor expansion, and obtain a closed-form result,

Ep̃[τ ] = Ep̃[h1] ≈ a∗

b∗
, Ep̃[log τ ] = Ep̃[h2] ≈ Ψ(a∗)− log(b∗) (4)

where
a∗ = a+

1

2
, b∗ = b+

1

2
((yin − αn)2 + βn).

Finally, from these moments, we can obtain the updated posterior, q(τ) = Gamma(τ |a∗, b∗).
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2 The Updates for Spike-and-Slab Prior Approximation

In our streaming posterior inference, after we execute ADF to process all the entries in the newly
received batch, we use standard EP to update the spike-and-slab prior approximation. In this way, we
can refine the approximation quality so as to effectively sparsify and condense the neural network
to prevent overfitting. Specifically, for each weight wmjt, we first divide the posterior by the prior
approximation to obtain the calibrated (or context) distribution,

q\(wmjt, smjt) ∝
qcur(wmjt, smjt)

A(wmjt, smjt)
= Bern(smjt|ρ0)N (wmjt|µ\mjt, v

\
mjt)

where A(wmjt, smjt) = Bern
(
smjt|c(ρmjt)

)
N (wmjt|µ0

mjt, v
0
mjt) (see (13) in the main paper).

Because both qcur and A belong to the exponential family, this can be easily done by subtracting the
natural parameters. Note that Bern(smjt|ρ0) is the prior of smjt (see (4) and (5) in the main paper)
— this comes from the fact that the (approximate) posterior of smjt is proportional to the product of
its prior and the approximation term in A.

Next, we combine the calibrated distribution and the exact prior to obtain a tilted distribution (which
is similar to the blending distribution in the streaming case),

p̃(wmjt, smjt) ∝ q\(wmjt, smjt)
(
smjtN (wmjt|0, σ2

0) + (1− smjt)δ(wmjt)
)
. (5)

We then project p̃ to the exponential family to obtain the updated posterior,

q∗(wmjt, smjt) = Bern(smjt|c(ρ∗mjt))N (wmjt|µ∗mjt, v∗mjt),

where c(·) is the sigmoid function,

ρ∗mjt = log
(N (µ

\
mjt|0, σ2

0 + v
\
mjt)

N (µ
\
mjt|0, v

\
mjt)

)
, (6)

µ∗mjt = c(ρ̂mjt)µ̂mjt, (7)

v∗mjt = c(ρ̂mjt)
(
v̂mjt + (1− c(ρ̂mjt))µ̂2

mjt

)
, (8)

(9)

and

ρ̂mjt = ρ∗mjt + c−1(ρ0),

v̂mjt =
((
v
\
mjt

)−1
+ σ−20

)−1
,

µ̂mjt = v̂mjt
µ
\
mjt

v
\
mjt

.

Finally, we can update the prior approximation term via dividing the updated posterior by the
calibrated distribution, A∗(wmjt, smjt) ∝ q∗(wmjt, smjt)/q

\(wmjt, smjt). Now, we replace the
current prior approximation by A∗ and set qcur = q∗, to prepare the steaming inference for the next
batch. Therefore, the learned posterior weights and selection probabilities are consistent, and they
effectively deactivate many weights to adjust the complexity of the network.
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