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Abstract
The convergence rate of Value Iteration (VI), a
fundamental procedure in dynamic programming
and reinforcement learning, for solving MDPs can
be slow when the discount factor is close to one.
We propose modifications to VI in order to poten-
tially accelerate its convergence behaviour. The
key insight is the realization that the evolution of
the value function approximations (Vk)k≥0 in the
VI procedure can be seen as a dynamical system.
This opens up the possibility of using techniques
from control theory to modify, and potentially
accelerate, this dynamics. We present such mod-
ifications based on simple controllers, such as
PD (Proportional-Derivative), PI (Proportional-
Integral), and PID. We present the error dynamics
of these variants of VI, and provably (for certain
classes of MDPs) and empirically (for more gen-
eral classes) show that the convergence rate can
be significantly improved. We also propose a gain
adaptation mechanism in order to automatically
select the controller gains, and empirically show
the effectiveness of this procedure.

1. Introduction
Value Iteration (VI) is a key algorithm for solving Dynamic
Programming (DP) problems, and its sampled-based vari-
ants are the basis for many Reinforcement Learning (RL)
algorithms, e.g., TD-like sample-based asynchronous up-
date algorithms (Bertsekas & Tsitsiklis, 1996; Sutton &
Barto, 2019) and Fitted Value Iteration procedures (Ernst
et al., 2005; Munos & Szepesvári, 2008; Farahmand et al.,
2009; Mnih et al., 2015; Tosatto et al., 2017; Chen & Jiang,
2019). VI finds the fixed point of the Bellman Tπ or the
Bellman optimality T ∗ operators, which are the value or
action-value functions of policy π or the optimal policy,
by repeatedly applying the Bellman operator to the current
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approximation of the value or action-value functions, i.e.,
Vk+1 ← TπVk or Qk+1 ← T ∗Qk. For discounted MDPs,
the Bellman operator is a contraction, and standard fixed-
point iteration results, such as Banach fixed-point theorem,
guarantee the convergence of the sequence generated by VI
to the true value function (either the optimal one or the one
of a given policy, depending on the choice of the Bellman
operator). The convergence of VI to the value function de-
pends on the discount factor γ < 1 and is of O(γk). This is
slow when γ ≈ 1. The goal of this research is to investigate
whether one might accelerate the convergence of VI, i.e.,
developing a procedure that converges to the value function
faster than the conventional VI.

This work brings tools from control theory to accelerate VI.
The goal of control theory, generally speaking, is to design
a controller for a given dynamical system in order to make it
behave in a certain desired way. Depending on the problem,
the desired behaviour can be convergence to a set-point
with a certain speed or robustness to disturbances. Casting
the VI procedure as a dynamical system, we may wonder
whether we can design a controller to modify its dynamics,
and perhaps make it faster or more robust to disturbances.

This paper investigates this question in some details. We
establish a connection between VI and dynamical systems
in Section 2. This connection allows us to take the novel
perspective of using controllers to modify, and in partic-
ular to accelerate, the dynamics of VI. We introduce ac-
celerated variants of VI by coupling its dynamics with PD
(Proportional-Derivative), PI (Proportional-Integral), and
PID controllers (Section 3). These controllers are among
the simplest and yet most ubiquitous and effective classes
of controllers in the arsenal of control theory and engineer-
ing. We call the resulting algorithms accelerated VI, and
refer to them by PD/PI/PID VI. As an example of such
a controller, the update rule of the (simplified) PD VI is
Vk+1 = TπVk + κd (Vk − Vk−1). The derivative term
(Vk − Vk−1) measures the rate of change in the value func-
tion. We describe the error dynamics of these accelerated
variants of VI for the policy evaluation problem (when the
Bellman operator is Tπ) in Section 4. We briefly describe
the problem of choosing the controller gains in the same sec-
tion, and describe four different approaches in more details
in Appendix D. Specifically, we provide an analytical solu-
tion for the class of reversible Markov chains in Appendix E.
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We propose a gain adaptation/meta-learning procedure to
automatically select the controller gains in Section 5. We
empirically study the behaviour of these variants on some
simple problems, and observe that they can be effective in
accelerating the convergence of VI (Section 6). Due to the
space limitation, we refer to appendices for more detailed
analyses and studies.

2. Value Iteration as a Dynamical System
We show how the VI algorithm can be represented as a dy-
namical system. This prepares us for the next section when
we use PID controller in order to change VI’s dynamics.
Before that, let us briefly introduce our notations.

We consider a discounted Markov Decision Process (MDP)
(X ,A,R,P, γ) (Bertsekas & Tsitsiklis, 1996; Szepesvári,
2010; Sutton & Barto, 2019). We defer formal definitions
to Appendix A. We only mention that for a policy π, we
denote by Pπ its transition kernel, by rπ : X → R the
expected value of its reward distribution, and by V π and Qπ

its state-value and action-value functions. We also represent
the optimal state and action-value functions by V ∗ and Q∗.
Finally, we define the Bellman operator Tπ : B(X ) →
B(X ) for policy π and the Bellman optimality operator
T ∗ : B(X ×A)→ B(X ×A) as

(TπV )(x) , rπ(x) + γ

∫
Pπ(dy|x)V (y),

(T ∗Q)(x, a) , r(x, a) + γ

∫
P(dy|x, a) max

a′∈A
Q(y, a′).

The value function V π and optimal action-value functionQ∗

are the fixed points of the operators Tπ and T ∗, respectively.

We start our discussion by describing the VI procedure for
the policy evaluation (PE) problem, which uses the Bellman
operator of a policy π (i.e., Tπ), instead of the problem of
finding the optimal value function (simply referred to as
control), which uses the Bellman optimality operator T ∗.
For the PE problem, the involved dynamical systems are
linear, and the discussion of how to the design controllers
is easier and more intuitive. The methods, however, work
in the control case too, where the operator T ∗ and the in-
volved dynamical systems are nonlinear. Algorithmically, it
does not matter whether the underlying Bellman operator
is linear or not. We also note that even though the devel-
oped algorithms work for general state and action spaces
(computational issues aside), we focus on finite state space
problems in the analysis of the error dynamics in Section 4,
as it allows us to use tools from linear algebra. In this case,
Pπ is a d × d matrix with d = |X | being the number of
states.

Consider the VI procedure for policy evaluation:

Vk+1 = TπVk, (1)

which is a shorthand notation for Vk+1(x) =
(TπVk)(x), ∀x ∈ X . Let us define ek = Vk − V π

as the error between the value function approximation Vk
and true value function V π. The error dynamics can be
written as

ek+1 = Vk+1 − V π = TπVk − V π = TπVk − TπV π

= γPπ(Vk − V π) = γPπek. (2)

The behaviour of this dynamics is related to the eigenvalues
of γPπ. Since Pπ is a stochastic matrix, it has one eigen-
value equal to 1, and the others are all within the interior of
the unit circle. Hence, the largest eigenvalue of γPπ has a
magnitude of γ. As γ < 1, this ensures the (exponential)
stability of this error dynamical system, which behaves as
c1γ

k, for a constant c1 > 0.

With some extra conditions, we can say more about the
location of eigenvalues than merely being within the unit
circle. If the Markov chain induced by Pπ is reversible,
that is, its stationary distribution ρπ satisfies the detailed
balance equation

ρπ(x)Pπ(y|x) = ρπ(y)Pπ(x|y), (3)

for all x, y ∈ X , then all eigenvalues are real.

Let us study the error dynamics (2) more closely. Assume
that Pπ is diagonalizable (having distinct eigenvalues is a
sufficient, but not necessary, condition for diagonalizability).
In this case, there exists a d × d similarity transformation
S such that Pπ = SΛS−1, with Λ = diag(λ1, λ2, . . . , λd).
We denote by εk = S−1ek, the error in the transformed
coordinate system. By multiplying both sides of (2) from
left by S−1, we obtain

S−1ek+1 = γS−1Pπek = γS−1SΛS−1ek

=⇒ εk+1 = γΛεk. (4)

Thus, the dynamics of the i-th component εk(i) of the se-
quence (εk)k≥0 can be written as εk+1(i) = γλiεk(i), for
i = 1, . . . , d. As a result, εk(i) = (γλi)

kε0(i), or more
succinctly εk = γkΛkε0. Therefore, the error dynamics is

ek = S(γΛ)kS−1e0.

Since the eigenvalue with the largest magnitude is λ1 = 1,
the behaviour of the slowest term is of O(γk), which deter-
mines the dominant behaviour of the VI procedure. Note
that if we have complex eigenvalues in Λ, which always
come in conjugate pairs, the error ek of the VI procedure
might show oscillatory, yet convergent, behaviour.

Is it possible to modify this error dynamics, so that we
obtain a faster convergence rate? Changing the behaviour
of a dynamical system is an important topic in control theory.
Depending on whether the underlying dynamics is linear or
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nonlinear, or whether it is known or unknown, etc., various
approaches have been developed, see e.g., Dorf & Bishop
(2008); Khalil (2001); Aström & Wittenmark (1994); Krstic
et al. (1995); Burl (1998); Bertsekas & Shreve (1978); Zhou
& Doyle (1998); Skogestad & Postlethwaite (2005). In this
work, we would like to study the feasibility of using these
techniques for the purpose of accelerating the dynamical
system of obtaining the value function. Introducing some
simple methods for this purpose is the topic of the next
section.

3. PID-Like Controllers for Accelerating VI
PD, PI, and PID (Proportional-Integral-Derivative) are
among the simplest, and yet most practical controllers in
control engineering (Dorf & Bishop, 2008; Ogata, 2010).
They can be used to change the dynamics of a plant (i.e.,
the system to be controlled) to behave in a desired way.
Objectives such as stabilizing the dynamics, improving the
transient behaviour, or improving the robustness to external
disturbances are commonly achieved using these controllers.
They have been used to control both linear and nonlinear
dynamical systems. Even though they are not necessarily
optimal controllers for a given plant, their ease of use and
robustness have made them the controller of choice in many
applications. We now show how these controllers can be
used for changing the dynamics of the VI algorithm.

P Controller. To see how VI can be viewed as a Propor-
tional feedback controller, consider the plant to be a simple
integrator with uk being its input,

Vk+1 = Vk + uk. (5)

As the desired value (known as reference signal in control
engineering parlance) of this system is V π, the feedback
error is ek = Vk − V π. The controller is the transforma-
tion that takes ek and generates uk. A proportional linear
controller generates uk by multiplying ek by a matrix Kp.
Let us choose the matrix of the form Kp = −κp(I− γPπ),
with κp being a real number. Therefore,

uk = −κp(I− γPπ)ek. (6)

With this choice of controller, the dynamics of the feedback
controlled system would be

Vk+1 = Vk + uk = Vk − κp(I− γPπ)(Vk − V π).

This can be simplified, by adding and subtracting rπ and
some simple algebraic manipulations, to

Vk+1 = (1− κp)Vk − κp
(
− V π + (rπ + γPπV π)

− (rπ + γPπVk)
)

= (1− κp)Vk − κp (−V π + TπV π − TπVk)

= (1− κp)Vk + κpT
πVk, (7)

where we used V π = TπV π in the last step. With the choice
of κp = 1, this proportional controller for the specified plant
is the same as the conventional VI (1).1

The control signal generated by this particular controller (6)
is closely related to the Bellman residual. Recall that the
Bellman residual of a value function V is BR(V ) = TπV −
V . Since V π = TπV π and e = V − V π , we may write

BR(V ) = TπV − V = (TπV − V π)− (V − V π)

= (TπV − TπV π)− (V − V π)

= γPπe− e = −(I− γPπ)e. (8)

So the dynamics of the P variant of VI (7) can be written as

Vk+1 = Vk + κpBR(Vk). (9)

Comparing with (5), we see that the P variant of VI is a
simple integrator with a control signal uk that is proportional
to the Bellman residual.

We now introduce the PD, PI, and PID variants of VI.

PD Controller. We start with a simplified PD variant.
Given a scalar gain κd, we define it as

Vk+1 = TπVk + κd (Vk − Vk−1) . (10)

The term (Vk − Vk−1) is the derivative term of a PD con-
troller.2 The role of the derivative term can be thought of
as approximating the value function Vk+1 using a linear
extrapolation based on the most recent values Vk and Vk−1.
When the change between Vk and Vk−1 is large, this term
encourages a large change to Vk+1.

More generally, we can allow the P term to have a gain κp
other than 1, and instead of using a scalar gain κd, we can
use a matrix gain Kd ∈ Rd×d. This leads to

Vk+1 = (1−κp)Vk + κpT
πVk +Kd (Vk − Vk−1) . (11)

With the choice of Kd = κdI and κp = 1, we retrieve (10).
Note that adding a derivative term does not change the fixed
point of the Bellman operator, as at the fixed point we have
V π = (1− κp)V π + κpT

πV π +Kd(V
π − V π) = TπV π .

The addition of the derivative term, however, can change
the convergence property to the fixed point. The goal is to
find the controller gains to accelerate this convergence. We
study the dynamics in Section 4.

PI Controller. The PI controller is defined as the following
coupled equations:

zk+1 = βzk + αBR(Vk),

Vk+1 = TπVk +KI [βzk + αBR(Vk)] ,
(12)

1This iterative procedure is known as the Krasnoselskii iteration
in the fixed-point iteration literature (Berinde, 2007). It is reduced
to the Picard iteration for κp = 1 of the conventional VI.

2It is technically a finite difference and not a derivative. Yet, it
is common to call it a derivative term.
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where α, β are scalars and KI is a matrix with an appropri-
ate size. When we use a scalar integrator gain κI , we replace
KI with κI . Here we present the special case with κp = 1,
but generalization is the same as before (and we show a
more general PID case soon). The variable zk is the expo-
nentially weighted average of the Bellman residuals BR(Vi),
for i ≤ k. From the filtering theory perspective, it is an auto-
regressive filter that performs low-pass filtering over the
sequence of Bellman residuals (as long as |β| < 1). The
additional integrator term KI [βzk + αBR(Vk)] = KIzk+1

adds this weighted average of the past Bellman residuals to
the current approximation of the value function. This is sim-
ilar to the momentum term in SGD, with a difference that
instead of gradients, we are concerned about the Bellman
residuals.3 Note that (z, V ) = (0, V π) is the fixed point of
this modified dynamics. So as long as this new dynamics
is stable, its Vk converges to the desired value function V π .
The dynamics depends on the choice of the controller gains.
We will study it in Section 4.

PID Controller. Finally, the PID variant would be

zk+1 =βzt + αBR(Vk),

Vk+1 =(1−Kp)Vk +KpT
πVk +KI [βzk + αBR(Vk)] +

Kd(Vk − Vk−1). (13)

Control Case. The accelerated VI for control is essentially
the same. We only use the action-value function Q instead
of V (though nothing prevents us from using V ). The main
change is the use of the Bellman optimality operator T ∗

instead of the Bellman operator Tπ. The definition of the
Bellman residual would consequently change to BR∗(Q) =
T ∗Q−Q. The PID accelerated VI for control is then

zk+1 =βzt + αBR∗(Qk),

Qk+1 =(1−Kp)Qk +KpT
∗Qk +KI [βzk + αBR∗(Qk)]

+Kd(Qk −Qk−1). (14)

Notice that in this case the dimension of z is the same as
Q, i.e., z : X × A → R. The control variants of PD and
PI VI algorithms are similar too. We briefly compare these
variations with a few other algorithms in Section 7, and
postpone the detailed comparison to Appendix G.

4. The Error Dynamics
We first present Proposition 1, which describes the dynamics
of error ek = Vk − V π in PID VI, similar to what we have
for the conventional VI in (2). Additional results, including
the dynamics of PI and PD VI, are reported in Appendix B.

3One may wonder why we did not define the integrator based
on the value errors ek = Vk − V π , and had zk+1 = βzt + αek
instead. The reason is that we cannot compute ek because V π is
not known before solving the problem. The Bellman residual plays
the role of a proxy for the value error.

We then briefly describe several ways the dynamics can be
modified, paving our way for the gain adaptation method
described in Section 5. The results of this section and the
aforementioned appendix are for policy evaluation with a
finite state space. We discuss the necessary changes needed
to deal with the control problem (using T ∗) in Appendix C.

Proposition 1 (Error Dynamics of PID VI). Let ek = Vk −
V π and the integrator’s state be zk. The dynamics of the
PID controller with gains Kp,KI ,Kd is ek+1

ek
zk+1

 = APID

 ek
ek−1
zk

 , (15)

withAPID ,

[
(I−Kp)+γKPPπ+αKI(γPπ−I)+Kd −Kd βKI

I 0 0
α(γPπ−I) 0 βI

]
.

This result can be presented in a simpler and more intu-
itive form, if we only consider scalar gains and assume that
Pπ is diagonalizable. We postpone reporting the result to
Appendix B. Just as an example, we can show that the eigen-
values of the PD VI are located at the roots of the polynomial∏d
i=1

[
µ2 − (1 + κd − κp(1− γλi))µ+ κd

]
(Corollary 5

in Appendix B).

The convergence behaviour of the PD, PI, and PID variants
of VI for PE is completely specified by the location of the
eigenvalues of the error dynamics matrices APD, API, and
APID. The dominant behaviour depends on their spectral
radius ρ(A), the eigenvalue with the largest modulus. The
dynamics is convergent when ρ < 1, and is accelerated com-
pared to the conventional VI, if ρ < γ. Whenever conver-
gent, the smaller the value of ρ is, the faster the rate would
be. When (κp, κI , κd) = (1, 0, 0) and (α, β) = (0, 0) (for
PID), we retrieve the original VI dynamics. The same is
true for the PD and PI variants, with obvious modifications.
So by falling back on the default parameters, these methods
can be at least as fast the conventional VI.

As the eigenvalues are continuous functions of the elements
of a matrix, changing the controller gains leads to a continu-
ous change of the spectral radius, hence the possibility of
acceleration. The spectral radius, however, is a complicated
function of a matrix, so a simple equation for an arbitrary
Pπ and controller gains does not exist. A natural question is
then: How should one choose the gains in order to achieve
the intended acceleration?

We suggest four possibilities: (i) consider them as hyper-
parameters to be adjusted through a model selection pro-
cedure; (ii) formulate the controller design problem as an
optimization problem; (iii) analytically find a set of gains
that accelerate a subset of MDPs, without the exact knowl-
edge of the MDP itself; and finally, (iv) adapt gains through-
out the accelerated VI procedure. We discuss (i), (ii), and
(iii) in more details in Appendix D. We only briefly note
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that (ii) may not be feasible for large MDPs, especially
if our ultimate goal is to extend these methods to the RL
setting. Option (iii) is possible if we make some extra as-
sumptions. One such assumption is the reversibility of the
Markov chain induced by the policy. With that assumption,
we can analytically find the gains for PD VI and show that if
we choose κ∗p = 2

1+
√

1−γ2
and κ∗d = (

√
1+γ−

√
1−γ√

1+γ+
√
1−γ )2, we

get the effective rate of

γPD =

√
1 + γ −

√
1− γ√

1 + γ +
√

1− γ
.

This is smaller than γ for γ < 1, showing that the procedure
is accelerated (Proposition 6 in Appendix E). We note that
the class of reversible Markov chains is limited.

We focus on (iv), the gain adaptation approach, in the next
section, which seems to be the most promising because it is
not restricted to a subset of MDPs, can adapt to the problem
in hand, and is feasible for large MDPs. It also appears to
be extendable to the RL setting.
Remark 1. For the control case, the error dynamics has
the same form as in Proposition 1, but with a time-varying
APID matrix. In that case, the spectral radius does not de-
termine the stability. Instead, we can use the joint spectral
radius (Jungers, 2009). See Appendix C for more discus-
sions.

5. Gain Adaptation
We describe a method to adaptively tune the controller gains
(κp, κI , κd) throughout the iterations of an accelerated VI
procedure. Our approach is based on computing the gradi-
ent of an appropriately-defined loss function w.r.t. the gains,
and updating them based on the gradient. The idea has
conceptual similarities to the learning rate adaptation mech-
anisms, such as Incremental Delta-Bar-Delta (IDBD) (Sut-
ton, 1992; Almeida et al., 1999), stochastic meta-descent
(SMD) (Schraudolph, 1999; Mahmood et al., 2012), and
hyper-gradient descent (Baydin et al., 2018).

To define a gradient-based gain adaptation algorithm, we
need to specify a loss function. An example would be the
norm of the error ek = V π − Vk (or ek = Q∗ − Qk for
control) at the next iteration, i.e., at iteration k − 1, we
compute the gradient of ‖ek‖22 w.r.t. the controller gains.4

This approach, however, is not practical: the errors ek’s
cannot be computed, as we do not know V π or Q∗. Thus,
we use a surrogate loss function that is easy to compute.

We choose the Bellman errors ‖TπVk − Vk‖22 (PE) or
‖T ∗Qk −Qk‖22 (control) as the surrogate loss functions.

4More generally, we can unroll the accelerated algorithm for
T ≥ 1 iterations, and back-propagate the gradient of ‖ek+T−1‖22
w.r.t. the parameters. For simplicity of exposition, we do not
describe this in more detail here.

These quantities can be computed given the value function,
Vk orQk, and the Bellman operator, Tπ or T ∗. The Bellman
error is a reasonable surrogate because having a zero Bell-
man error implies having a zero error in approximating the
value function. We can also quantify the relation between
them more precisely. For example, if the error is measured
according to the supremum norm (and not the `2-norm as
here), we have ‖V − V π‖∞ ≤

‖TπV−V ‖∞
1−γ (Williams &

Baird, 1993). For the `2-norm, we have similar results, e.g.,
Theorem 5.3 of Munos (2007) for the Bellman optimality
error or Proposition 7 in Appendix F.1 for the Bellman error
in the PE case. Therefore, we define the following loss
functions for the PE and control cases:

JBE(k) =
1

2
‖TπVk − Vk‖22 =

1

2
‖BR(Vk)‖22 , (16)

J∗BE(k) =
1

2
‖T ∗Qk −Qk‖22 =

1

2
‖BR∗(Qk)‖22 . (17)

For the control case, we could also define the loss based
on BR∗(V ) = T ∗V − V . The gradient of JBE(k) w.r.t. the
controller parameters is

∂JBE(k)

∂κ·
=

〈
BR(Vk) ,

∂BR(Vk)

∂κ·

〉
X
, (18)

where 〈V1 , V2 〉X =
∑
x∈X V1(x)V2(x) (or an appropri-

ately defined integral when X is a continuous state space).
The derivatives of J∗BE(k) is similar, with obvious changes.
To compute these derivatives, we require the derivative of
the Bellman Residual w.r.t. each of the controller gains. Ta-
ble 1 reports them for both PE and control cases. Note that
as the Bellman optimality operator is nonlinear, we need
some care in computing its derivative. The details of how
these derivatives are obtained as well as some intuition on
what they capture are in Appendices F.2 and F.3.

The gain adaptation procedure can be achieved by a
receding-horizon-like procedure: At each iteration k of the
accelerated VI algorithm, it computes the gradient of this
objective w.r.t. the controller gains, updates the controller
gains by moving in the opposite direction of the gradient,
performs one step of accelerated VI to obtain the value
function at iteration k + 1, and repeats the procedure again.

One can perform gradient descent based on (18). This, how-
ever, may not lead to a desirable result. The reason is that if
the dynamics of the accelerated VI is stable, both Bellman
residual and its gradient will go to zero exponentially fast.
Therefore, the gradient converge to zero too fast to allow
enough adaptation of controller gains. To address this issue,
we define the following normalized loss functions instead:

JBE(norm)(k) =
‖BR(Vk)‖22

2 ‖BR(Vk−1)‖22
, (19)

J∗BE(norm)(k) =
‖BR∗(Qk)‖22

2 ‖BR∗(Qk−1)‖22
. (20)



PID Accelerated Value Iteration Algorithm

Table 1. Partial derivatives of the Bellman residual w.r.t. the con-
troller’s parameters for PE and control cases. π(Qk) is the greedy
policy w.r.t. Qk, i.e., π(x;Q)← argmaxa∈AQ(x, a).

∂BR(Vk)

∂·
∂BR∗(Qk)

∂·
κp −(I− γPπ)BR(Vk−1) −(I− γPπ(Qk))BR∗(Qk−1)

κd −(I− γPπ)(Vk−1 − Vk−2) −(I− γPπ(Qk))(Qk−1 −Qk−2)

κI −(I− γPπ)zk −(I− γPπ(Qk))zk
α −κI (I− γPπ)BR(Vk−1) −κI (I− γPπ(Qk))BR∗(Qk−1)

β −κI (I− γPπ)zk−1 −κI (I− γPπ(Qk))zk−1

Algorithm 1 PID-Accelerated Value Iteration
1: Initialize V1 (e.g., equal to 0) and z1 = 0.
2: Initialize (κ

(1:2)
p , κ

(1:2)
I , κ

(1:2)
d ) = (1, 0, 0).

3: for k = 1, . . . ,K do
4: Compute TπVk
5: Set BR(Vk) = TπVk − Vk.
6: Update z and V by

zk+1 = β(k)zt + α(k)BR(Vk),

Vk+1 = (1− κ(k)
p )Vk + κ(k)

p TπVk + κ
(k)
I zk+1 +

κ
(k)
d (Vk − Vk−1).

7: if k ≥ 3 then
8: Update the controller gains by (21)
9: end if

10: end for

In these variants, the denominator is considered fixed at the
k-th iteration, i.e., we do not compute its gradient. These
normalized variants have an interesting interpretation. The
ratio of two consecutive terms in a sequence is its rate of
convergence (in the limit). So by considering the ratio of the
squared Bellman errors, we are taking the gradient of the
squared convergence rate w.r.t. the controller gains. With
the normalized loss, the update rule for κ· ∈ {κp, κI , κd}
becomes

κ·(k + 1)← κ·(k)− η

〈
BR(Vk) , ∂BR(Vk)

∂κ·

〉
X

‖BR(Vk−1)‖22 + ε
, (21)

where η > 0 is the meta-learning rate, and ε > 0 is to avoid
numerical instability when the Bellman error is too small.
The new controller gains are used to compute Vk+1 (orQk+1

for the control case). This is summarized in Algorithm 1.

6. Experiments
We conduct two sets of experiments. In the first set, we
observe the effect of choosing controller gains on the er-
ror. In the second set, we study the behaviour of the gain
adaptation procedure. This section is only a summary of
the experiments we conducted, and more comprehensive
experiments can be found in Appendix I. The detailed de-
scription of the domains used in the experiments is available
in Appendix H.
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Figure 1. (Chain Walk) Sample error behaviour for a 50-state chain
walk problem for various accelerated variants of VI and the con-
ventional VI.

6.1. Experiments with Controller Gains

We use a chain walk problem with 50 states as a testbed,
similar to Lagoudakis & Parr (2003). We consider both
policy evaluation and control cases. For PE, we only show
the results for a policy that always chooses the first action,
i.e., π(x) = a1. We set γ = 0.99 in these experiments.

In the first experiment, we showcase a typical behaviour
of VI and accelerated VI with different controller gains.
In particular, we show log10 ‖Vk − V π‖∞ (PE) and
log10 ‖Vk − V ∗‖∞ (control) as a function of iteration k
in Figure 1 (the result would be qualitatively similar for
other norms). To compute the “true” V π or Q∗, needed for
the computation of the norms, we run the conventional VI
(no acceleration) for 10-times more iterations. This results
in the error of O(γ5000) ≈ 1.5× 10−22. This would be suf-
ficient if the effective discount factor γ′ of the accelerated
VI is larger than γ10, e.g., ≈ 0.904 with our choice of γ.
For the accelerated ones, the gains are shown in the legend
of the figure. For the PI variant, we always use β = 0.95
and α = 1− β = 0.05. With the right choice of parameters,
they significantly improve the convergence behaviour.
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Figure 1a shows some sample behaviours for the PE prob-
lem. The gains for these controllers are selected to showcase
a good performance in certain range, but they are not numer-
ically optimized. We observe that all accelerated variants
lead to faster convergence. The PI variant with κI = −0.4
is particularly noticeable as it leads to several orders of mag-
nitude decrease in error after 500 iterations (from around
10−3 to ≈ 10−7). The improvement due to PD is insignifi-
cant. It is interesting to observe that the P variant improves
the performance by having a larger than 1 gain of κp = 1.2.
Figure 1b repeats the same experiment for the control case.
Both PD and PI controllers significantly improve the perfor-
mance. We also observe that having both D and I terms can
improve upon the performance of either of them. We show
two PID variants, one with (κp, κI , κd) = (1, 0.75, 0.4)
and the other with (κp, κI , κd) = (1, 0.7, 0.2). Their per-
formances are comparable, suggesting that the performance
is not too sensitive to the choice of parameters.

Each curve in these figures is for a particular choice of
gains. What happens if we change the gains? To study
this, we fix all gains except one, and compute the norm of
the error log10 ‖Vk − V π‖2 (or similar for the control case)
as a function of the gain parameter at various iterations k.
For the P controller, we change κp around 1, while setting
κI = κd = 0 (recall that the conventional VI corresponds to
(κp, κI , κd) = (1, 0, 0)). For the PD controller, we change
κd in a range that includes both negative and positive values,
while setting κp = 1 and κI = 0. For the PI controller,
likewise, we change κI , while setting κp = 1 and κd =
0. These PI and PD controllers are special cases of more
general PI and PD controllers as we set their κp equal to 1.

Figures 2a (P), 2b (PI), 2c (PD) present the results for the
PE case. We observe the change of the error as a function of
each gain. The influence of κI is more significant compared
to κp and κd. In particular, the error curves for κd do not
show much change as a function of its parameter, which
suggests that the PD controller is not very suitable for this
problem. We also note that the overall shape of each curve
is similar at different iterations, but they are not exactly the
same. In earlier iterations, the effect of smaller eigenvalues
is relatively more significant than in the later iterations.
As k grows, the behaviour of the error would be mostly
determined by the dominant eigenvalue. We also remark
that the behaviour is not always smooth. The dynamics
might become unstable, and in that case, the error actually
grows exponentially as k increases. The range chosen for
this figure is such that we are on the cusp of becoming
unstable. For example, for the PD variant, the dynamics is
unstable for κd ≈ 0.28.

Figures 2d (P), 2e (PI), 2f (PD) present the result for the
control case. One noticeable difference compared to the PE
case is that κd has a significant effect on the error, and it can

lead to acceleration of VI. We also observe that the range
of values for κI that leads to acceleration is different than
the range for the PE case. Here, positive values of κI leads
to acceleration, while in the PE case, negative values did.
We remark in passing that we benefitted from these sweep
studies to choose reasonable, but not necessarily optimal,
values for Figure 1.

We report additional experiments in Appendix I.1. For
example, we show how the simultaneous change of two
gains affect the error behaviour (it can lead to even faster
acceleration), and how the change of one gain relocates the
eigenvalues.

Two takeaway messages of these empirical results are: 1)
we can accelerate VI, sometimes substantially, with the right
choice of controller gains, and 2) the gains that lead to most
acceleration is problem-dependent and varies between the
PE and control cases.

6.2. Experiments with Gain Adaptation

In the second set of experiments, we study the behaviour of
the gain adaptation procedure to see if it can lead to accel-
eration. We adapt κp, κI , and κd by (21), or similarly for
the control case. We do not adapt α and β, and use fixed
β = 0.95 and α = 1 − β = 0.05 in all reported results.
These results are for the discount factor γ = 0.99. We pro-
vide more comprehensive empirical studies in Appendix I.2.

Figure 3a compares the error of the accelerated PID VI
with gain adaptation with the conventional VI on the Chain
Walk problem (control case). Here we set the meta-learning
parameter to η = 0.05 and normalizing factor to ε = 10−20.
We observe a significant acceleration. Figure 3b shows how
the gains evolve as a function of the iteration number.

To study the behaviour of the gain adaptation procedure on
a variety of MDPs, we also use Garnet problems, which
are randomly generated MDPs (Bhatnagar et al., 2009). We
consider the Garnet problem with 50 states, 4 actions, a
branching factor of 3, and 5 non-zero rewards throughout
the state space (see Appendix H for a detailed description).
Figure 4 shows the average behaviour of the gain adapta-
tion for different values of the meta-learning rate η (the
normalizing constant is fixed to ε = 10−20). For the PE
case, we observe that all tested values of meta-learning rate
η leads to acceleration, though the acceleration would be
insignificant for very small values, e.g., η = 10−3. For the
control case, we observe that large values of meta-learning
rate (e.g., η = 0.1) lead to non-convergence, while values
smaller than that lead to significant acceleration. These
results show that gain adaptation is a viable approach for
achieving acceleration for an unknown MDP.
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Figure 2. (Chain Walk) (Top: Policy Evaluation; Bottom: Control) Error norm behaviour log10 ‖Vk(k·)− V π‖∞ (Policy Evaluation) and
log10 ‖Qk(k·)−Q∗‖∞ (Control) as one of the controller gains is changed. Each curve corresponds to a different iteration k. Crosses on
the curves are placed at every 3 computed points in order to decrease the clutter.

7. Related Work
There have been recent work on accelerating RL (Geist &
Scherrer, 2018; Shi et al., 2019; Vieillard et al., 2020; Goyal
& Grand-Clement, 2020). As opposed to this work, those ap-
proaches do not start by establishing connection between the
planning methods commonly used to solve MDPs and the
methods often used in control theory/engineering. Instead,
some of them are inspired by methods in optimization, and
some by other numerical techniques. Here, we only briefly
mention some connections to these methods and provide an
in-depth comparison in Appendix G.1.

One class of these methods is based on borrowing ideas
from the optimization theory to modify basic algorithms
such as VI (Vieillard et al., 2020; Goyal & Grand-Clement,
2020). The work by Goyal & Grand-Clement (2020) is
noticeable because some of their proposed methods happen
to coincide with some of ours (Appendix G.1.1). By making
an analogy between VI and the gradient descent (GD), they
propose Relaxed Value Iteration, which is the same as P
VI (7) and the Accelerated Jacobi method of Kushner &
Kleinman (1971). By making an analogy between VI and

the Polyak’s momentum method (or heavy ball) (Polyak,
1987, Section 3.2), they propose a method called Momentum
Value Iteration/Computation, which is essentially the PD
VI method in (11). They suggest a specific choice of κp
and κd based on the comparison of VI and the optimal
choice of parameters in the momentum GD. This choice is
suitable for reversible Markov chains, but it may diverge for
more general chains that we deal with in solving MDPs. In
fact, this is something that we observed in our experiments.
Moreover, they do not provide any solution for cases other
than reversible Markov chains, while we propose a gain
adaptation mechanism and empirically show that it is a
reasonable approach for VI acceleration in general MDPs.
There is no method analogous to the PI or PID variants of
VI in their work.

Geist & Scherrer (2018) and Shi et al. (2019) use acceler-
ation techniques from other areas of numerical methods,
such as Anderson acceleration (Anderson, 1965), to modify
Value or Policy Iteration procedures (Appendix G.1.2).

There are other, less similar, approaches to acceleration in
RL and DP (Appendix G.1.3). Prioritized sweeping and



PID Accelerated Value Iteration Algorithm

0 250 500 750 1000 1250 1500 1750 2000
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

101

||V
k

V
* |

|
VI (conventional)
VI(PID) with initial (kp, kI, kd) = (1.0, 0, 0)

(a) Error behaviour

0 250 500 750 1000 1250 1500 1750 2000
Iteration

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Co
nt

ro
lle

r g
ai

ns

kp

kI

kd

(b) Gains

Figure 3. (Chain Walk - Control) Gain adaptation results for
(η, ε) = (0.05, 10−20).

its variants are an important class of methods that asyn-
chronously update the value of states (Moore & Atkeson,
1993; Peng & Williams, 1993; McMahan & Gordon, 2005;
Wingate & Seppi, 2005). By changing the order of state
updates, they might converge to the value function faster. It
is, however, orthogonal to what we suggest, and they can po-
tentially be combined. Speedy Q-Learning is an accelerated
variant of Q-Learning (Azar et al., 2011). It decomposes
the update rule of Q-Learning in a specific way and use a
more aggressive learning rate on one of its terms. Zap Q-
Learning is a second-order stochastic approximation method
that uses a matrix gain, instead of a scalar one, to minimize
the asymptotic variance of the value function estimate (De-
vraj & Meyn, 2017).

8. Conclusion
We viewed the value iteration (VI) procedure as a dynamical
system and used tools from control theory to acceleration
it. We specifically focused on simple, yet effective, PID
controllers to modify VI. We expressed the error dynam-
ics of the accelerated VI procedures for the policy evalua-
tion problem as a linear dynamical system. We empirically
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Figure 4. (Garnet) Gain adaptation for a 50-state Garnet problem
with γ = 0.99 for the PE and control cases for different meta-
learning rates η. The normalizing factor is ε = 10−20. The mean
and standard errors are evaluated based on 100 runs.

showed that the modified VI can indeed lead to acceler-
ated behaviour. Moreover, we proposed a gain adaptation
procedure to automatically adjust the controller.

An important future research direction is extending the PID
VI to the RL setting, where only samples are available. The
sample-based extension seems feasible given that one can
form an unbiased estimate of all key quantities in the PID VI
updates using samples in the form of (Xt, Rt, Xt+1). For
example, Rt + γVk(Xt+1) + κd(Vk(Xt) − Vk−1(Xt)) is
an unbiased estimate of TπVk + κd(Vk − Vk−1) evaluated
at Xt. Another exciting direction is designing controllers
other than PID to accelerate fundamental DP algorithm.

Acknowledgements
We would like to thank the anonymous reviewers for their
feedback. AMF acknowledges the funding from the Canada
CIFAR AI Chairs program.



PID Accelerated Value Iteration Algorithm

References
Almeida, L. B., Langlois, T., Amaral, J. D., and Plakhov,

A. Parameter Adaptation in Stochastic Optimization,
pp. 111–134. Publications of the Newton Institute. Cam-
bridge University Press, 1999. 5, 33

Anderson, D. G. Iterative procedures for nonlinear integral
equations. Journal of the ACM, 12(4):547–560, 1965. 8,
28, 31

Aström, K. J. and Wittenmark, B. Adaptive Control.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2nd edition, 1994. 3, 27, 33

Azar, M., Munos, R., Ghavamzadeh, M., and Kappen, H.
Speedy Q-learning. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 2411–2419, 2011. 9,
32

Baydin, A. G., Cornish, R., Rubio, D. M., Schmidt, M., and
Wood, F. Online learning rate adaptation with hypergra-
dient descent. In International Conference on Learning
Representations (ICLR), 2018. 5, 33

Berinde, V. Iterative approximation of fixed points, volume
1912. Springer, 2007. 3, 29

Bertsekas, D. P. and Shreve, S. E. Stochastic Optimal Con-
trol: The Discrete-Time Case. Academic Press, 1978. 3,
12

Bertsekas, D. P. and Tsitsiklis, J. N. Neuro-Dynamic Pro-
gramming. Athena Scientific, 1996. 1, 2, 12, 32

Bhatnagar, S., Sutton, R. S., Ghavamzadeh, M., and Lee,
M. Natural actor–critic algorithms. Automatica, 45(11):
2471–2482, 2009. 7, 34, 38

Burl, J. B. Linear Optimal Control: H2 and H∞ Methods.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1998. 3

Chen, J. and Jiang, N. Information-theoretic considera-
tions in batch reinforcement learning. In Proceedings of
the 36th International Conference on Machine Learning
(ICML), 2019. 1

Devraj, A. M. and Meyn, S. P. Zap Q-learning. In Advances
in Neural Information Processing Systems (NeurIPS), pp.
2235–2244, 2017. 9, 28, 32

Dorf, R. C. and Bishop, R. H. Modern control systems.
Prentice Hall, 2008. ISBN 9780132270281. 3

Ernst, D., Geurts, P., and Wehenkel, L. Tree-based batch
mode reinforcement learning. Journal of Machine Learn-
ing Research (JMLR), 6:503–556, 2005. 1

Farahmand, A.-m., Ghavamzadeh, M., Szepesvári, Cs., and
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