Near-Optimal Anomaly Detection for Matrices with Sub-Exponential Noise

Appendices

A. Entry-wise Bound and Proof of Theorem 2

In this section, we will prove the Theorem 2 based on recent results on entry-wise analysis for random matrices (Abbe et al.,
2017) and matrix completion with Poisson observation (McRae & Davenport, 2019). The proof idea can be viewed as a
generalization from Gaussian noise in the Theorem 3.4 (Abbe et al., 2017) to subexponential noise. In particular, we will
proceed the proof in two steps: (i) consider the symmetric scenario where M *, noises, and anomalies have symmetries; (ii)
generalize the results to the asymmetric scenario.

A.1. Symmetric Case
Consider a symmetric scenario. Let M* € R}*" be a symmetric matrix. For 1 <i < j < n, let

Xij ~ Poisson(M;5)  with prob. (1 — p})po
Xi; ~ Anom(a*, ]\7[;;) with prob. p} po ())
Xi;=0 with prob. 1 — po.
Let X;; = X;; for 1 <i < j <n.Lett=g(a*)pipo + (1 — pi)po. Itis easy to verify E (X /t) = M*. Furthermore,
Anom(a*J\Z{}) ) < Lfor (i,5) € [n] x [n].

Suppose max (MZ*J +1, |w1

Denote the eigenvalues of M* by A\i > X3 > ... > \* with their associated eigenvectors by {@}}}_,. Denote the
eigenvalues of X by A1 > Ag > ... > A, with their associated eigenvectors by {z; };’:1.

Suppose r is an integer such that 1 < r < n. Assume M* satisfies A=A >...>2 A >0and A7 ; <0. Let
U* = (uj,ub,...,ul) e R U = (ug,uz,...,u,) € R"*". We aim to show that U is a good estimation of U™ in the
entry-wise manner under some proper rotation. In particular, let H := UTU* € R"*". Suppose the SVD decomposition
of His H=U'Y'V'T where U’, V' € R"™*" are orthonormal matrices and >/ € R™*" is a diagonal matrix. The matrix
sign function of H is denoted by sgn(H) := U’V'T. In fact, sgn(H) = arg minp HﬁO —-U* HF subject to OOT = [.°
We aim to show an upper bound on || Usgn(H) — U* ||2’OO )

Let A* :=t\5 Kk := /A\—z We rephrase the Theorem 2.1 in (Abbe et al., 2017) for the above scenario and rewrite it as the
following lemma.

Lemma 6 (Theorem 2.1 (Abbe et al., 2017)). Suppose v € Rxq. Let ¢(z) : R>g — Rx¢ be a continuous and non-
decreasing function with ¢(0) = 0 and ¢(x)/x non-increasing in R~q. Let 09,01 € (0,1). With the above quantities,
consider the following four assumptions:

Al |[tM* < yA*.

H2,oo
A2. For any m € [n), the entries in the mth row and column of X are independent with others.

A3 P (|| X -t

QS’YA*) >1—dp.

A4. Foranym € [n] and any W € R™*7,

v VEs * ||W||F 51
IE"<H<X—fM >m,~WH2<A'W”M(¢W 21-3

If 32k max(y, ¢()) < 1, under above Assumptions A1-A4, with probability 1 — 6y — 241, the followings hold,

1Tl 00 = (54 SO T[]y o0+ (|27, /A"
|Tsen(H) = T* |, .. < (sl + &)y + 6(0) + 6W) [T [l o0+ [[637] /A"

®See (Gross, 2011) for more details about the matrix sign function.
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To obtain useful results from Lemma 6, one need to find proper ~y and ¢(x) and show that the Assumptions A1-A4 hold.
We define 4 and ¢(x) as the proper form for y and ¢(x) respectively in the following.

Definition 2. Lety := Y22 L, ¢(z) = (2n3r)z.

Under 7 and ¢(z), we will show that Assumption A3 holds based on Lemma 11, Assumption A4 holds based on Lemma 13.
Note that Assumption A2 naturally holds since each element of X is independent of each other. Assumption A1l holds due

ot 181" . = s, [, 35 < /AL < 72

To show that Assumption A3 holds, we introduce a result in (McRae & Davenport, 2019) that helps to control the operator
norm of X — tM™.

Lemma 7 (Lemma 4 in (McRae & Davenport, 2019)). Let Y be a random ny X no matrix whose entries are independent
and centered, and suppose that for some v, to > 0, we have, for all t; > to, P (|Yi;| > t1) < 2e™/V. Lete € (0,1/2), and
let K = max{tg,vlog(2mn/e)}. Then,

P<||Y||2220+ — +t1) < max(n1,n2) exp(—13/(Co(2K)?)) + €
2

where Cy is a constant and 0 = max; /3 E (V%) + max; /3, E (V;3).

In order to use Lemma 7, we show that every entry of X — tM* is a sub-exponential random variable based on Lemmas 8
to 10.

Lemma 8. Let Y ~ Poisson(A). Then [|Y|,, < 4A+ 1.

Proof. Note that for any ¢; > 0,

E(e'y\/h) = ( Y/t1> Zek/tl - Ai 1/t1>\ A 61/t1>‘ A(El/tl_l),
k=0
Note that 1/(4X + 1) < 1, hence e/ — 1 = et < lre where s € [0,1/(4) + 1)] by Taylor expansion.
Therefore
E (lY1/62D) < enre < /4 a 1973 < 2,
By the definition of |||, , we have [[Y||,, <4A+1. O

Lemma9. LetY1,Ys ... Y, be q subexponential random variables with ||Y; ||w1 < Liax- Letc € {1,2,...,q} be a random
variable. Then ||Y.||,,, < Lmax-

Proof. This is because E (elYel/Tmax) =37, P (c=i)E (el¥il/Ima) <37, 2P(c=1i) = 2. O

Lemma 10. For any (i,j) € [n] x [n], <6L.

X, — i),

Proof. Note that HPoisson(M{;-)
|| Xij H = 4L by Eq. (4) and Lemma 9. Then, by the triangle inequality,
4L +2L = 6L.

|w1 < 4L by Lemma 8 and || Anom(a*, M;;)|| < L by the definition of L. We have

Xij =M, < 1 Xull, + 1251, <
m

illy, <

Next we show that Assumption A3 holds.
Lemma 11. Suppose po > @. P (|| X — M,

< C’f’yA*) >1- n%for some constant C.

Proof. Denote Y € R"*™ by
Q(Xw - tM D) i<
Yij = (X’Lj ) =7
0 P>
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Note that ||}, ||,/J1 <2 HX ij —tM}, || " < 12L by Lemma 10. By the property of subexponential random variable, for all
t'>0,P(|Y;;] >t') < 2exp(—t /ClL) where C is a constant. By the construction of Y, we also have

E(Yi;)=0 and E(Y3) <2E[X}] < CopolL? 5)
for some constant Cs.

Consider applying Lemma 7 to X with ny = ny = n. Let e = 5-5. Then K = C; Llog(4n?). Take ¢’ = /Co3Inn2K +
In 2. Then max(ny,n2) exp(—t2/(Co(2K)?)) + € = L. Furthermore, by Eq. (5) and npo > log® (n), one can verify that

20 +

+t < Csy/npol

ning
for some constant Cs.
Therefore Y|, < Csy/npoL with probability 1 — . Note that X —tM* = (Y +YT)/2. Hence, with probability
o | X =M |, < (1Y, + [[YT]|)/2 < CsxﬁnpoL < OyyA©. O

Next, we will show that Assumption A4 holds based on the matrix Bernstein’s inequality to control the tail bound of sum of
sub-exponential random variables.

Lemma 12 (Matrix Bernstein’s inequality). Given n independent random my X mo matrices X1, Xo, ..., X, with
E[XA = 0. Let
n n
V £ max < S CEXGXT|L D EXT X)) ) : (6)
i=1 i=1
Suppose ||| X; |||, < Lfori € [n]. Then,
| X1+ Xo 4 ...+ X || S V/Viog(n(mi +ms)) + Llog(n(my +ms))log(n) (7

with probability 1 — O(n~°) for any constant c.

Proof. LetY; = X;1{|| X;|| < B} be the truncated version of X;. We have,

IE ()| < H [xtqixi> Byarce)

(4)
% /||X1-H11{||Xz—|| > B}df(X;)

<BP(X > B)+ [ POX > o
B

(id)
< BeB/CL 4 0L B/OL ®)

where (i) is due to the convexity of ||- || and (ii) is due to the subexponential property of || X; || and C is a constant. Meanwhile,
we have

(Y))(Y; —E(Y, E(Y,)E(Y;)"

- E (XX 1{|X:| > B}) H

> \

> B (x.x7)

i=1

(i1)

< <V




Near-Optimal Anomaly Detection for Matrices with Sub-Exponential Noise

where (i) is due to the positive-semidefinite property of E(Y;)E(Y;)" and E (Y;Y") — E(Y;)E(Y;)",

(i) is due to the positive-semidefinite property of E (X;X!1{|X;||> B}) and E(Y;Y;'). Similarly,
IS5 B (G - Ea) (% —E(¥) || < V.

Then, by Theorem 6.1.1 (Tropp et al., 2015), we have

‘(

Then, with probability 1 — O(n~¢) for some constant c,

N
Z(n —~E(Y3))

t2/2
=t) =2~y ops )

N

> (Y —E (V7))

i=1

< \/Vlog(n(m1 + mg)) + Blog(n(my + ma)).

Take B = Llog(n)C’ for a proper constant C’, by Eq. (8), we have

N

DY

i=1

< V/Viog(n) + Llog?(n) + nL log(n)O(n_C//C)

< \/V log(n(my + m2)) + Llog(n(mi + ms))log(n).

By the union bound on the event || X;|| < B for all i, we can conclude that, with probability 1 — O(n ") for some constant

N

>

=1

< \/V log(n(my + ms)) + Llog(n(mi + ms))log(n).

Consider the Assumption A4.
Lemma 13. For any m € [n] and any W € R™*", the following holds

_ _ - W
P(MX—MFMngscNWW2m¢<¢nmkz)>21—om*>

where C'is a constant.

Proof. LetY; = X;; — tM;; and Z; = Y;W; . € R'". Note that

n

|&—ar),, w,= |22
=t |,

We aim to invoke the Lemma 12 for Z;, Zs, ..., Z,. Note that E (Z;) = 0 since E (Y;) = 0 and Z; are independent since
Y; are independent. Also, for the subexponential norm, we have

11251511, < I3, 1197511
<1511y, 1,00
SLIW 0
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where the last inequality is due to Lemma 10. Then, one can check
D E(Z]Z)| <X _|E(Z] 7)) ||
j=1

<> E@)IW;.1;

Similarly, one can show that HZ . (Z Zj)
probability 1 — O(n=3),

‘ L?po ||I/V||F Then, we can invoke Lemma 12 and obtain, with

| (X =), W< Lypo W lp VViog(m) + LIW |, log? (m):

Since ¢(z) = /log(n)L VZPO Lloi*", we have

. - w
L6 |W s v/108() + L W, o Tog?(n) S A ||W||2,oo¢<ﬁ”w'|f )
2,00

This finishes the proof. O

After showing that Assumptions A1-A4 hold, we can prove the following theorem.

Proposition 2. Lett := (g(a*)p}i + (1 — p}))po. Suppose po > @ and \/npo log(n)Lk? < Ct\} for some known
constant C. Then, with probability 1 — O(n~2), the following holds

[ 7 [ 7k Vnp HL \ [ * *

U], S 51T Hg,oﬁixﬁ (RN PR
_ npo log(n) — npokL X N
|Osen(a1) = 0, < LIS AL 0, + Y 307, /5

Proof. Lety = (C1 +1)7, ¢(z) = Ca¢(x) where Cy, Cy are constants defined in Lemmas 11 and 13 respectively. One can
2
verify that y = (C; +1) "pOHL,¢( ) =Co O SALL! log(j\lzfﬂog n)sl
1

. In order to apply Lemma 6, we still need to show that

32k max(y, ¢(y)) < 1. Because po > 10ng and \/npo log(n)Lx? < CtA%, one can verify that 32x max(7y, ¢(v)) < 1
by choosing a sufficient small C'. Based on Lemma 11, Lemma 13, we can apply Lemma 6 and obtain that, with probability

1—-0(n?),

U0 S (54 ST [l 0 + v [[EM7]], o /A7
[Tsgn(H) =T, .. < (5 + (1) (v + 6(0) + (W) [T |1, o+ 6307, .. /A"
Using the fact A* = tA]/k, ¢(1) < 1 < Kk, we have
|Gsgn(E) 0, S (6214 060) + 6 [0l 1| 5 . /0

Plug in the definition of  and ¢, we complete the proof. O



Near-Optimal Anomaly Detection for Matrices with Sub-Exponential Noise

A.2. Asymmetric Case

Let Xq associated with M™, p},a”, po be the observation generated by the model described in the Section 2. Let
t = (pig(a*) + (1 —pi))po. Let M* = U*S*V*T M = USVT be the singular decomposition of M* and M, where
M = arg min,ankny<r || X" — M'|| and X’ is obtained from X¢q by setting unobserved entries to 0. We construct the

: CNTE Onxn M*
following: M* := (M*T O

e L (U Uy (e 1 v

Note that the largest r singular values, o7 > 05 > ... > o), of M* are the same as the largest r eigenvalues of M*. The

) . One can verify that the spectral decomposition of M* is

_ _ *
(r + 1)-th eigenvalue of M* is non-positive. Let U* = % (V*> be the eigenvectors associated with the largest r singular

values of M*. Similarly, let X := 0 T X LetU = L v be the eigenvectors associated with the largest r
X' Omxm V2 \V

singular values of X.

We can apply Proposition 2 to the A/* and X constructed in this subsection. This gives us the following result.

Proposition 3. Let H = L(UTU* + VIV*) N = n + m, y = max (N||U* 2 N ||V*||§m) Ir k= ot jor t =

(pag(a®) + 1 —pi)po. Suppose po > % and \/mpe log(m)Lr? < Cto} for some known small constant C. Then,
with probability 1 — O((nm)~1), the followings hold

wr

T3 00 VIV llg,00) S 4/ )
< Vpolog(m)r®Ly/pr

([Usgn(H) = Ul oo V [[Vsgn(H) = V7 l; o) (10)

~

*
to]

1
M — M|, < /#umﬂ%g(m). (11)

Proof. Note that /2 ||U* = (1U"lg.00 V IV*ll5 00) < V/pr/N. Furthermore, we have

H2,oo

[ ||y g = 1M [l e < MU 00 12V Iy < 1U* [l 0 07 < V/par /N

Apply Proposition 2 on M* and X along with the bound on H U* , ||M *

1—-O(N7?),

we can obtain, with probability

||2,oo HQ,OO’

_ ur
100 = 54/ T (12)

< @,ﬂm: Vo log(N)w* L/ (13)

|2 oo Y * *
’ toy to]

|Usgn(H) — U*

This completes the proof of Eq. (9) and Eq. (10). Next we proceed to the proof of Eq. (11).
Let U = Usgn(H),V = Vsgn(H),% = sgn(H)TSsgn(H). Note that M/, = U; XV = U; .SV and M}, =
UI*Z*VJ*T Then,
k| 7o * vk
|M; — tM5| = [tr(Us . XV;)) — ttr (U X V)
= [tr(ZV}LU;,.) — tte(SFVTU )|
= |tr((X — tZ*)(f/ﬁUi )+ tr(tZ*(‘%TUi7. — ij,TUf,,))|

< Hi — 2" HVJTUZ ‘N/]Tﬁz - VJ*TUZ*
5 || V3 ) - Y,

|+t

(14)

*
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where Eq. (14) is due to the triangle inequality and |tr(AB)| < || A|l5 || B||, by the Von Neumann’s trace inequality. We
derive the bound on the term H ViU, - vy, H . Let ¥ = ky/npoL/(o}t). Note that

|70 —viruz || = | @ - VDo + viT @ - v)

*

?

*T (17 *
| +|vr @ -

*

< |- vir, o |, + i, o - vz (1s)
< & ViogW)av/ur/N (|0, |, + Vi) (16)
< w°\/log(N)ypr /N (17)

where Eq. (15) is due to ||abTH* = ||abTH2
due to Eq. (12). We then bound H IN/]TUZ H ,

IN

llalls ||0]l5 for any vector a, b, Eq. (16) is due to Eq. (13), and Eq. (17) is

7177 7T 77 *T 7%
Vi Ui, ViU, =V U

| < IviTull, +|

<S|\vitus |, + H?’\/log(N)&% (18)

* * A U
SV ||2,oo U ||2,oo + 1%y/log(N)4

N
<B4 k3 log(N)A
N N
< 2HT 1
SN (19)
where Eq. (18) is due to Eq. (17) and Eq. (19) is due to x+/log(N)¥ < 1. Next we bound H ¥ —t3*|| . Note that
2
Hf] — EH2 = Hsgn(H)T(Esgn(H) — sgn(H)Z))H2
< [|Ssgn(H) —sgn(H)X ],
= [[(EH — HX) + X(sgn(H) — H) + (H — sgn(H)) ||,
<|[BH — HX|y + 23], [[sgn(H) — H|, - (20)
By Lemma 2 in (Abbe et al., 2017), we have
Isgn(H) — Hlly S (| X — 0™ ||, /(to)))? < 7 @21
|SH — HX||, < 2|| X —tM*||, < tho; (22)
where || X — tM*||, < 4to} by Lemma 11. By Weyl’s inequality, we also have || — tX* ||, < | X — tM*||, < tjo;.
Hence,
15y < 1827y + 12 — 157 |l; S toq + thoy S toy. (23)
Plugging Egs. (21) to (23) into Eq. (20), we have H Sox Hg < t30* + 13207 < t3o7. Therefore,
”i—tz* < HE—EH S =5, < thor. (24)
2 2

Plugging Egs. (17), (19) and (24) into Eq. (14), we arrive at

kL Npo _ b

po log(N)
tey "~ ’

< t3/1og(N)AEL 6% < 113 /log(N) 2L o -

M —tM*
H max ~ N N

urL
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Next, we provide a lemma for the concentration bound of the sum over (2.

Lemma 14. Ler Q = {(7,7)|0;; = 1} C [n] x [m] where O;j ~ Ber(po) are i.i.d random variables. Let {T;;|(i, j) €
[n] x [m]} be independent random variables with E (T;;) = pij. Let S =3 ; i c(n)x[m) POPij- Then, with probability
1—1/(nm),

Z T,; =S| <C (\/Slog(mn) + log(mn)>
(4,5)€Q
where C'is a constant. In particular, if S 2 log(nm), then
S m-S| <18
(4,7)€Q

where C1 is a constant.

Proof. Let Z;; = T;;0;;. Then Z;; € [0,1],E (Z,;) = popi;. By the Bernstein’s inequality (Bernstein, 1946), we have

t2/2 _t3%/2

- X P 2+ & z
] 3

due to
E ((Zij — popi;)?) <E(Z}) <E(Zij) = popi;.

Take t = C (\ /S log(nm) + log(nm)) where () is a constant. Then we have

PlLY Ty— > §|>t g%

(i,5)€Q (4,3)€[n]x[m]

for a proper Cs. O

Proof of Theorem 2. Next we proceed the proof of Theorem 2 based on Proposition 3. By the assumption in Sec-
tion 2, log"® (m)ur L2 /(|| M* || . VM) S /PO and 1 — p} 2 1. Note that || M*|| < ojur/m, this implies that

max nv

* log!®(m C . . . .- .
Vl9og(m)ymLk? < \/poos and \/po 2 iT(), which is the condition required by Proposition 3. Also, by taking
log”(m) \ve have, with probability 1 — O(-1),

n ’ nm

T;; = 1in Lemma 14 and noting that po 2
|[nmpo — Q]| < C/log(nm)ponm

where C is a constant. Then

nm 1| |nmpo — |9
ﬁ - % a Qpo
C'y/log(nm)ponm
1Qpo

< C’+/log(nm)
T /Ponmpo
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where C” is a constant. Finally, we can obtain

’ t ’ ’ 1 ’ 1
HM"m M* HManJrMM*
9] po lmax € po PO PO lmax
< ’ L(M/ Yy H log(nm)/ponm
po max max po
< k*urL  [log(m)po LT log(nm)
Po m ponm
1
< kL log(m) (25)
pom
This completes the proof. O

B. Analysis of 7*" and Proof of Theorem 1
B.1. Moment Matching Estimator

B.1.1. PROOF OF LEMMA 1

Recall that

1

0.M)=— Panom (Xii < tla, Mi;) + (1 — pa)Ppoisson (Xii < t|M;:)) .

9:(0, M) nm(__)e[]x[]@AA (Xij < tla, Mi;) + (1 — pa)Pp (Xij < t[M;5))
2,7)E[n] X |m

Let 6’ = x*purLy/ log(m) and

T

h(o) = (gt(e N () — 1K = t[s(zj’j) e Q)

|
—

Il
=)

We have the following result.

Lemma 15. With probability 1 — O(-L), forany 6 € © andt = 0,1,...,T,
|9:(60, M*e(67) /e(0)) — g¢(6, M /e(6))| < (K + L)6".

Proof. Note that Panom (X;; = t|a, M) is K-lipschitz on M. One also can verify that Ppgisson (Xi; = t|M) is L-Lipschitz
on M. Hence

(PAPAnom (Xij < tla, Mij) 4+ (1 — pa)Ppoisson (Xij < t[M;5))

is (K 4 L)-Lipschitz on M;;. Let C1, Cy be two constants. By Theorem 2, with probability 1 — O((nm)~1), | M, /e(6*) —
M;}| < (4¢’. This implies that

Cy0'
~ e(0)

< Chd’

Mi*je(e*) B Mij
e(9)

where we use that e(f) > (1 — pa) > c for some constant c. This implies that

M;;-e(ﬁ*) M;;

Mre(0) _ M Ao | M)
gt (9’ e(0) ) % (9’ de))‘ = nmz; e(0) e(0) (K+1L)
S (K +L)d.
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Lemma 16. With probability 1 — O((nm)~1), h(6*) < (K + L)?(8)>

Proof. Set Cy, Cs, C3, Cy, C5 be proper constants.
Note that by Lemma 14, with probability 1 — O((nm)~1),

1X55 <t,(i,5) € Q = ponmg, (0%, M*)| < Car/ponmg,(*, M*)log(nm) + C; log(nm)
Also, we can similarly obtain ||Q2] — ponm| < C54/ponmlog(nm) by Lemma 14. Then, one can verify that
|Xij =t, (laj) € Q‘ _
1€

_ ‘ [ Xij =t,(1,5) € Q — [Qge (6", M~)
€|

gt(0*7 M*)

1
< @ (02 \/pOnmgt(e*a M+*)log(nm) 4+ Cs \/ponm log(nm)g:(6*, M*) + Cs log(nm))

/ponmlog(nm)
<y

nmpo
log(nm)

JImpo

Then, taking 8 = 6* in Lemma 15, we have

< Cy

T

n0%) = 3 (90" 31/e(0)) Xy = 1,(0.3) € QU/19)

t=0

T 2
< Z (|9t(9*7M/e(9*)) —9:(0", M*)| + Cs IOg(nm)/\/nmpo)
< (K + L)*(8')? + log(nm) log(nm) / (nmpo)
< (K + L)(9')?

~

due to the fact that ' > 198(m) 4nd po pe logx%. O

rom

Proof of Lemma 1. By Lemma 16, with probability 1 — O((nm)~1), h(d) < h(0*) < (K + L)2(8')2. This implies, for
eacht < T, |g.(0, M /e(6)) — W\ < (K + L)é'. Combining with Lemma 16, we have, for each ¢ < T,

19:(0, M /e(0)) — g0, M /e(67))| S (K + L)3'. (26)
Note that
|g: (67, M™) — gt(é,l\{*e(é’*){e(é))l ) ) ) )
< |g:(0", M™) — g (0, M /e(0))| + |9:(0, M /e(0)) — g:(0, M~ e(07)/e(0))].
By Lemma 15, |g;(6, M /e()) — g+(8, M*e(6%)/e(6))] < (K + L)&'. Also we have

19¢(67, M*) = g:(0, M /e(8))] < |g:(6", M*) — go(0", M /e(6%))] + |9:(0, M [e(0)) — g:(6%, M [e(67))]-

By Lemma 15 agian, we have g, (0%, M*) — g:(0%, M /e(0*))| < (K + L)&'. By Eq. (26), we have |g;(0, M /e(h)) —
9:(6*, M /e(6%))| < (K + L)d'. In conclusion,

19:(67, M) = g:(0, M /e(6))| S (K + L)¢'.

Therefore, || F(8) — F(6*)

‘ < (K + L)é’ since T is a constant. O



Near-Optimal Anomaly Detection for Matrices with Sub-Exponential Noise

B.1.2. PROOF OF LEMMA 2

Lemma 17. Suppose F' satisfies the following condition:

o [:0 C RM — R s continuously differentiable and injective.
e Byo,s(0*) C © where B.(0%) = {0 : /|0 — 0*|| < r}.

o [[JF(0) = Jr(07) | pax < C1 1|0 — 67| for 6 € Bac,s(67).

o 7601, < O

Suppose 2v/d1d2C (C2)%5 < 1/2. For any 0 € 6,
| F(0) — F(0)| <6 = [6—0"|| <2Cs0. (27)

Proof. Suppose || F'(0) — F(6*)| < 6. We construct a sequence of §; such that lim; ., F'(0;) = F(0) while ||0; — 6% is
well bounded for every i. Let §; — 0* = J'(6*)(F(0) — F(6*)). Note that

16 =071 < | T5 ()|, [1F(0) — F(67)]| < Cad.

Furthermore, by multivariate Taylor theorem,
F(6,) = F(0") + A(6; — 0)"

where the i-th row A; = (VF;(z;))T such that 2; = 6* + ¢(f; — 0*) for some ¢ € [0, 1]. Hence, F(0;) = F(6*) +
Jr(0%)(0; — 09T + (A — Jp(0*))(01 — 0*)T. Note that F(6*) + Jr(0*)(0; — 6*)T = F(6) by the definition of 6;.
Therefore,

F(61) = F(0) + (A= Jp(07) (61 — 0")"

= [[F(61) = FO) < [[A=Jr(07) 5 (61 — 67

= [F(61) = FO)| < [[A = Jp(07) | ax Vdrdz [0 — 07|
(91) — F(Q) | < CiV/dids H91 — G*H
= [|[F(61) = F()|| < C1V/d1d>C36°.

We can use the similar idea to the successive construction. In particular, let t = 2v/d;d2(C1)(C2)%5 < 1/2,a =
2C1C5+/dyds, 09 = 0*. Suppose

= ||F

k 1 k+1
= _ E — F < — .
(@2t = 1), |F(0) = F(0) | < =t

—_

1 .
10k — k1] < =t*,[|6x — 67| <
a

It is easy to verify that the above conditions are satisfied for k& = 1. Then let 0y, — 0, = J5'(6*)(F(0) — F(6},)) for
k> 1.

Then, we have |61 — 0l < Colopr < £ Also, [|By — 67| < [|ksr — Oill + |6 — 67| < 2= <
2t+. Furthermore,
F(Or1) = F(O1) + Jr(0*) Orr1 — k)" + (A = Tr(07)) (41 — 01)"
= F(0p41) = F(0) + (A = Jp(07)(Ors1 — 01)"
= [|F(Ors1) = F(O)|| < A= Tr(07) ]l 16ks1 — Ol
= [ F(Ok11) = FO) < 1A= Tp(0%) [l oy V1da || 011 — Okl
—> [ F(Ok11) = F(O)|| < Crv/dda(]| 6k — 0| + 1|01 — Ok 1) 10511 — O |

— [F (i) - FO)] < Crv/aid 22

a
CCor/dyda2 th+2 - ht2

= [[F(0r1) = F(O)]| < " pro pen
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Note that ||6 — 0| < % Therefore 0 € O is well-defined. Furthermore, we can conclude for any € > 0, there exists
N.,if k1, ks > N, ||0k, — 6, || < €. Therefore, the sequence converges. Suppose limy, 6, = ¢'. Note that [|§' — 6*|| < 2t
due to |6, — 6% || < 2L. Also note that || Jp(0)]| is bounded for || — 6* || < 2L, This implies that limy, F/(6;) = F(¢’). On
the other hand, due to the convergence of F(6y), limy F(0;) = F(6). By injectivity, # = 6’ and ||6 — 0*|| < 2t/a. This
completes the proof. [

Proof of Lemma 2. We proceed the proof of Lemma 2. By the regularity conditions (RC) stated in Section 4.2 and
Lemma 17, we have | F(0) — F(0*)|| < (K + L) = |0 —0*|| S (K + L)§'. By Lemma 1, we complete the
proof. O

B.2. Confidence Interval Estimator and Proof of Lemma 3

Let ' = (K + L)x*urL log( ) Let

&ij = [PAPAnom (Xij|d, Myj /e(6))]
@ij = [(1 - ﬁA)PPOisson(Xij |M7,j/6(9))]
Let zij = pAPAnom (Xij [ M:}) sYi5 = (1 — pi)Ppoisson (XU|M;';) We have the following result.
Lemma 18. With probability 1 — O(1/(nm)), max(|&:; — xi;|, 10i; — yis|) < C(L + K)?Ld' for any (i, j) € Q.

Proof. By Lemma 2, with probability 1 — O(1/(nm)), we have Hé — 6"

<4
Note that g(#) is K-Lipschitz in 8 and e(f) = pag(0) + (1 — pa). Hence

le(8) — e(6")] < [pa — pAl(L = g(6)) +pilg(9) — 9(67)

S (K +1)48.
Furthermore
My el = L o)
e(0) e()
1 * * * * N
< gy (1 = Me(0)]+ 207le(6) — e(9)]
S g tUE )8
< L(K +1)6'.

Note that Papnom (o, M) is K-Lipschitz in « and M. The implies that
|Zi; — zi5] < |PAPAnom (Xij|daMij> — PaPAnom (Xij‘a*»Mi*j) |
S |ﬁA - p*A“P)Anom (Xij|a*7 MZ*J) + |]PAnom (Xij‘a*a M;}) - IP)Anom <ij|d7 Mz]) |13A
<&+ KL(K +1)¢
< KL(K +1)5.
Similarly, one can obtain |g;; — v;;| < L?(K + 1)d’. In conclusion,

max (|2 — ijl, |9ij — vij|) S (L + K)*L.
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Lemma 19. Suppose |& — x| < §,|§ — y| < § where x,y,%,5 € [0,1],z +y > 0. Let § = ﬁ_y if & + 9 > 0 otherwise

$=0. Then,
0
R — ‘gmin< d 1) (28)
r—+y r+y T+y

trivial since § € [0,1] and -2 € [0, 1].

Proof. Note that |3 = +y

due to xz < 4.

8
<
+\m
<

PO ’ a?(m—l—y)—ac(i:—i—@)’
T4y @+ 9)(z+y)

| dy—axy ’
+9)(z +y)

-0 —y)-@—-(@-—2)
(@+9)(r+y)

—2(J—y) + @ —2)y
@+9)(z+y)

(z
(7

IN

IN

x

pry which completes the proof. O

2 s
By symmetry, |5 — < #7550

Proof of Lemma 3. Next, we proceed the proof of Lemma 3. For notation simplification, write £;5, 3;;, Ti;, ¥ij as £, 7, %, Y.

Letd = (K + L)3s*urL?,/ logo( . and C be the constant denoted in Lemma 18. Then by Lemma 18, with probability
O(1/(nm)),
|z — 2| < C6,ly —g| < Co.

By Lemma 19, we have

T—-C6 x
- < :
T+ T +y

3

Therefore f& < f*. Next we show that o+ 4C0.

ij = U—

If 405 > (z + y), then {3 +

Ty = (z 4 y). Note that

(x +y) >4C6

= 4d(z+y—2C0) >2(x+y)
4Cs - 206
r+y x+y—20C6
4Cs S 2046
z+y  F+G
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Then,
zT—C6 4C6 x 206 4C§ x
— + > -—— |+ > .
T4y Tty r+y THY Tty r+y
This implies that —|— 405 > fi;- Similar result can be shown for ff; This completes the proof. O

B.3. Analysis of the optimization problem P*W

Note that PEW is obtained from P* by replacing f; 7 with the confidence interval estimators and f Intuitively, we
could expect that PEW ~ P*, and therefore the algorlthm 7EW should achieve the desired performance We first have the
following lemma to show that FPR ;ew () (X) <+ since fz% <f5< ff} and so {t;»EjW} is a feasible solution of P*.

Lemma 20. With probability 1 — O(1/(nm)), forany 0 < v <1

FPR ew () (Xq) < 7

Proof. This is because

SV < Y VR <y > <y D

(1,7)€Q (1,7)€Q (i,7)€Q (1,7)€Q

due to that S < and the constraint of tEW . O

L

To show the desired performance guarantee for TPR ew (X '), we provide the following Lemma that characterizes how f; ;

and are close to f/; in an accumulated manner (the proof is shown momentarily):

Lemma 21. Let§ = (K + L)3k*urL? log(m) . With probability 1 — O(-X),

ST (5 = £51 + 18 = £51) < CLlog(m)dponm.
(i,5)€Q

Next we proceed to the analysis of P*W. For a fixed 7, let {ti;} be the optimal solution of 7* (") for some 7' such that
Z(l JER 17
z:(1 JeR 1]
TPR performance compared to 7* (). Indeed, a sufficiently large 7 can be achieved by Lemma 21. In particular, we have
(the proof is shown momentarily):

=1 < 1. The key idea is to find some 7 such that {¢;} is a feasible solution of PEW . while maintaining good

Lemma 22. Let § = (K + L)3x4purL?(/ 20y — 1 — CL8log(m)/y. Then {ti;} is a feasible solution of P*W.

pom ’
Z(i,j)eotfj—z(i,j)ent;j) <C L& log(m)
Z(i,j)egz(l_f;j) - 1 ’YPZ

Furthermore, min (17 for a constant C1.

B.3.1. PROOF OF LEMMA 21

Next, we prove Lemma 21, i.e., show that the accumulated error induced by the approximation of f; by f; and fij R has the
desired bound.

Proof of Lemma 21. Let z;; := piPanom (X¢j|oz*, Ml*J) ,Yij = (1 — pA)Ppoisson (XU|MZ*j) . By Lemma 3,

max(| 713 = fi5l1 f} = fi5l) < e

where €;; := min ( 4Cs_ 1) for some constant C' and § = (K + L)3k*urL?,/ %.

Tij+Yij

Note that when X;; = ¢,

Tij + Yij = P(Xij = t).
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Note that || X; ||, < L is a sub-exponential random variable by Lemmas 8 and 9. Then, we have

P(X;; >t) < exp /'L
— P (X]; > C'Llog(1/6)) <0

where C’ is a proper constant. Let 2;; = min (m, 1) . Then,
ij—

E (2i;) = »_min (1,6/P(Xy; = 1)) P (Xi; =1)
t=0

C'Llog(1/6) 00
< > s+ > P(X,; =t)
t=0 t=C"Llog(1/8)+1

< C'Llog(1/8)d + 6.

Note that z;; € [0, 1] are independent random variables. Then, by Lemma 14, with probability 1 — O(%),

> zi; < Llog(1/6)dponm + \/ponmlog(nm)

(1,5)EQ

< Llog(m)dponm

given that § > log(m)

pom °
Therefore,

S max(Iff = fELIS =D < )0 e S 0Dz S Llog(m)dponm.

(i,5)eQ (i,§)€ (4,J)EQ

B.3.2. PROOF OF LEMMA 22

Consider a concentration bound
Lemma 23. Let Cy, Cy, C3 be constants. With probability 1 — O(-X-),

nm
> fi = Cinmpo
(4,5)€Q
Q] < Conmpo.

Furthermore, if pi ponm 2 log(nm),

Z 1 — fi5 > Caprponm.
(1,3) €2

Proof. Let Z;; = P (B;; = 1|X;5). Then }_; yeq 1 — 55 = 22 j)eq Zij- Note that E (Z;;) = pj, and Z;; € [0, 1] are
independent. Hence, by Lemma 14, with probability 1 — O(%), > (1.)€Q 1-— fi*j > Cpiponm where C is a constant

given that p3 ponm 2 log(nm) Similar results for 3 ; ;ycq f7j (with 1 — p} > ¢ for some constant ¢) and [€2| can also be
obtained. O

Proof of Lemma 22. Let {t;,
optimal solution of 7*(+). Suppose

(4,7) € Q} be the optimal solution of the algorithm 7*(v"). Let {t;, (i,7) € Q} be the
Z(i,j)eﬂ tgj

—=n<l1l
2 yeatis
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Order f35 by fo5, < faspy < -+o < f3,50,,- One can easily verify that toby < tobstugh, < t22b2,...,t;|mbm| <
t:;\mb\m Furthermore, for any k and [ such that ta p, > Oand t, —1t,, >0, wehave f; , < fr, LetA =
Z” L B— Z” H— m’C Z” i ”, D = Z”( ) iJ.Then the following weighted average inequality holds:
% < D. This implies that & 5 < ifg, Le.,
1
I T P £ L (29)
/ ijdij = * ijJij
2 i.geati (i,)€Q 2ipent (i,)€Q
This implies that }°; o ti;f75 <132 jyea tijf7;- Then, we have,
R * R *
Dot < > b+ = 1D
(i,4)€Q (i,4)eQ
<\ 2 ffy )+ 30 15— fil by Eq @) and 0 <1y <1
(i,§)€Q (i,7)€Q
<l Do 5+ Do -1 D thifisy D 1h
(i.d)e (m)eﬂ (.)€ (h.j)es
(i,§)€Q (4,4)€R (”)GQ
Note that

'YZ zj_ryz +Z|f®]_z]

(1,4)€Q (i,7)€Q (i,4)€Q

Therefore, we have

Dl <y X | X (G- Spl+If—A5) | —a-m 3 £
(1,5)€Q (4,5)€Q (4,5)€Q (4,5)€Q
By Lemma 21, we have (Z(M)GQ (155 = fRl+ 115 — 5|)) < C1Llog(m)dponm. By Lemma 23, we have (1 —
m X jyea fi = Cav(1—n) (m)é. We then have {t/;} is a feasible solution of P=W:

Z ZJ—VZ

(i,)€Q (.)€

Furthermore, for any 0 < v < 1, we can get
Z(i,j)eﬂ(tfj - t;j) _ (1—mn) Z(i,j)eﬂ 2
2apea =5 Xaupeal = 1)

By Lemma 23, 3, cq ti; < |Q < nmpo. Suppose pyponm 2 log(nm), then by Lemma 23, 3~ ; (1 = f5) 2
nmpopy - This leads to

2ipeltiy ~ty) _ (1—mponm _ Llog(m)s
E(i,j)eﬂ(l_f;}) ~  popinm T pi

(30)

\/7 (nm), then

Llog(n)éZ 1 > nm./po >1.
DA piv/Pom ™ log(nm)/m

This completes the proof. O
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B.4. Proof of Theorem 1

Proof of Theorem 1. Finally, we proceed the proof of Theorem 1. Note that

TPR () (Xq) — TPRew () (Xq)
Z(i,j)eﬂ t;'kj(l - f;;) - Z(i,j)eQ t%‘w(l - f:})
Z(' Heall = f35)
< Z(i,j)eﬂ(t;j ) (Z(zy =29 ’L] fz*] - Z (3,5)€Q Z]f’L])
B > peal = f3)

Note that Z apeatifi = Y2 G ea fi and Y heatin i < v jyeq fi; by Lemma 20. Furthermore,
Z(Z feo te ] W Z (.)€ ti; since {t;;} is a feasible solutlon of PEW and the objective function of P*W maximizes

2 (ij)en tV given the constraint. Hence,

2ipealti — t?jw) < Yipealtiy —ti;)
Yapneal =15 T Xapnead = £35)

Also, note that TPR - (,)(Xq) — TPR pw(,y(Xq) < 1 since TPR < 1 by definition. By Lemma 22,

TPR+(y)(Xa) — TPRyew (1) (Xa) <

Llog(m)é
TPRW*(’Y) (XQ) — TPR.,TEW(,Y) (XQ) 5 ’_yg;*>7
A

which completes the proof. O

C. Minimax Lower Bound

C.1. Proof of Proposition 1

Consider the model X ~ H(p}, M*). Recall that the construction of M,, = {M? € R"*" b ¢ {0 1}7/2} is: for the i-th
and (z + 1)-throws, set M;; = 1land M;yq1; =1 — f if b;j2 = 0; otherwise set M;; = 1 — f and M;,1; = 1. Here
<3 1s some sufficient small constant.

For a constant Cj, let H; denote the set of all policies such that

Px~npyn) (FPRR(X) <7) > 1—Co/n® forall M € M,, 31

Sety = 2%, P = 5. We write Z(Z feln]x[n] a8 Yo ; if there is no ambiguity. Note that anomaly can only occur when
X;j = 0. One can Verlfy that

1/2e=Mi;

= 1 1jae

]l{XZJ:0}+]1{XZ]>0}
e ’L*
:WH{X]—O}+11{X13>O}

Since the anomaly only occurs when X;; = 0, a “rational” algorithm should not claim anomalies for those entries with
X;j > 0. We have the following result:

Lemma 24. For any 7' € 1I,, there exists 7 such that for any X,
FPR,(X) < FPR, (X), TPR,(X) = TPR (X).

Furthermore, P (Af] =1,X; > O) =0.
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Proof. For any algorithm 7/, we can construct 7 as the following: let A A7T if X;; = 0; otherwise A’T = 0. Then it is
easy to see that

B (AR = 11X) £ < 3P (AT = 11X) £
ij ij
This implies FPR (X)) < FPR/ (X). Furthermore,
S P (AF = 1X) ( ZIP( —1|X> (1—f5).
ij
This implies TPR,(X) = TPR (X). O
Hence, it is sufficient to only consider 7 that does not claim anomalies for entries with X;; > 0. Let II, = {7 €
| P (Af] =1,X; > O) = 0}. Note that the FPR constraint is a high probability statement, hence it is possible that

different M € M,, satisfies the constraint on different sets of X and makes the problem hard to analyze. To address this
issue, we consider the “expectation” of the FPR constraint and have the following lemma.

Lemma 25. For any © € 11, and any M € M,

Z ag; (M)e_M” < yn? +2C,. (32)
where af;(M) = Px~n(ps ) ( =1|X;; = 0)
Proof. By Eq. (31), with probability 1 — p, rewrite Eq. (31)
DR (AL =UX) 5 =) (33)
ij ij

Take the expectation on the left hand side of Eq. (33), we have
ExH(py M Z P (A7 = 1|X) f;;
_Z1+e - E (P (A = 1, X5 = 01X)) + E (P (A7, = 1, X;5 > 0]X))
_ZHe P (A =1, X5, =0)

—Z%WW B=1%Xy=0) = 3 Jap (e,

where we use P (A; = 1, X;; > 0) = 0 and P (X;; = 0) = 3 4 3¢~ 7. Take the expectation on the right hand side of
Eq. (33), we have

— M, yn
Ex~mpy ) VZfU —’yZ( Mij 4 — (1 6M7,1)>:2.

Let G(t) = t in the event that Eq. (33) holds; otherwise G (¢) = n?. Then it is easy to verify that > P (ATr =1|X)
G(v>_,; f7;) with probability 1. Take expectation on both sides, we have

1 ~My < yn? C’o 2 yn?
Zgaij(M)e i - + < 5 + Cy,

ij

which completes the proof. O
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Next, we consider the expectation of TPR. In particular, note that

Ex~npy ) ZP 5=1X) (1~ f5)
72 1—|—e 2 B (P (A7 = 1, X5 = 0]X))
_Zl—i—e e P(A]; =1,X;; =0)

T 1 s
= XJ: 51@ (A5 =1]X;;=0) =) §aij(M). (34)

]

LetMT=1,M"=1-— % For any M € M,,, there are one-half M ™ and one-half M ~ entries in M. Note that, when
observing X;; = 0, 7* would claim anomaly on the entry M+ with priority than M/ ~, because it is more possible to observe
0 for M~ in the normal situation. Indeed, we choose y and p} in a way that 7* roughly claims anomalies for all M/ entries

with Xij =0.

Intuitively speaking, if an algorithm 7 achieves the similar performance as 7*, it must be able to distinguish M+ and M~
from the observation X . However, the construction of M,, prevent this distinguishability. We next provide a lemma to
connect TPR and the ability of recognizing M T.

Lemma 26. For any w € IL, and any M € M,

- 2
e —e - n 7\'
WZIH {Mij = M™} —af;(M)] < o T 2% (M) + 4Cye.
1] )
Proof. Let
x = Z a;; (M)
ij, M =M+
Y= Z az;(M).
1, Miz=M~—
By Eq. (32), we have ze ™" + ye=M "~ < yn? 420, = g—z + 2C). Hence
2 2 oM™
y < (2— +2C) —ze MM < (? —x) + 2Cye. (35)
e

Furthermore,

S {My =M} —af (M= Y (-afM)+ Y af(M)

i, Miz=M+ tf,M;; =M~
2
= 7 —x + Y
n? n? eM”
<(mw=—2)+ (= —2) +2Ce. By Egq. (35).
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Further algebra provides us

n? n? eM” n? e—eM \e+e
A A < | (2 —
(G -o+ (G- = (T 20— e — M-
n? (n2 )eM_ e—i—eM
=——-z—-(=— -2
2 2 e e—eM™
n2 2 M=\ et eM™
(5 -e-vr-C -0 o
n2 LeM”
§(2_$_y+2006)€_€M
n? . e+eM
= (2 ZQZJ(M) +2Cype M-
ij
This implies that
n e+eM
Zm{waM } = af;(M)] + 2Cpe < —fZa,J ) +2Coe | — =

Then, we can conclude
e—et =M | < C
e+eJVI*Z|]l{Mij_M }—aij _?—Za” +4 0€
iJ

which completes the proof. O

Next, we show that af;(M®) ~ a;(M?) if M* ~ M".

Lemma 27. Let M® € R™ ™ and M® € R™ " only differ on two rows (WOLG, the first row and the second row). In
particular, M“ = b M}; for any j € [n] and i = 3,4,...,n. Furthermore, M{; = 1 and M}; = 1 — mforj e [n];

Mg =1~ f and MQJ = 1for j € [n]. Here ¢* < . Then for any (i, j) € [n] x [n],
laz; (M) — aj;(M2)| < c*.
Proof. Consider some set .S such that

azr'rj(M) PX~H(pA,M) ( = 1\X” = 0) ]P’X~H(p;,M) (X € S)-

Let X (M) be X ~ H(p}, M), 5(X||Y) be the total variation distance between X and Y, Dky,(X||Y") be the KL-divergence
between X and Y. Then,

laz;(M*®) — af; (M M= IPx(nrey (X €5) = Pxamy (X €5)]

< S(X (MY X (MP)) total variation distance
1

< \/ZDKL (X (Ma)|| X (MP)) Pinsker’s inequality

\/ Z D (X(M®);;]| X (MPb);5) X, are independent.

Note that there are only two rows that are different between M@ and M°. Let X be the observation of the entry with value
M and X~ be the observation of the entry with the value M ~. Then we have

ZDKL M) ||X (M)i5) = nDgep(XH|X7) + nDrr(X 7|1 XH).
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Note that XT = Y+ X~ = Y b where Y™ = Poisson(MT),Y~ = Poisson(M ~), and b indicates whether the
anomaly occurs. Hence by the data processing inequality and formula of KL-divergence of Poisson random variables,

Drr(XH||X7) < Drro(YF||Y ™)
(M™* log(MJr/M*) +M~— M)

= —log( f) Tn
c* 2 <1 ¢ c*
\/EJF(Q?“)L NPTy
(¢)? 1, ¢ gxm, ¢ g
<5 +3(ﬁ) g(ﬁ)

where ¢* < 3. Similarly,

DKL(X7||X+) < DKL(YJrHYi)
= (M~ log(M~ /M*)+ M* — M")

:(l_ﬁ)bg(l_ﬁ)—kﬁ
<(- \/ﬁ)(—\/ﬁ)Jr%
S (C*)Q.

Hence,
|afj(M1) — afj(Mg)| <c*.

Next, we show a bound related to the “aggregated TPR” of all M € M,,.
Lemma 28.

% ~ s D D al(M) > —4Ce + UL (36)

MeM, ij

where c is a constant.

Proof. Recall that | M,,| = o /2 In order to use the Lemma 26, we derive a lower bound on

or O S {My =My ey = S S (M = MY} - (M)

MeM,, ij ij MeM,

Consider fixed (i, j). Let M?, M® € M,, be a pair of matrices such that the only different rows between M®, M? are the
i-th row and the ¢ + 1-th row (or the ¢ — 1-th row). Without loss of generality, suppose M = M T. Note that there are
27/2=1 guch pairs. Consider

[L{M = MT} —af(M*)]| + |1 {M); = M*} — aT;(M")|

= |1 —aj;(M*)| + |af;(M ")

=1- afj(Ma) + aT(Mb)

> 1~ |af;(M?) — af;(M")]

>1-—c".
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The last inequality is due to Lemma 27. Hence,

1
WZ Z 1 {Mij :M+} *a?j(M

ij MeM,

1 n/2— *
> s> )
ij

2

n
= — 1 —c*
Also note that (Recall ¢* < %)
e—eM= _e(l—e V) et c*
, >1l—e V7 > .
e+eM— — e = = 2n

Then by Lemma 26, one can obtain

IZ‘I{MW M+ }—a” |<——Za” ) + 4Cye.

Sum over M € M,, on both sides, we have

% 2n/2 Z Zaw ) +4Coe

MeMy ij
c 1 n x
N > [1{M;; = Mt} —a;(M)]
MeM,
* 2
> ¢t n (1—c)

2y/n 2

> #n\/ﬁ

Next, we consider the ideal policy 7* (7). Write 7*(y) as 7* if there is no ambiguity.
Lemma 29. Forany M € M,,

* n2

Za?] (M) > =5~ Cnlogn — 2.
where C'is a constant.

Proof. By Lemma 14, we have, with probability 1 — —,

Zf” 2(1 —pi)| < Cinlogn.

where C is a constant. Consider a policy 7’ that knows the true rate matrix ). Without loss of generality, let first & rows
of M be M ™. Suppose 7’ claims anomalies for (¢, j) with X;; = 0 and ¢ < (n — k1)/2 with k; = 8eCinlogn. Then with
probability 1 — =5

)
1{Xi; =0} ——~

i<(n—k1)/2 Lte

_ nln—kn)(1-p3)

- 2e

SoP(ay =11x) 1
ij
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Then we have
2 17p* *
E IP’( = 1|X) fij < 7( 5% A) — Cinlogn <~ E fij
iJ

Therefore, with probability 1 — %,
2P (A5 = 1%) 0 =5 < 3P (A5 = 11X) (- 1)
ij

Finally, we have

Exan  SF (47 =11X) (- 12 | 2 Exan | 2 (47 =1Ux) 0= 73) | - 021/
ij

ij

1
> 1{X; =0} T2

1
i<(n—k1)/2 +
—k
S Ul S T
4
2
= % — Cnlogn — 2.
O
Proof of Proposition 1. Next, we finish the proof of Proposition 1. Combining Lemma 28 and Lemma 29, we have
1 - 1 n
g 22 2.5 (M) =g Y, ) af(M
MeM,, ij MeM, ij
* 1— *
> —Cnlogn — 2 — 4Cpe + %n\/ﬁ
Therefore, there exists a M’ € M,,, such that
X7 ()= S 00) 2 Con
ij
Finally, we have
Ex~n(p;.mr) (TPRz- (X) — TPRA (X))
_x S, (P (AT = 11X) P (47 = 11X)) (1= £)°
= Bx~H(py, M’
(Pi ) Zij(l - 1',j)
af; (M') = 32, af; (M)
- 2n2
> G
~ 2v/n
which completes the proof. O

D. Experiments
In this section, we provide further implementation details of the experiments.

Computing Infrastructure. all experiments are done in a personal laptop equipped with 2.6 GHz 6-Core Intel Core i7 and
16 GB 2667 MHz DDR4. The operating system is macOS Catalina. For each instance, the running time is within seconds
for our algorithm.
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Figure 3: Synthetic data. Histograms shows problem characteristics where EW performs worst relative to ideal algorithm
(20th percentile).

Synthetic Data. We present the implementation details of our algorithm and three state-of-the-arts. For practical con-
sideration, we implemented a slight variant of the EW algorithm where (i) the matrix completion step used the typical
soft impute algorithm (Mazumder et al., 2010); (ii) the anomaly model estimation used MLE; and (iii) solving P*W by

replacing f7; directly by yj;y Given the observation X, the soft impute algorithm solves the optimization problem

mingy || PQ(X — M)||Z + X || M ||, where X is a hyper-parameter. To tune ), we start with a small A and gradually increase
it until the rank of the solution fits the true rank of M* (all other algorithms also use the knowledge of the true rank). In
order to generate the AUC curve for each instance, we vary -y in our algorithm.

In the implementation of Stable-PCP, we solve the following optimization problem (M, A) = argminy 4 | M|, +
AMAlly + p || Po(M 4+ A — X)|[7 by alternating optimization (Ma & Aybat, 2018). The set of anomalies is identified from
{(4,7) | Aij # 0}. In order to choose suitable (), ;1) and generate the AUC curve, note that when M fixed, the ratio of \/p
decides the portion that will be classified as anomalies (i.e., different points on the AUC curve). Hence, we iterate the ratio
A/p and then tune A (accordingly, 1) such that the solution M fits the true rank of M *. This provides an AUC curve.

In the DRMF algorithm, we implement the Algorithm 1 in (Xiong et al., 201 1)7 to solve the following optimization problem
(M,A) = argmin || Po(X — A — M) || with the constraints rank(A/) < r, || A[|, < e. The set of anomalies is identified

from {(i, j) | Ai; # 0}. Here, we provide the true rank 7 and vary e for the DRMF algorithm to generate the AUC curve.

For the RMC algorithm (Klopp et al., 2017), the authors propose the following optimization problem (M ,fl) =
argmings 4 || M|, + A[All; + p||Po(M + A — X)H% with constraints || M| .. < a,[| A, < a. This is effec-

tively the Stable-PCP algorithm with the max norm constraints. We choose a = k& || M*|| . for some constant scale k& > 1.
Then we implement RMC based on Stable-PCP and a projection of (M, A) into the set with max norm constraints in every

iteration during the alternating optimization.

We also study the limitation of our algorithm, in which the performance starts to degrade. Figure 3 shows that the problem
instances (in the experiment of the synthetic data) where the AUC of EW was furthest away from the ideal AUC (20th
percentile). The results show largely intuitive characteristics: higher a* (so anomalies look similar to non-anomalous
entires), lower po, higher p% and higher r (so that M* is harder to estimate). The behavior with respect to M* is surprising
but was consistently observed across other ensembles as well.

Real Data. We estimate the rank of AM* to obtain r ~ 30 via cross-validation. The observation X is generated in a same
way described in the synthetic data. The EW and Stable-PCP algorithms are implemented in a same way as in the synthetic
data with rank information r.

7 Although (Xiong et al., 2011) does not consider the partial observation scenario, but the generalization to address missing entries is
straightforward.



