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A. Additional Numerical Results
A.1. Convex Concave Minimax Settings

Here, we provide the results of the numerical experiments discussed in the main text for full-batch GDA and PPM algorithms
as well as stochastic and full-batch GDmax algorithms. Note that in these experiments we use the same minimax objective
and hyperparameters mentioned in the main text. Figure 1 shows the generalization risk in our experiments for the GDA
algorithm. As seen in Figure 1 (right), the results for full-batch and stochastic GDA algorithms in the bilinear convex
concave case look similar, with the only exception that the generalization risk in the full-batch case reached a slightly
higher amplitude of 7.8. On the other hand, in the strongly-convex strongly-concave case, full-batch GDA demonstrated a
vanishing generalization risk, whereas stochastic GDA could not reach below an amplitude of 0.2.

Figure 2 shows the results of our experiments for full-batch PPM. Observe that the generalization risk in both cases decreases
to reach smaller values than those for stochastic PPM. Finally, Figures 3 and 4 include the results for ful-batch and stochastic
GDmax algorithms. With the exception of the full-batch GDmax case for the bilinear objective (Figure 3-right), in all the
other cases the generalization risk did not grow during the optimization, which is comparable to our results in the GDA
experiments.

A.2. Non-convex Non-concave Minimax Settings

Here, we provide the image samples generated by the trained GANs discussed in the main text. Figure 5 shows the CIFAR-10
samples generated by the simultaneous 1,1 Adam training (Figure 5-left) and non-simultaneous 1,100-Adam optimization
(Figure 5-right). While we observed that the simultaneous training experiment generated qualitatively sharper samples,
the non-simultaneous optimization did not lead to any significant training failures. However, as we discussed in the main
text the generalization risk in the non-simultaneous training was significantly larger than that of simultaneous training.
Figure 6 shows the generated images in the CelebA experiments, which are qualitatively comparable between the two
training algorithms. However, as discussed in the text the trained discriminator had a harder task in classifying the training
samples from the generated samples than in classifying the test samples from the generated samples, suggesting a potential
overfitting of the training samples in the non-simultaneous training experiment.

B. Proofs

B.1. The Expansivity Lemma for Minimax Problems

We will apply the following lemma to analyze the stability of gradient-based methods. We call an update rule G y-expansive
if for every w,w’ € W, 0,0’ € © we have

|G(w,0) — G(w',6)]l2 < 7/ Ilw — w13 + |6 — /3. (1)
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Figure 1: Generalization risk vs. iteration of full-batch GDA optimization in the (Left) strongly-convex strongly-concave
setting and (Right) bilinear convex concave setting.
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Figure 2: Generalization risk vs. iteration of full-batch PPM optimization in the (Left) strongly-convex strongly-concave
setting and (Right) bilinear convex concave setting.

Lemma 1. Consider the GDA and PPM updates for the following minimax problem

lnin max f(w,), (2)

where we assume objective f(w, @) satisfies Assumptions 1 and 2. Then,

1. For a non-convex non-concave minimax problem, Ggpa is (1 + £ max{c,, ag })-expansive. Assuming n < %, Gppm will
be 1/(1 — ¢n)-expansive.

2. For a convex concave minimax problem with o, = ag, Gapa is v/ 1 + €202 -expansive and Gppy will be 1-expansive.

3. For a u-strongly-convex strongly-concave minimax problem, given that o, = ag < i—é‘, Gopa is (1 — aupt + a2 02 /2)-
expansive and Gppy will be 1/(1 4 un)-expansive.

Proof. In Case 1 with non-convex non-concave minimax objective, f’s smoothness property implies that for every (w, 8)
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Figure 3: Generalization risk vs. iteration of full-batch GDmax optimization in the (Left) strongly-convex strongly-concave
setting and (Right) bilinear convex concave setting.
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Figure 4: Generalization risk vs. iteration of stochastic GDmax optimization in the (Left) strongly-convex strongly-concave
setting and (Right) bilinear convex concave setting.

and (w',0'):

oo 3]~ o (3 =1 [0 o ety |1

<[5 3 0 [t =St

< (1+ fmax{ay,, ag}) m - [ﬂ |

which completes the proof for the GDA update. For the proximal operator, note that given n < % the proximal optimization
reduces to optimizing a strongly-convex strongly-concave minimax problem with a unique saddle solution and therefore at
(WPPM, eppm) = GppMm (W, 0) we have

wppm — W = 1)V f(WepM, Oppm), @ — Oppm = 1)V f (Wppm, Oppm ) -
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Figure 5: SN-GAN generated pictures in the CIFAR-10 experiments for (Left) simultaneous 1,1-Adam training (Right)
non-simultaneous 1,100-Adam training.

Figure 6: SN-GAN generated pictures in the CelebA-10 experiments for (Left) simultaneous 1,1-Adam training (Right)
non-simultaneous 1,100-Adam training.

As a result, we have

HGPPM(l:‘g])_GPPM([ /] |

)

il (W — W + (Ve f(Gpem(W,0)) — Vi f(Grem (W', 6')) ]H
| 60— 0'—77(V9f(GPPM( w,0)) — va(GPPM 0'))

wi(

(w—w GPPM(W 9)) (GPPM(W )))
<Il|s- 9'} I+ [ St (G .8)) — W Cremior ) ] |

w

< 5] =[] 1+ Dicimtn.0) - Goonto. ).

The final result of the above inequalities implies that

9

= D)[Grru(w. 0) = Gre(w', 0] < | m - [‘g]

which completes the proof for the case of non-convex non-concave case.

For convex-concave objectives, the proof is mainly based on the monotonicity of convex concave objective’s gradients
(Rockafellar, 1976), implying that for every w,w’, 0, 6":

w| (W \T | Vef(w,0)| | Vef(w,60)
(o] - [0 ) (o) - v on)) 2o ®
As shown by (Rockafellar, 1976), the above property implies that the proximal operator for a convex-concave minimax
objective will also be monotone and 1-expansive for any positive choice of 7. For the GDA update, note that due to the
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monotonicity property

| Gapa [Y,Y]) ~Gan( [ I

= [W 320 {w—w’r [Tad 00~ Tl 0)
0 “19—0| |-Vef(w,0)+Vef(w,0)

wfw 0 wf(W 0/
|{V f(w,0) —Vof(w',0) ]H?
)

< (1 + o) {0 9/] ||2’

which results in the following inequality and completes the proof for the convex-concave case:
[Gaon [ ) = Goon [ Pl < vIFazZ | [ =5 I

Finally, for the strongly-convex strongly-concave case, note that f(w, ) = f(w,0) + £(116]1* — [|w||*) will be convex-
concave and hence the proximal update (wppm, Oppm) = Gppm (W, 8) will satisfy

1 -
W = WppMm + Vwf(wWppym, 6 ,
T+ PPM 1+ on J(wWepm, Oppm)
1 n ~
0 = Oppy — Vo f(wppm, 6 ,
1+ o PPM 7 o o0.f (Wppm, Oppm)

where the right-hand side follows from the proximal update for f with stepsize 17/(1 4 un) and hence 1-expansive. Therefore,
the proximal update for f will be 1/(1 + un)-expansive. Furthemore, for GDA udpates note that

| Goal m) - GGDA<[Y,Y,'} ][
= o) [y T 120 e [ o] [T 8 St )
el [6”?53 & f(iv [
<((1- pow) + 0, ”[9 0,“;

< (1= 2p00, + i, )] [9 9/} HQ

Note that the above result finishes the proof because v/1 — ¢ < 1 —¢/2 holds for every ¢ < 1, which is based on the lemma’s
assumption ., < 241/¢2. Also, the last inequality in the above holds since f will be \/¢2 — p2-smooth. This is because f
is assumed to be £-smooth, implying that for every w, w’, 8, 6’ we have

el iz H[”W9> el
0—0|12= 11| Vof(w,0)— Vof(w,0)|l2
_ ['w —w'] 2 W — W Vwf(w,80) — Vi f(W,0)
=l g |l {0’—0] [vaﬂw,e)—vof(wce')]
T {wa:(w,a) Vw /(w0 ]H
Vof(w,0) —Vof(w,0) ]2

[ _ A w 0 w 0/
> [y 2o s [l ) = Fud b 0

where the inequality uses the monotonicity of the gradient operator. The final inequality shows that f will be /2 — 13-
smooth and hence finishes the proof. O
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B.2. Proof of Theorem 1

Theorem. (a) Assume minimax learner A is e-uniformly stable in minimization. Then, A’s expected minimax generalization
risk is bounded as el (A) < e.

gen

(b) Assume minimax learner A is e-uniformly stable in minimization. If the maximization problem over @ € © can be
swapped with the expectation over Z, A’s expected generalization risk will be bounded as €gen(A) < €.

(c) Assume that minimax learner A is e-uniformly stable in the minimization solution and the minimax objective is p-
strongly-concave in 0 over a convex feasible set © and satisfies Assumptions 1,2. Then, defining the condition number
k= L/p, A’s expected generalization risk is bounded as €gen(A) < VK2 +1 Le.

Proof. We start by proving the following lemma which is also shown in (Lin et al., 2019).

Lemma 2. Consider a non-convex u-strongly convex minimax objective f(w,0) satisfying Assumption 2 over a convex
feasible set ©. Then, the maximized objective fi.x(W) := maxgce f(w,0) will be (£ + (2 /2u)-smooth, i.e., for every
w1, wWo € W it satisfies

€2
||vfrnax(w2) - meax(wl)Hz S (€+ Z)HWQ - W1||27 (4)

Furthermore, defining 0*(w) as the optimal solution 0 € © for w, we have that 0*(w) is £/ u-Lipschitz.

Proof. Consider two arbitrary points w1, wy € W and define 8*(w1),0*(ws) as the optimal maximizers over © for
f(wy, ), f(wa,-), respectively. Since, f(w, ) is £-smooth and p-strongly-convex, there exists a unique solution 8*(w) for
every w. Then, the p-strongly concavity implies that

1|0 (w1) — 6" (wo ||2 (0*(w2) — 0*(w1))T(ng(W1, 6*(w1)) — Vo f(w1,0"(w2))).
Due to the optimality of 8* (w1 ), 8*(w2) over the convex feasible set © we further have

<e*<w>—9*< D) (Vo f(wi,0°(w1)) — Vo f(ws, 0% (ws)))

= (6%( )) Vo f(wi,0"(w1)) + (6% (wy) — 0*(w2))TV9f(w2,0*(w2))
<0.

Combining the above two equations, we obtain

(]| 0" (w1) — 6% ( ||2 (6% (w2) — 0% (w1))" (Vo f(wa, 0% (ws)) — Vo f(wi,0 (w2)))
</

0* Wl) — 0*(W2)H2”W2 — W1||2.
The above equation results in

||0*(W1) 0* W2 ||2 7HW2 — W1||2. (5)

As a result, applying the Danskin’s theorem for smooth objectives with a unique solution (Bernhard & Rapaport, 1995)
implies that

[V frnax (W2) = V frnax (W) ||, = ||V f (w2, 0% (W2)) — Vi f (w1, 0% (w1))|,
< 0/ [lwa = w3 + (|0 (w) — 0°(w2)
< 0/ (L4 (O/)2) [wz — w1 3
= 0\/1+ (t/p)?[wa — w12

€2
< (€+ *)HW2 will2,

where the last line holds since v/1 + ¢ < 1+ ¢/2 for every ¢t > —1. The proof is hence complete. O
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Here, we provide a proof based on standard techniques in stability-based generalization theory (Bousquet & Elisseeff,
2002). Consider two independent datasets S = (21,...,2,) and S’ = (2},...,2,). We use the notation S(?) =

rn
(21,.-.42i-1, 2}, 2i+1, - - - , Zn) t0 denote the dataset with the ith sample replaced with 2.

To show part (a), note that for every 8 € © we have

BSEA[Rs(4u(5).6)] = BsEa| £ 3 F(4u(5),6:59)

where we define

(=EsEsE, E S F(Au(8),0:20) = =3 [(Au(S), 0, zé)]

Note that according to the uniform-stability assumption we have |f(A,,(S®"), 8; z!) — f(A,(S), 8; 2})| < e which shows
that || < € and shows that for every 8 € ©:

‘ESEA[R(AIU(S>76) - RS(Aw(S)>9>” <,

which completes the proof of part (a).

To show part (b), note that under the swapping condition we can move the maximization inside the summation since the max
subproblems are independently solved for different data points. Then,

BSEAIRS (An(S)] = EsEa a1 3 7(Au(5).0:5)]
1 n
=EsE4 {n Z%neaé(f(Aw(S), 0; zl)]

=EsEgEAs|l—) max f(Aw(sU)),e;zg)}

1 /
= ESES’EA E Zmaxf(Aw(S),O, Zq):| + C

=EsEg/E4 _maX 1 Z J(Aw(S),0; Z:)] +¢
=EsEa[R(Aw(9))] + ¢

In the above, ( is defined as

( =EsEgE, [i S i £(Au(S),652]) — max £(4u(S), 6’ zz'-)]} -

Note that due to the uniform stability assumption for every data point z and datasets S, S’ with only one different sample we
have

max f(A, (5), 6;2) — glggf(Aw(S’)ﬂ’;Z) < Iglgg{f(Aw(S),O;Z) — f(Au(5),0;2)} <e.
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Therefore, replacing the order of S, S’ in the above inequality we obtain

L) (s g <e
|%1€ac§f(‘4w(5)79a2) g}é%(f(Aw(S ), 0 7Z)| > €

As a result, we conclude that |¢| < e which shows that

[EsEa[Rs(Aw(S))] — EsEa[R(Ay(S))]] < e

The proof of part (b) is hence complete.

Finally, to prove part (c) we use 85(w) to denote the optimal maximization solution for dataset .S and minimization
variable w. Similarly, we use 6* (w) to denote the the optimal maximization solution for the underlying distribution Pz and
minimization variable w. Then, we have

EsEa[Rs(Aw(S))] = EsEa [gleag; z; F(Au(S), 0: zi)}
— Bk, [i Z F(A40(S),05(A4u(S)); )}
~ o, ! Z (A5, O30 (40 (5 2)]
> BBoB [ Z FAu(S),0° (A (590

~ BoBoEa| 13 J(4(5).0°(Au()) )] +¢

= EsEsEa|~ S maxE.op, [f(Au(S), 0% (Au(8): 2)] | +¢
|n £ 6c6

7=

— EsEgE4 -rgleaé( E.p, [F(Aw(S), 07 (Au(S)); z)ﬂ e
= EsE4[R(Aw(9))] + ¢

In the above, we define
¢ = BsBoBa | 30 (F(Au(S™), 0°(An(S))ix) — F(Au(S),6" (Au(S)):5D]|
=1

Lemma 2 implies that for every S, 8% (w) is x-Lipschitz in w, and hence for every z f(w, 8*(w); z) is Lv/k% + 1-Lipschitz
in w. As a result, based on the uniform stability assumption we have

LViZ4+1 & ;
ol < === [[Au(8) = Au(SW)|, < LVk2 + 1e,
i=1
which makes the proof of part (c) complete. O

B.3. Proof of Theorem 2

Note that in the following discussion we define PPmax as a proximal point method which fully optimizes the maximization
variable at every iteration with the following update rule:

o~ 1
Grama [ | = armin g {15, + 51| - w2},
wew §€@ ”7“7
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Theorem. Let minimax learning objective f(-,-;z) be u-strongly convex strongly-concave and satisfy Assumption 2 for

every z. Assume that Assumption 1 holds for convex-concave f(w,0;z) := f(w,0;z) + 5(||0]|3 — ||w]|3) and every =.
Then,

1. Full-batch and Stochastic GDA and GDmax with constant stepsize o, = oy <2 72 for T iterations will satisfy

2L2V/RZ + 1 2L2 /K2 + 1
€on(GDA), egen(SGDA) < =Y+ 1 (GDmax), egen(SGDmax) < — Y+ 1 6)
g g (1 — anl n g & un
2

2. Full-batch and stochastic PPM and PPmax with constant parameter 1 for T' iterations will satisfy

2L%VK2 + 1 < 2L%VK2 + 1

€gen (PPM), €gen (SPPM) < ,  €gen(PPmax), egen(SPPmax) < (7
un n
Proof. We start by proving the following lemmas.
Lemma 3 (Growth Lemma). Consider two sequences of updates G, ...,Gr and GY, . ...G} with the same starting point

wo = wj, 0y = 0). We define 5, := \/|[wy — Wi||2 + [|0; — ;]2 Then, if G, GYy is {-expansive we have 6.1 < £6; for
identical Gy = G}, and in general we have

641 < min{¢, 1}6; + ?Ig{ll[w, 6] — G([w, 0D} + alg{ll[w, 6] — Gi([w, 0])][}-

Furthermore, for any constant r we have

041 < E0p + ?E{IIT[W, 6] — Gi([w, 6|} + b;ilg{llT[W, 0] — Gi([w, )|}

Finally, if Gy = G+ Gy and G, =G+ ég for &o-expansive G and &;-expansive Gy and G, then for any constant r we have
Gr41 < (S0 +&1)0¢ + Sug{llr[Wﬁ] — Gy([w, )|} + Sug{IIT[Wﬁ] — Gy([w, )|}

Proof. The first part of the theorem is a direct consequence of the definition of £-expansive operators. For the second part,
note that

41 = [|Ge([wy, 04]) — Gi([wy, 0;]) |
= [|Ge([wt, 0:]) — [We, 0c] + [We, 0] — [wy, 0] + [wy, 0] — Gi([wy, 0]) |
< |Ge([we, 04]) — [we, O]l + [[[we, 0:] — [wy, O]l + [[wt, 0] — Gi([wi, 03])]
§6t+§gg{ll[w,0]—Gt([wﬁ])HHggIg{ll[w,B]—Gé([wﬁml}

In addition, we can bound ;41 as
or41 = |Gie([wy, 0:]) — Gi([wy, 03]) |
= [Ge([we, 0:]) — Gil([wy, 01]) + Gul([wi, 07]) — Gi([wy, 6:))
< NGe([we, 04]) = Giel[wi, O + 1 Ge([wi, 'D—G’([ 10l
< &0+ ||Ge([wi, 63]) — r[wi, O]l + [Ir[wi, 0;] — Gi([wi, 63])]]
< &0y +Sup{|| [w, 6] = Gi([w, 6D} + sup{]ir[w, 6] - Gi(lw, 0D}
The above result for general constant  and also combined with the previous result with » = 1 finishes the proof of the first
two parts. For the final segment of the lemma, note that
Or1 = [|Gel[we, 0:]) — Gi([wt, O]
= [|G([w:, 0:]) + Ge([we, 6:]) — G([wi, 81]) — Gi([wy, 67)) |
< G ([we, 64]) — G([wi, 0 ])H+IIGt([Wt,Ot])*Gi([Wiﬂt])H
< &oby + | Gi([we, 8:]) — Gi([wy, 67)) |
< &od + &0 + sup{|r{w, 6] - Gi([w, 0))II} +sup{|r{w, 6] - Gi([w, 0]}
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In the above equations, the last line follows from the second part of the lemma which finishes the proof. O

In order to show the Theorem for SGDA updates, note that given two datsets .S, .S” of size n with only one different sample
at every iteration of stochastic GDA the update rule will be the same with probability 1 — 1/n and with probability 1/n we
have two different (1 — v, 1 + o2,¢2 /2)-expansive operators both of which satisfy

sup{||(1 — cwp)[w, 0] — Gsapa([w, 0])[|} < Lo,

w,0

The above inequality holds, because f is assumed to be continuously differentiable and L-Lipschitz. As a result, Lemmas
3,1 together with the law of total probability imply that the expected norm of 6;PA = /[jw, — w} |2 + [|6; — 6|2 for the
SGDA updates applied to the two datasets will satisfy

SGDA 1 a%v£2 SGDA 1 azwgz SGDA
EIS5EPA) < (1= 2)(1 = awp+ “5 B 4 — (1= aup+ S22 B[54 20, L)
2 42
— (1 - aup+ %)Ewﬁm‘] + %

Note that in the above upper-bound 1 — % is the probability that the stochastic GDA algorithm chooses a shared sample
between the two datasets and % is the probability of picking the index of the different sample.

Similarly, the update rule for the full-batch GDA algorithm can be written as the sum of the updates for the shared samples,
ie., Z?;ll %GGDA([W, 0]; z;), and the different sample z,,’s update %GGDA([W, 0); z,,). As aresult, the last part of Lemma
3 together with Lemma 1 implies that

a? 2 1

1 1
SOPA < (1 — = 4+ 2)(1 — 8SPA 4+ Z (201, L
i1 S (1=~ )1 —awp+ —0—)67" + (200 L)
202 200, L
= (1 — aup+ “4)E[ + =,
n

which is the same bound we derived for stochastic GDA. Therefore, given that 6o = 0, for SGDA updates we have

t
200, L a2 .
E5 < 2 S0+ 2

< ‘ 5
=0

200, L e a2 ? .
< 1 _ w w T
<= ;( s+ —5—)
B 20, L
- a2 (2

n(app — =5—)
2L
= ey

n(p — *45)

Note that ||w; — w,|| < &;. As aresult, the SGDA algorithm applied for 7" iterations will be (2L /n(u — c,,€? /2))-uniformly
stable in the minimization variable, and the result follows from Theorem 1. The result for the GDA algorithm will follow
from the same steps, since it shares the same growth rule with the SGDA algorithm.

Similarly, the SPPM updates will be 1/(1 + pun)-expansive due to Lemma 1. Furthermore, they will satisfy
Ln
L+nu

[w, 8] — Gsepm([w, 0]) } <

sup
w,e{” 1+nu

The above equation holds, because for a SPPM update [wsppnm, Osppv] = Gspem ([W, 6]) at sample z we have

[W] _ {(1 + M) Wsppm + Tlvwf(WSPPM, Osppm; Z)]
0 (14 nu)Bspem — NV f (Wsppm, Osppm; 2)

N 1 {w} 3 |:WSPPM:| _ [ wai(WSPPMaOSPPM§z) }
1+nu |0 Osppm 1+ np |[—Vef(Wsppm, Osppm; Z).
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Therefore, applying the law of total probability we will have

1. 1 1, 1 Ln
R [§SPPM 1_ = RI§SPPM) | & R[§SPPM] | 9
(0311 < ( n)1+w7[t ] n(1+w7[t ]+ 1+77H)
1 2L
== E[(StSPPM] 1777
+ pn (L+nu)n

Also, for the PPM algorithm given that z,, denotes the different sample between datasets .S, S’ note that
[W} — [(1 + np)wepm + Z?:_ll 1v“’ -(WPPM7 Osppm; Z;) + %wa(WPPM, Osppv; Zn)]
0 (14 nu)Oppm — %Z:Zl Vo f(wWepm, Oppm; 2i) + %Vef(WPPM, Oppri; Zn)
1 w WspPM | Ui % Z?;ll Vu f(WPPM, Oppm; Z;)
T Traule] e o L5l f :
1+nu SPPM L+nu\ =2 > =1 Vof(Weem, Oppm; Z;)
+ { %VwﬂWPPM,OPPM;Zn) })

- %Véf(WPPM> OppMi; Zn)

In the above, the last line shows the sum of the updates for shared samples between the two datasets, i.e., z1, ..., Z,_1, and
the different sample z,,. Therefore, Lemma 3 together with Lemma 1 implies that

1 1 1 2L
O S (L= — 4 )™M =
n n'l4+un n(1+nuw)
1 PPM 2Ln
Lt pn (1+nu)n’
which proves the same growth rule shown for SPPM also applies to the PPM algorithm. Since dy = 0, the above discussion
implies the following for SPPM updates:

2Ly =, 1
EéSPPM < g
o ]_(1+nu)n;(l+m})

2Ln i( 1 )i

<
O L e S T

B 2Ln

C (T nuw)n(l—1/(1 + un))
_2L

-

Since ||w; — w;}|| < §; , the SPPM algorithm applied for T iterations will be (2L /nu)-uniformly stable in the minimization
variable. Therefore, the theorem’s result is a corollary of Theorem 1. We can prove the result for the PPM algorithm by
repeating the same steps we did for SPPM, as the two algorithms were shown to share the same growth rule.

For GDmax and PPmax algorithms, note that fyax(w; S) := maxg Eg[f(w, 0;2)] — £1/0||* will be convex and Lv/k? + 1-
Lipschitz in w. Therefore, summing this function with & [|w]||? will be zi-strongly convex. Since GDmax and SGDmax
apply gradient descent to the maximized function, the theorem’s result for GDmax and SGDmax follows from Theorem 3.9
in (Hardt et al., 2016). For SPPmax, we note that similar to Lemma 1 it can be seen that the proximal point updates will be
1/(1 4 pn)-expansive. Moreover for the update Wsppmax = G'sppmax (W), we will have

W = (1 + nH)WSPPmaX + nvw,frnax(WSPPmax; Z)
W —-Ww = —
1+ nu SPPmax 1+ nu

As a result of Lemma 2.5 in (Hardt et al., 2016), defining 6577™* = ||w, — w}| for datatsets S, S” we will have:

1.1 1,01
(1--) E[5"™] + —(

1+ pun n 14 un
— 1 ]E[(SSPPmax] + 2Lw77

Ltpp (1 +nu)n’

Vw fmax (WSPPmax; Z) .

B

IN

E[éEPPmax]+2 Lwn )

n 14+np
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Furthermore for PPmax, we will have the following for wppy = Gppm (W) when applied to the two datasets different in
only the z,, sample:

n—1
w = (1 + nU)WPPmaX + ﬁ Z wamax(WPPmax; Zi) + vafmax(WPPmax; Zn)
n | n
n 1 n—1 B
= W — Wppm = — \Y WPPmax; Zi
1 +77,U PPM 1—|—77,U(Tl ; wfmax( PPmax 1))

1
+ 1 _”_r]n# ( wfmax(WPPmaXa Zn))

Applying Lemma 2.5 from (Hardt et al., 2016) and defining 6}"™% = ||w, — w}|| for datatsets S, S’ we will have:

(2L\/&2 +1n
L+npu

5PPmax S (1 _ l

e 1 6PPmax l

1
ﬁ> 14 pun n
1 sPPmax 2L\/mn.
Lt (1 +nu)n

)

Note that 6§ = §PPmaX — () which implies that:

[ [§SPPmax] 2LVkK?2 + 1
e < 2o z
np)n
/2 1
1+W 1 +m7
B 2L\//<;2 + 17)
(L+nu)n(l = 1/(1+ pn))
2LVK2+1
YT

1+w7

Therefore, the SPPMax algorithm applied for 7" iterations will be (2L?+/x2 + 1/npu)-uniformly stable according to (Hardt
et al., 2016)’s Definition 2.1. The result is hence a consequence of Theorem 2.2 in (Hardt et al., 2016). We can prove the
result for the PPmax algorithm by repeating the same steps. O

B.4. Proof of Remark 1

Remark. Consider a convex concave minimax objective f(-,-;z) satisfying Assumptions 1 and 2. Given constant stepsizes
Q= g = o, the GDA’s generalization risk over T iterations will be bounded as:

aLLy,(1+ a2£2)T/2)

€sen(GDA) < O( -

In particular, the bound’s exponential dependence on I is tight for the GDA’s generalization risk in the special case of

f(w,0;2z) =w'(z—0).

Proof. As shown in Lemma 1, the GDA’s update will be v/1 + a2¢2-expansive in this case. As a result, in learning
over two datasets S, S’ which are different in only one sample, Lemma 3 shows the following growth rule for §; =

Viwe = wili3 + 6. — 0;]13:

2aL
\/1 F a2025, + i
20L
=1+ 2026 + — a
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Considering that o = 0, we get the following exponentially growing bound in 7" for d7:

Z 262 t/2 2aL
n
+a22) T2

n V1+a22 -1

aL(l + a2€2)T/2)

n
which considering that f(w, 8;z) is L,,-Lipschitz in w together with Theorem 1 shows that

aLLy,(1+ aQZQ)T/Q)

n

=0

€gen(GDA) < O(

Also, note that for the special convex-concave case f(w,0;z) = w’ (z — 6) given thatz = 2 3" | z; the GDA’s update

rule will satisfy the following
Wit o I ol Wi
0t+1 —Z o —al I 0,5 —z|’

N wipr| | I oI [w,] B [az
0t+1 T |—al I Bt 1 L 0|
As aresult, for the updates on the two datasets S, S’ with size n differing in only the sample z,, we have:

Wipl — Wi | [ T oI] [w; —w)] n (2 (2], — 2p)
0t+1 — 0£+1 _—OéI Gt — 02 ] 0 ’

Hence, knowing that wo = w(,, 8y = 6, we have
wr—wh| [ I ol T %(2), — 2Zn)
Or -0 |—ol I 0 '

(ﬂ has the conjugate complex eigenvalues 1 £ ai, we will have

. . 1
Since the matrix [

—w _ Vitar)t
A e ] Lk N T CERL) R WA
Or — 07 n

As a consequence of the conjugate eigenvalues and the resulting iterative rotations in the complex space, the above equality
shows that as long as o # 0 for any constant 0 < C' < 1 there will exist arbitrarily large 7" values such that

- Coz(\/l + a2)T
n

lwr —wrl, > 2], — 2nl2-
Equivalently, we have
a(l+ az)T/ ?
lwr = will2 = Qr (—————Ilz, = zal2), (8)
which proves the exponential dependence of the expected generalization risk on I" and completes the proof. O

B.5. Proof of Theorem 3

Here we prove the following generalized version of Theorem 3 in the text for general time-varying stepsize values.

Theorem. Consider a convex-concave minimax learning objective f(-,-;z) satisfying Assumptions 1 and 2 for every z.
Then, stochastic PPM with stepsizes 1, at iteration t over T iterations will satisfy

2LLw
€"M(PPM), €™ (SPPM) < Z% €™ (PPmax

€gen » €gen gen ) » €gen

9 T
™ (SPPmax) < —wz )
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Proof. Consider two datasets S, S” with size n which have only one different sample. As a result of Lemma 1, the

proximal point updates will be 1-expansive. Therefore, according to Lemma 3 and the Law of total probability, defining
SSPPM =\ /fw, — 1|2 + [|8; — 012 we will have

BB < (1= )] + - (B + 20,L)
_ E[(StSPPM] + 2 L
n

Given that 65" = 0, we reach the following inequality for every T'

SPPM 2L Z .

Note that for every 6, z, f(w, 8;2) is L,,-Lipschitz, which with the above inequality implies that SPPM will be uniformly-
stable in minimization with the following degree

OLL, <
>
n t=1

The theorem’s result for SPPM then becomes a consequence of Theorem 1. Furthermore, regarding the PPM algorithm
applying Lemma 3 and Lemma 1 implies that

20 L
SIS (- g g T
_ 5PPM+ 277tL

t n .

The above equation holds because the update rule of PPM can be written in the following way where z,, denotes the only
different sample between the two datasets,

Wl (Wepm| _ " %Z?—f Vo f(Wepm, Oppm; 2;) i Vo f(Wppm, Oppm; Z1,)
0 Oppm -5y ' Vo f (Wpem, Oppu; 7:) —*Vef(WPPM70PPMaZn) '

PPM
9

Since = 0, at iteration 7" we have

PPM <= 2L an

As a result, we can repeat the last step of our proof for the case of SPPM to complete the proof for the PPM case. For the
PPmax and SPPmax algorithms, note that fr,.x(W;2z) := maxg f(w, 0;2) will be convex and L,,-Lipschitz in w. The
result is therefore a corollary of Theorem 3.8 and Lemma 4.6 in (Hardt et al., 2016). L]

B.6. Proof of Theorem 4

Theorem. Given a differentiable minimax objective f(w, 0;z) the average iterate updates w(l) .= % Zthl w®) 9T .=
% Zle 0") of SPPM and SPPmax with setpsize parameter 1) will satisfy the following optimality gaps for a saddle solution
(W, 0%] of the empirical risk for dataset S':

[w — wg|* + 16 — 05|
2nT ’
lw® —wi*
2nT

SPPM : E[ Rg(w'™)) ] — Rs(w}) <

SPPmax : E[Rg(W!™))] — Rg(w}) <
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Proof. Note that for any proximal operator F}, such that vy = v — nF)(vg41) we will have the following for every v:

1 1
e L e A e
| 2n||Vk+1 v|| 277”Vk+1 vl

1
S lvi = vl

21
1
T H(”vkﬂuz — Vi Vi1 =V Vg1 + VI Vi)

1
= - H(Vkﬂ = vi)" (Vig1 — V)

= F (V1) (Vi1 — v).

As a result, we have

1

T T
1 1 1
AN F Tl w) — o llon w2 oz L v 2
T;_O k(VE)T (Ve — V) 2nT”V0 vl 27;T||VT vl T E_ Vi = vi—1]|

1
< —|lvo — V|2
< gplvo vl

Given that every Fj, is a stochastic proximal rule for a uniformly random training sample, the law of iterated expectation
conditioned to random update v, at iteration ¢ implies that

1< 1 &
E[T];Fk(vkﬁ(vk v - TLE

1 T
S S ELT—
k=0

Fu(vi) (vi - vﬂ

= %ZE E[Fk(vk)|vk}T(Vk — V)}

E[F(vi)|vk] T(V;€ - v)}

where F' denotes the gradient update for the averaged loss over the training samples. Therefore, we have

“[7

Considering the optimal saddle solution v = [w, 8] for the SPPM algorithm, combining the above result with Lemma 2
in (Mokhtari et al., 2019) proves the theorem’s result on the convergence of SPPM’s average iterates. For the convergence
result on SPPmax updates, note that given a convex function f and its gradient F' and minimizer v* we have

(ORISR DI

t=1

Nl \

L 1
kz_:F Vi) Vk—V):| <% T||V0—VH2

T
Z vt — ). (10)

’ﬂ \

The above equation together with the property shown for the stochastic updates of SPPmax completes the theorem’s
proof. O
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B.7. Proof of Corollary 1

Corollary. Consider a convex concave minimax objective that satisfies the sawpping condition in Theorem 1b, which
we optimize via PPM and PPmax with setpsize parameter 1. Then, given that |[w®) —w¥%||? + [|0*) — 0%||? < D? for

PPM and ||w(0) — wgl|| < D for PPmax holds with probability 1, it will take Tsppy = / 2”’5% and Tsppmax = 4/ 2:;2%

iterations for the average iterates to achieve the following bounded excess risks where w* denotes the optimal learner
minimizing the true risk R(w):

2D2LL
PPM, SPPM : E[R(wTs))] — R(w*) <4/ ———2,
n
2D2[2
PPmax, SPPmax : E[R(W(TSPP"‘“X))] — R(w*) < L
n

Proof. First, we show that using a constant stepsize parameter 7 the average iterates reach 1 /2 of the generalization bound for
the final iterates in Theorem 3. For the average iterates (W, 8;) and (w7}, ;) we have the following application of Jensen’s
inequality on the convex norm function for the difference of average iterates 6; = +/||[w(®) — w/(D |2 4 |§(1) — /()2

(Stl

VIw®O — w2 100 — g0
1 t—1
72w = will? + 6 — 6}
k=0
t—1
1
L
k=0

Similarly, one can show that 6,, ; < % 22:1 dw,i- Therefore, knowing that E[d;] < QLLni”t" implies that

t t—1
. 1 1 2L L, kn  LLyty
E[6;] < = E E[d;] < = E < .
[t]_tk=1 [t]_tk=0 n B n

Hence, at the T'th average iterate of PPM and SPPM we will have

LL,T
E4[R(w )] — Rolw!T)] < =22

which together with (Mokhtari et al., 2019)’s Theorem 1 for the PPM and and our generalization of that theorem to stochastic
PPM in Theorem 4 shows that

_ _ LL,nT  D?
Eas[R(WT)] — Eg[Rs[wT)]] < == —.
a s RS )] = B Rsfw ] < =2 4 S
Note that Eg[Rs(wg)] < Eg[Rs(w*)] = R(w™*), indicating that
_ LL,nT  D?
Eas[RwD)] - R(w*) < = —.
as[RW )] = R(w") < — =+ 50T
The above upper-bound will be minimized when n71" = 2’2@1 and the optimized excess risk upper-bound for PPM and

SPPM will be

B s [R(w ™) - Bw) < | 2L

Similarly, it can be seen that for PPmax and SPPmax the optimal bound will be achieved at nT' =

BaslR(w™)] - Rw') < /2222

The proof is therefore complete. O

nD?
202

which suggests
the following excess risk bound:
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B.8. Proof of Theorem 5

Theorem. Let learning objective f(w,0;z) be non-convex u-strongly-concave and satisfy Assumptions 1 and 2. Also,
we assume that fuax(W;z) := maxgco f(W,0;2) is bounded as 0 < fmax(W;2z) < 1 for every w,z. Then, defining
K :={/p we have

1. The SGDA algorithm with vanishing stepsizes a1 = c/t, ag s = cr? [t for constants ¢ > 0,1 < r <  satisfies the
following bound over T iterations:

1+ —— et
Egen(SGDA) < %(120L2(7‘ + 1) /K2 + 1) (7‘+1)CZ+1T(7+1)1C2+1 (11)

2. The SGDmax algorithm with vanishing stepsize o, = ¢/t for constant ¢ > 0 satisfies the following bound over T
iterations:

14+ —2~ Yee
egen(SGDmax) < Lf)zc (20L2 /K2 + 1) (n+2)a+2 T‘(h+z>22c+2 (12)
n —

Proof. We start by proving the following lemmas.

Lemma 4. Ler f(w,0;z) satisgy Assumptions 1,2 and assume that fax(W; S) := maxe Eg[f(w, 0;2)] is bounded 0 <
Sfmax(W;z) < 1. Then, in applying SGDA for learning over two datasets S, S' which differ in only one sample the updated
variables wy, w), will satisfy the following inequality for every to € {1,...,n} where §; := \/||w, — wi||2 + [0 — 6}]]2:

t
VS E[fmax(Wi;S) = fumax(wi; 8)|] < go + LV/K2 + 1E[6,|6,, = 0).

Proof. Define the event E;, = I(d;, = 0) as the indicator of the outcome d;, = 0. Then, due to the law of total probability

]E[‘fmax(wﬁz) - fmax(wwlf;z)u :Pr(Eto)EHfmax(Wt? ) = fmax( Wt7 z)| ‘Eto]
+ Pr(EtCO)EUfmaX(Wt; z) — fmaX(Wt7 ) |E7(5:0]

LB (| oo (W:2) — funan(w13 2)| By ] + Pr(ES)
QLR T 1E [w, — wi| | Be] + Pr(ES)
(%)L K2 + 1E[6; |64, = 0] + %0
In the above equations, (a) follows from the boundedness assumption on fi,.x. (b) is the consequence of L,,-Lipschitzness
of f which also transfers to fy,ax. Finally, (c) holds because ||[w; — w}|| < d; according to the definition. Then, using the

union bound on the outcome I = I; where I is the index of different samples in .S, S’ and I; is the index of sample used by
SGDA at iteration ¢ we obtain that

to
Pr(Ef)) = Pr(d, > 0) < ZPr(I =I1)=—.

i=1
The lemma’s proof is therefore complete. O
In order to prove the theorem for SGDA updates, we provide an extension of Lemma 1 for non-convex concave minimax
objectives.

Lemma 5. Consider a non-convex p-strongly concace objective f(w,0) satisfying Assumption 2. Then, for every two
pairs (w,0), (w',0") the GDA updates [Wgpa, Ocpal = Gopa([w, 0]), [Wgpa, Oapal = Gapa([w', 0']) with stepsizes
Qyp, g < % will satisfy the following expansivity equation:

[HWGDA _WGDA|:| [1 +awl ol } [HW w ||}
HGGDA - GDA” ol 1- ae# HG 0/”



Train simultaneously, generalize better: Stability of gradient-based minimax learners

Proof. Note that

[Wopa — Wé}DAH = [[w - ay,Vwf(w,0) — w' + awvw,f(wl7 0/)”
<|[w—ayVwf(w,0) - w' + awVWf(wlv o)l
+ lawVw f(W', 0) — awVw f(W', 0]
< (14 apd)||w — w'|| + ., l)|0 — €]

Furthermore, we have

1860s — Opall = 10 + a9 Vo f(w,0) — 0 — agVaf(w',0')]
< ||0 + OZQVQf(W, 0) - 0/ - OégV@f(W, 0,)”
+ ||Oéngf(W, 0/) - Oéevef(wla 0/)”
(6%
< (1= 2510 -0/l + aotllw — W],

where the last inequality follows from Lemma 3.7 in (Hardt et al., 2016) knowing that iz < . Therefore, the lemma’s proof

is complete.

Lemma 6. Consider two sequence of updates G1,...,Gr and G',..., Gl for minimax objective f(w,@).
Swi = ||we — wy|| and dg1 = ||0, — 0;]|. Assume that G, is -expansive for matrix 122, i.e. it satisfies the following

inequality for every [wg,, 0c,] := Gi(w,0), [wg,,0p,] = Gi(w',0)

lwe, — wg ||] [HWW'}
¢ t < .
hwa—v@u ="le-e|
Also, suppose that for every [wg,,0q,] = Gi(w,0), [wg,,0q:] := Gi(w,0) we have

sup |[wg, — w|| <oy, supll@q, — 0| < oy,

w, W,

sup |[wg: — w| < 0y, supl|@g; — 0| < 0.
o w,0

Then, we have
511) t+1 (;w t Ow
’ < 42 .
|:50,t+1 =1 56,t o]

Proof. Note that
Suw,tt1] _ [I1Grw(We, 8¢) = G (Wi, 0))]]]
.e41] [ [Gro(we, 01) — Gy p(wi, 0)] |

_ G w(wt, 8:) = Giw(Wi, 07) 4 G (Wi, 0;) — Gy (Wi, 6)) |
| [1Gro(wi, 0:) — Gio(wy, 07) + G (Wi, 0;) — G O(Wta o)l

_ [IIGtw(we,00) = Gr o (wi, 6))])] _|_|:|Gtw(wt70/) G (Wi, 0]
L 1Gro(we,0:) — Gro(wy, 0] | |Gro(wy, 0;) — t@(wtval)”

_ NG w(we, 0:) = Gr (Wi, 0] " PGtw( t»9/) Wt||]
|Gro(wWi,0:) — Gio(wy, 0;)] | Gro(wy, 0;) — 6]

+[Ilwt Géw(WZ,Oi)I]
167 = G o (Wi, 1)

6w,t Ow
<]+ [5]

which makes the proof complete.

|
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To prove the theorem’s result on SGDA note that Lemma 5 suggests that the SGDA update at iteration ¢ for non-convex
non-concave problems will be expansive with the following matrix:

14 il Qo 1 1 cl |1 1
B, = Oée,tét 1— dét(},tl/b:| =1+ ayl |:0‘9f _“0‘94} =1+ —r?/Kk|"

2 Qo t eaw,t

For analyzing the powers of the above matrix, we diagonalize it using its eigenvalues A1, Ao and corresponding eigenvectors
. 1 1 . . . . .
vy, v,. Note that the product of the eigenvalues of {TQ 2/ i.e. the matrix’s determinant, is negative and hence the

matrix has two different real eigenvalues with opposite signs. This implies that the matrix is diagonlizable and so is a linear
combination of the matrix with the identity matrix. As a result, given the invertible matrix v = [, V2] we have

cl
Bt _ |:]. + aw,tg aw7t€ :| _ I/71 |:1 + Tl 0

agel  1— 5 0 14

Also, notice that we have the following closed-form solution for A, As:

H—T2+\/4H2T2—|—(H+T2)2 Ny — H—’I“Q—\/4I£2’I“2+(IQ—|—T‘2)2
2K ’ 2K '

>\1: 2

Therefore, since we assume 1 < r < g,

[E[dwﬂ]]] <(1- %)Bt []]%[[?Z:}]] n l<Bt [E[%,t]] Lo {Oéw,thb

_ n |E[6uw,] el
=B |:E[59,t] + 2cﬁLe .
Therefore, over T iterations we will have

B ED SR 8N

t=to+1 k=t+1

B 1+Ce)\1 0 2(:‘,L
£ L[ )

t=to+1 k=t+1 nt

Hence, denoting the minimum and maximum singular values of v with 0, (), 0max (V) and noting that v ~1’s operator
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norm is equal to 1/, (v) we will have

Il =2t >

2 CTmin(’/)

1+ 0 2ol
{ H |: O 1 + CZ)\Q:|} |:2677’72L9:| H2

k=t+1 nt

IT[*5%) L[5 )1,

k=t+1

P L)
2

cb 2cr©Lg
0 eXp(Zk —t1 F2)

nt

Omax (V)

Umin(”) ¢

IN

IN

Omax (V ) T cor 1) 2Ly
Tl S exn( 30 S ot |1,

T cl(r+1)

2¢rLomax (V) ) exXp(Lhmrer “5 )
¢

IN

t=to+1

QCT’LO'maX(V)Td(T+1)

T
— Z tfcf(rJrl)fl

N0 min (V) N
2r Lomax (V) Z)CZ(2T+1)
(r + )fnomin(v) “to
121, T cz(r+1)
<
<7 )

IN

We note that assuming > 1 we have v’s condition number o pay () /0min (V) < (V2 +1)/(v/2 —1) < 6. This is because
given an eigenvalue A\ of [:2 —7“12 /H] and its corresponding eigenvector [v1, o] we have 5 = (A — 1)1 and hence
the eigenvector aligns with [1, A — 1]. Therefore, we can bound the condition number of the following symmetric matrix,
because we can consider any vector column along the eigenvector’s direction:

1 A —1 1 717§+ 4r24-(14r2/k)?
_ 2

|:A1 —1 (Al — 1)()\2 — 1):| —1—%-&- 4r24 (1412 /k)2

2

-Tr

Since the above matrix is symmetric, its eigenvalues have the same absolute value as its singular values, and therefore the
condition number will be bounded as

Omax(¥) _ /O =12+ A+ g — 1) + (= 1)
Umln(V) - \/(T—1)2+4(7’+()\1 —1)2)—(7"—1)
B e R G S SR .
S D240+ (- ) - (- 1)
) V=124 = 252 4 (r 1)
Y T i )
V20 12+ (r - 1)
2r=1)2—-(r—1)
V241
V2 -1

As a result, we showed that conditioned to §;, = 0 we will have

12L ,T cl(r+1)
— ()

E[éw,T’6t0 = 0] S né
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Combining the above equation with Lemma 4, we obtain that

t 120%VK2 +1 , T\ co(r+1
Vz,to ]E[‘fmaX(WT§Z) - fmaX(W/T§Z)|] < = + (*)(‘ ( )'
n nl to
The above bound will be approaximately minimized at

r+1)cl

1 (
to = (12(r + 1)cLL?\/ k2 + 1) TFDTT T Tineri
which leads to the following bound

1+ Tilc 1 (r+1)ct
Vz: E['fmax(wT;z) - .fmax(W/T;z)” S et (IQ(T + I)CLL2 \% K2 + 1) MJFl)C[JrlT(T-J)W'
n
The theorem’s bound on SGDA updates is then a consequence of Theorem 2.2 in (Hardt et al., 2016).

For the theorem’s bound on SGDmax updates, note that fi,.,(w;.S) will be Lv/x2 + 1-Lipschitz. Also, Lemma 2 implies
that fiax(w;.S) will be £(% 4 1)-smooth in w. Therefore, the result follows from Theorem 3.12 in (Hardt et al., 2016). []

B.9. Proof of Theorem 6

Theorem. Let minimax cost 0 < f(-,+;z) < 1 be a bounded non-convex non-concave objective which satisfies Assumptions
1 and 2. Then, the SGDA algorithm with vanishing stepsizes max{u, ¢, o1} < ¢/t for constant ¢ > 0 satisfies the
following bound over T iterations:

1+ L 1 c
enm (SGDA) < t (QCLLw) Z““Tffﬂ. (13)
n

gen

Proof. To show this result, we apply Lemma 4. Defining §; = +/||w: — W} |2 + [|6; — 0,2 for the norm difference of
parameters learned by SGDA over two datasets .S, S” with one different sample, according to the law of total probability we
have:

1 cl 1 cl 2¢cL
E[é6 < (1--=)(1+ —)EI —((1+ —)E[s —
) < (1= )1+ RG] + (1 + DIE[S] + =)
cl 2¢cL
=1+ —)E[é —_—
(1+ DB+ =
As a result, conditioned on d;, = 0 we will have
T T
cl | 2cL
t=to+1 k=t+1
T T
cl . 2cL
< 2 I e G3r
t=to+1 k=t+1
T T
el 2cL
= Z exp( Z ?)H
t=to+1 k=t+1
T
2¢cL
< 7 explellog(T/t) =
t=to+1 n
c T
_ 2cLT Z et
t=to+1
2L, T
< =

cl
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Therefore, Lemma 4 shows that for every ¢y and z:

to  2LL

T
]E“fmaX(Wt;Z) - fmax(Wg;Z)H < g +

(%)d.

nt

The above upper-bound will be approximately minimized at
to = (ZCLLw)ﬁTﬁ‘

Plugging in the above % to the upper-bound we obtain the following bound for every z:

1+ L
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The above result combined with Theorem 2.2 from (Hardt et al., 2016) proves the theorem.
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