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Supplementary: Train simultaneously, generalize better:
Stability of gradient-based minimax learners

Anonymous Authors1

A. Additional Numerical Results
A.1. Convex Concave Minimax Settings

Here, we provide the results of the numerical experiments discussed in the main text for full-batch GDA and PPM algorithms
as well as stochastic and full-batch GDmax algorithms. Note that in these experiments we use the same minimax objective
and hyperparameters mentioned in the main text. Figure 1 shows the generalization risk in our experiments for the GDA
algorithm. As seen in Figure 1 (right), the results for full-batch and stochastic GDA algorithms in the bilinear convex
concave case look similar, with the only exception that the generalization risk in the full-batch case reached a slightly
higher amplitude of 7.8. On the other hand, in the strongly-convex strongly-concave case, full-batch GDA demonstrated a
vanishing generalization risk, whereas stochastic GDA could not reach below an amplitude of 0.2.

Figure 2 shows the results of our experiments for full-batch PPM. Observe that the generalization risk in both cases decreases
to reach smaller values than those for stochastic PPM. Finally, Figures 3 and 4 include the results for ful-batch and stochastic
GDmax algorithms. With the exception of the full-batch GDmax case for the bilinear objective (Figure 3-right), in all the
other cases the generalization risk did not grow during the optimization, which is comparable to our results in the GDA
experiments.

A.2. Non-convex Non-concave Minimax Settings

Here, we provide the image samples generated by the trained GANs discussed in the main text. Figure 5 shows the CIFAR-10
samples generated by the simultaneous 1,1 Adam training (Figure 5-left) and non-simultaneous 1,100-Adam optimization
(Figure 5-right). While we observed that the simultaneous training experiment generated qualitatively sharper samples,
the non-simultaneous optimization did not lead to any significant training failures. However, as we discussed in the main
text the generalization risk in the non-simultaneous training was significantly larger than that of simultaneous training.
Figure 6 shows the generated images in the CelebA experiments, which are qualitatively comparable between the two
training algorithms. However, as discussed in the text the trained discriminator had a harder task in classifying the training
samples from the generated samples than in classifying the test samples from the generated samples, suggesting a potential
overfitting of the training samples in the non-simultaneous training experiment.

B. Proofs
B.1. The Expansivity Lemma for Minimax Problems

We will apply the following lemma to analyze the stability of gradient-based methods. We call an update rule G γ-expansive
if for every w,w′ ∈ W,θ,θ′ ∈ Θ we have

‖G(w,θ)−G(w′,θ′)‖2 ≤ γ
√
‖w −w′‖22 + ‖θ − θ′‖22. (1)

1Anonymous Institution, Anonymous City, Anonymous Region, Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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Figure 1: Generalization risk vs. iteration of full-batch GDA optimization in the (Left) strongly-convex strongly-concave
setting and (Right) bilinear convex concave setting.

Figure 2: Generalization risk vs. iteration of full-batch PPM optimization in the (Left) strongly-convex strongly-concave
setting and (Right) bilinear convex concave setting.

Lemma 1. Consider the GDA and PPM updates for the following minimax problem

min
w∈W

max
θ∈Θ

f(w,θ), (2)

where we assume objective f(w,θ) satisfies Assumptions 1 and 2. Then,

1. For a non-convex non-concave minimax problem, GGDA is (1 + `max{αw, αθ})-expansive. Assuming η < 1
` , GPPM will

be 1/(1− `η)-expansive.

2. For a convex concave minimax problem with αw = αθ, GGDA is
√

1 + `2α2
w-expansive and GPPM will be 1-expansive.

3. For a µ-strongly-convex strongly-concave minimax problem, given that αw = αθ ≤ 2µ
`2 , GGDA is (1− αwµ+ α2

w`
2/2)-

expansive and GPPM will be 1/(1 + µη)-expansive.

Proof. In Case 1 with non-convex non-concave minimax objective, f ’s smoothness property implies that for every (w,θ)
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Figure 3: Generalization risk vs. iteration of full-batch GDmax optimization in the (Left) strongly-convex strongly-concave
setting and (Right) bilinear convex concave setting.

Figure 4: Generalization risk vs. iteration of stochastic GDmax optimization in the (Left) strongly-convex strongly-concave
setting and (Right) bilinear convex concave setting.

and (w′,θ′):

∥∥GGDA(

[
w
θ

]
)−GGDA(

[
w′

θ′

]
)
∥∥ =

∥∥ [w −w′ − αw(∇wf(w,θ)−∇wf(w′,θ′))
θ − θ′ + αθ(∇θf(w,θ)−∇θf(w′,θ′))

] ∥∥
≤
∥∥ [w −w′

θ − θ′

] ∥∥+
∥∥ [αw(∇wf(w,θ)−∇wf(w′,θ′))

αθ(∇θf(w,θ)−∇θf(w′,θ′))

] ∥∥
≤ (1 + `max{αw, αθ})

∥∥ [w
θ

]
−
[
w′

θ′

] ∥∥,
which completes the proof for the GDA update. For the proximal operator, note that given η ≤ 1

` the proximal optimization
reduces to optimizing a strongly-convex strongly-concave minimax problem with a unique saddle solution and therefore at
(wPPM,θPPM) = GPPM(w,θ) we have

wPPM −w = η∇wf(wPPM,θPPM), θ − θPPM = η∇θf(wPPM,θPPM).
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Figure 5: SN-GAN generated pictures in the CIFAR-10 experiments for (Left) simultaneous 1,1-Adam training (Right)
non-simultaneous 1,100-Adam training.

Figure 6: SN-GAN generated pictures in the CelebA-10 experiments for (Left) simultaneous 1,1-Adam training (Right)
non-simultaneous 1,100-Adam training.

As a result, we have

∥∥GPPM(

[
w
θ

]
)−GPPM(

[
w′

θ′

]
)
∥∥

=
∥∥ [w −w′ + η(∇wf(GPPM(w,θ))−∇wf(GPPM(w′,θ′)))

θ − θ′ − η(∇θf(GPPM(w,θ))−∇θf(GPPM(w′,θ′))

] ∥∥
≤
∥∥ [w −w′

θ − θ′

] ∥∥+
∥∥ [η(∇wf(GPPM(w,θ))−∇wf(GPPM(w′,θ′)))

η(∇θf(GPPM(w,θ))−∇θf(GPPM(w′,θ′))

] ∥∥
≤
∥∥ [w

θ

]
−
[
w′

θ′

] ∥∥+
η

`

∥∥GPPM(w,θ)−GPPM(w′,θ′)
∥∥.

The final result of the above inequalities implies that

(1− η

`
)
∥∥GPPM(w,θ)−GPPM(w′,θ′)

∥∥ ≤ ∥∥ [w
θ

]
−
[
w′

θ′

] ∥∥,
which completes the proof for the case of non-convex non-concave case.

For convex-concave objectives, the proof is mainly based on the monotonicity of convex concave objective’s gradients
(Rockafellar, 1976), implying that for every w,w′,θ,θ′:

([w
θ

]
−
[
w′

θ′

])T ([ ∇wf(w,θ)
−∇θf(w,θ)

]
−
[
∇wf(w′,θ′)
−∇θf(w′,θ′)

])
≥ 0. (3)

As shown by (Rockafellar, 1976), the above property implies that the proximal operator for a convex-concave minimax
objective will also be monotone and 1-expansive for any positive choice of η. For the GDA update, note that due to the
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monotonicity property ∥∥GGDA(

[
w
θ

]
)−GGDA(

[
w′

θ′

]
)
∥∥2

2

=
∥∥ [w −w′

θ − θ′

] ∥∥2

2
− 2αw

[
w −w′

θ − θ′

]T [∇wf(w,θ)−∇wf(w′,θ′)
−∇θf(w,θ) +∇θf(w′,θ′)

]
+ α2

w

∥∥ [∇wf(w,θ)−∇wf(w′,θ′)
∇θf(w,θ)−∇θf(w′,θ′)

] ∥∥2

2

≤ (1 + α2
w`

2)
∥∥ [w −w′

θ − θ′

] ∥∥2

2
,

which results in the following inequality and completes the proof for the convex-concave case:∥∥GGDA(

[
w
θ

]
)−GGDA(

[
w′

θ′

]
)
∥∥

2
≤
√

1 + α2
w`

2
∥∥ [w −w′

θ − θ′

] ∥∥
2
.

Finally, for the strongly-convex strongly-concave case, note that f̃(w,θ) = f(w,θ) + µ
2 (‖θ‖2 − ‖w‖2) will be convex-

concave and hence the proximal update (wPPM,θPPM) = GPPM(w,θ) will satisfy

1

1 + µη
w = wPPM +

η

1 + µη
∇wf̃(wPPM,θPPM),

1

1 + µη
θ = θPPM −

η

1 + µη
∇θ f̃(wPPM,θPPM),

where the right-hand side follows from the proximal update for f̃ with stepsize η/(1+µη) and hence 1-expansive. Therefore,
the proximal update for f will be 1/(1 + µη)-expansive. Furthemore, for GDA udpates note that∥∥GGDA(

[
w
θ

]
)−GGDA(

[
w′

θ′

]
)
∥∥2

2

= (1− µαw)2
∥∥ [w −w′

θ − θ′

] ∥∥2

2
− 2(1− µαw)αw

[
w −w′

θ − θ′

]T [∇wf̃(w,θ)−∇wf̃(w′,θ′)

−∇θ f̃(w,θ) +∇θ f̃(w′,θ′)

]
+ α2

w

∥∥ [∇wf̃(w,θ)−∇wf̃(w′,θ′)

∇θ f̃(w,θ)−∇θ f̃(w′,θ′)

] ∥∥2

2

≤ ((1− µαw)2 + α2
w(`2 − µ2))

∥∥ [w −w′

θ − θ′

] ∥∥2

2

≤ (1− 2µαw + α2
w`

2)
∥∥ [w −w′

θ − θ′

] ∥∥2

2
.

Note that the above result finishes the proof because
√

1− t ≤ 1− t/2 holds for every t ≤ 1, which is based on the lemma’s
assumption αw ≤ 2µ/`2. Also, the last inequality in the above holds since f̃ will be

√
`2 − µ2-smooth. This is because f

is assumed to be `-smooth, implying that for every w,w′,θ,θ′ we have

`2
∥∥ [w −w′

θ − θ′

] ∥∥2

2
≥
∥∥ [∇wf(w,θ)−∇wf(w′,θ′)
∇θf(w,θ)−∇θf(w′,θ′)

] ∥∥2

2

= µ2
∥∥ [w −w′

θ − θ′

] ∥∥2

2
+ 2µ

[
w −w′

θ′ − θ

]T [∇wf̃(w,θ)−∇wf̃(w′,θ′)

∇θ f̃(w,θ)−∇θ f̃(w′,θ′)

]
+
∥∥ [∇wf̃(w,θ)−∇wf̃(w′,θ′)

∇θ f̃(w,θ)−∇θ f̃(w′,θ′)

] ∥∥2

2

≥ µ2
∥∥ [w −w′

θ − θ′

] ∥∥2

2
+
∥∥ [∇wf̃(w,θ)−∇wf̃(w′,θ′)

∇θ f̃(w,θ)−∇θ f̃(w′,θ′)

] ∥∥2

2
,

where the inequality uses the monotonicity of the gradient operator. The final inequality shows that f̃ will be
√
`2 − µ2-

smooth and hence finishes the proof.
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B.2. Proof of Theorem 1

Theorem. (a) Assume minimax learnerA is ε-uniformly stable in minimization. Then,A’s expected minimax generalization
risk is bounded as εmm

gen (A) ≤ ε.

(b) Assume minimax learner A is ε-uniformly stable in minimization. If the maximization problem over θ ∈ Θ can be
swapped with the expectation over Z, A’s expected generalization risk will be bounded as εgen(A) ≤ ε.

(c) Assume that minimax learner A is ε-uniformly stable in the minimization solution and the minimax objective is µ-
strongly-concave in θ over a convex feasible set Θ and satisfies Assumptions 1,2. Then, defining the condition number
κ := `/µ, A’s expected generalization risk is bounded as εgen(A) ≤

√
κ2 + 1L ε.

Proof. We start by proving the following lemma which is also shown in (Lin et al., 2019).

Lemma 2. Consider a non-convex µ-strongly convex minimax objective f(w,θ) satisfying Assumption 2 over a convex
feasible set Θ. Then, the maximized objective fmax(w) := maxθ∈Θ f(w,θ) will be (` + `2/2µ)-smooth, i.e., for every
w1,w2 ∈ W it satisfies ∥∥∇fmax(w2)−∇fmax(w1)

∥∥
2
≤
(
`+

`2

2µ

)∥∥w2 −w1

∥∥
2
, (4)

Furthermore, defining θ∗(w) as the optimal solution θ ∈ Θ for w, we have that θ∗(w) is `/µ-Lipschitz.

Proof. Consider two arbitrary points w1,w2 ∈ W and define θ∗(w1),θ∗(w2) as the optimal maximizers over Θ for
f(w1, ·), f(w2, ·), respectively. Since, f(w, ·) is `-smooth and µ-strongly-convex, there exists a unique solution θ∗(w) for
every w. Then, the µ-strongly concavity implies that

µ
∥∥θ∗(w1)− θ∗(w2)

∥∥2

2
≤
(
θ∗(w2)− θ∗(w1)

)T (∇θf(w1,θ
∗(w1))−∇θf(w1,θ

∗(w2))
)
.

Due to the optimality of θ∗(w1),θ∗(w2) over the convex feasible set Θ we further have(
θ∗(w2)− θ∗(w1)

)T (∇θf(w1,θ
∗(w1))−∇θf(w2,θ

∗(w2))
)

=
(
θ∗(w2)− θ∗(w1)

)T∇θf(w1,θ
∗(w1)) +

(
θ∗(w1)− θ∗(w2)

)T∇θf(w2,θ
∗(w2))

≤ 0.

Combining the above two equations, we obtain

µ
∥∥θ∗(w1)− θ∗(w2)

∥∥2

2
≤
(
θ∗(w2)− θ∗(w1)

)T (∇θf(w2,θ
∗(w2))−∇θf(w1,θ

∗(w2))
)

≤ `
∥∥θ∗(w1)− θ∗(w2)

∥∥
2
‖w2 −w1‖2.

The above equation results in ∥∥θ∗(w1)− θ∗(w2)
∥∥

2
≤ `

µ
‖w2 −w1‖2. (5)

As a result, applying the Danskin’s theorem for smooth objectives with a unique solution (Bernhard & Rapaport, 1995)
implies that ∥∥∇fmax(w2)−∇fmax(w1)

∥∥
2

=
∥∥∇wf(w2,θ

∗(w2))−∇wf(w1,θ
∗(w1))

∥∥
2

≤ `
√∥∥w2 −w1

∥∥2

2
+
∥∥θ∗(w1)− θ∗(w2)

∥∥2

2

≤ `
√(

1 + (`/µ)2
)
‖w2 −w1‖22

= `
√

1 + (`/µ)2‖w2 −w1‖2

≤
(
`+

`2

2µ2

)
‖w2 −w1‖2,

where the last line holds since
√

1 + t ≤ 1 + t/2 for every t ≥ −1. The proof is hence complete.
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Here, we provide a proof based on standard techniques in stability-based generalization theory (Bousquet & Elisseeff,
2002). Consider two independent datasets S = (z1, . . . , zn) and S′ = (z′1, . . . , z

′
n). We use the notation S(i) =

(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn) to denote the dataset with the ith sample replaced with z′i.

To show part (a), note that for every θ ∈ Θ we have

ESEA[RS(Aw(S),θ)] = ESEA
[

1

n

n∑
i=1

f(Aw(S),θ; zi)

]

= ESES′EA
[

1

n

n∑
i=1

f(Aw(S(i)),θ; z′i)

]

= ESES′EA
[

1

n

n∑
i=1

f(Aw(S),θ; z′i)

]
+ ζ

= ESEA[R(Aw(S),θ)] + ζ,

where we define

ζ := ESES′EA
[

1

n

n∑
i=1

f(Aw(S(i)),θ; z′i)−
1

n

n∑
i=1

f(Aw(S),θ; z′i)

]
Note that according to the uniform-stability assumption we have |f(Aw(S(i)),θ; z′i)− f(Aw(S),θ; z′i)| ≤ ε which shows
that |ζ| ≤ ε and shows that for every θ ∈ Θ:∣∣ESEA[R(Aw(S),θ)−RS(Aw(S),θ)]

∣∣ ≤ ε,
which completes the proof of part (a).

To show part (b), note that under the swapping condition we can move the maximization inside the summation since the max
subproblems are independently solved for different data points. Then,

ESEA[RS(Aw(S))] = ESEA
[
max
θ∈Θ

1

n

n∑
i=1

f(Aw(S),θ; zi)

]

= ESEA
[

1

n

n∑
i=1

max
θ∈Θ

f(Aw(S),θ; zi)

]

= ESES′EA
[

1

n

n∑
i=1

max
θ∈Θ

f(Aw(S(i)),θ; z′i)

]

= ESES′EA
[

1

n

n∑
i=1

max
θ∈Θ

f(Aw(S),θ; z′i)

]
+ ζ

= ESES′EA
[
max
θ∈Θ

1

n

n∑
i=1

f(Aw(S),θ; z′i)

]
+ ζ

= ESEA[R(Aw(S))] + ζ.

In the above, ζ is defined as

ζ := ESES′EA
[

1

n

n∑
i=1

[
max
θ∈Θ

f(Aw(S(i)),θ; z′i)−max
θ′∈Θ

f(Aw(S),θ′; z′i)
]]
.

Note that due to the uniform stability assumption for every data point z and datasets S, S′ with only one different sample we
have

max
θ∈Θ

f(Aw(S),θ; z)−max
θ′∈Θ

f(Aw(S′),θ′; z) ≤ max
θ∈Θ

{
f(Aw(S),θ; z)− f(Aw(S′),θ; z)

}
≤ ε.
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Therefore, replacing the order of S, S′ in the above inequality we obtain∣∣max
θ∈Θ

f(Aw(S),θ; z)−max
θ′∈Θ

f(Aw(S′),θ′; z)
∣∣ ≤ ε.

As a result, we conclude that |ζ| ≤ ε which shows that∣∣ESEA[RS(Aw(S))]− ESEA[R(Aw(S))]
∣∣ ≤ ε.

The proof of part (b) is hence complete.

Finally, to prove part (c) we use θ∗S(w) to denote the optimal maximization solution for dataset S and minimization
variable w. Similarly, we use θ∗(w) to denote the the optimal maximization solution for the underlying distribution PZ and
minimization variable w. Then, we have

ESEA[RS(Aw(S))] = ESEA
[
max
θ∈Θ

1

n

n∑
i=1

f(Aw(S),θ; zi)

]

= ESEA
[

1

n

n∑
i=1

f(Aw(S),θ∗S(Aw(S)); zi)

]

= ESES′EA
[

1

n

n∑
i=1

f(Aw(S(i)),θ∗S(i)(Aw(S(i))); z′i)

]

≥ ESES′EA
[

1

n

n∑
i=1

f(Aw(S(i)),θ∗(Aw(S(i))); z′i)

]

= ESES′EA
[

1

n

n∑
i=1

f(Aw(S),θ∗(Aw(S)); z′i)

]
+ ζ

= ESES′EA
[

1

n

n∑
i=1

max
θ∈Θ

Ez∼PZ
[
f(Aw(S),θ∗(Aw(S)); z)

]]
+ ζ

= ESES′EA
[
max
θ∈Θ

Ez∼PZ
[
f(Aw(S),θ∗(Aw(S)); z)

]]
+ ζ

= ESEA[R(Aw(S))] + ζ.

In the above, we define

ζ := ESES′EA
[

1

n

n∑
i=1

[
f(Aw(S(i)),θ∗(Aw(S(i))); z′i)− f(Aw(S),θ∗(Aw(S)); z′i)

]]

Lemma 2 implies that for every S, θ∗S(w) is κ-Lipschitz in w, and hence for every z f(w,θ∗(w); z) is L
√
κ2 + 1-Lipschitz

in w. As a result, based on the uniform stability assumption we have

|ζ| ≤ L
√
κ2 + 1

n

n∑
i=1

∥∥Aw(S)−Aw(S(i))
∥∥

2
≤ L

√
κ2 + 1ε,

which makes the proof of part (c) complete.

B.3. Proof of Theorem 2

Note that in the following discussion we define PPmax as a proximal point method which fully optimizes the maximization
variable at every iteration with the following update rule:

GPPmax(

[
w
θ

]
) := argmin

w̃∈W
argmax

θ̃∈Θ

{
f(w̃, θ̃) +

1

2ηw
‖w̃ −w‖22

}
.
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Theorem. Let minimax learning objective f(·, ·; z) be µ-strongly convex strongly-concave and satisfy Assumption 2 for
every z. Assume that Assumption 1 holds for convex-concave f̃(w,θ; z) := f(w,θ; z) + µ

2 (‖θ‖22 − ‖w‖22) and every z.
Then,

1. Full-batch and Stochastic GDA and GDmax with constant stepsize αw = αθ ≤ 2µ
`2 for T iterations will satisfy

εgen(GDA), εgen(SGDA) ≤ 2L2
√
κ2 + 1

(µ− αw`2

2 )n
, εgen(GDmax), εgen(SGDmax) ≤ 2L2

√
κ2 + 1

µn
. (6)

2. Full-batch and stochastic PPM and PPmax with constant parameter η for T iterations will satisfy

εgen(PPM), εgen(SPPM) ≤ 2L2
√
κ2 + 1

µn
, εgen(PPmax), εgen(SPPmax) ≤ 2L2

√
κ2 + 1

µn
. (7)

Proof. We start by proving the following lemmas.

Lemma 3 (Growth Lemma). Consider two sequences of updates G1, . . . , GT and G′1, . . . .G
′
t with the same starting point

w0 = w′0,θ0 = θ′0. We define δt :=
√
‖wt −w′t‖2 + ‖θt − θ′t‖2. Then, if GT , G′T is ξ-expansive we have δt+1 ≤ ξδt for

identical Gt = G′t, and in general we have

δt+1 ≤ min{ξ, 1}δt + sup
w,θ
{‖[w,θ]−Gt([w,θ])‖}+ sup

w,θ
{‖[w,θ]−G′t([w,θ])‖}.

Furthermore, for any constant r we have

δt+1 ≤ ξδt + sup
w,θ
{‖r[w,θ]−Gt([w,θ])‖}+ sup

w,θ
{‖r[w,θ]−G′t([w,θ])‖}.

Finally, if Gt = G+ G̃t and G′t = G+ G̃′t for ξ0-expansive G and ξ1-expansive G̃t and G̃′t, then for any constant r we have

δt+1 ≤ (ξ0 + ξ1)δt + sup
w,θ
{‖r[w,θ]− G̃t([w,θ])‖}+ sup

w,θ
{‖r[w,θ]− G̃′t([w,θ])‖}.

Proof. The first part of the theorem is a direct consequence of the definition of ξ-expansive operators. For the second part,
note that

δt+1 = ‖Gt([wt,θt])−G′t([w′t,θ′t])‖
= ‖Gt([wt,θt])− [wt,θt] + [wt,θt]− [w′t,θ

′
t] + [w′t,θ

′
t]−G′t([w′t,θ′t])‖

≤ ‖Gt([wt,θt])− [wt,θt]‖+ ‖[wt,θt]− [w′t,θ
′
t]‖+ ‖[w′t,θ′t]−G′t([w′t,θ′t])‖

≤ δt + sup
w,θ
{‖[w,θ]−Gt([w,θ])‖}+ sup

w,θ
{‖[w,θ]−G′t([w,θ])‖}.

In addition, we can bound δt+1 as

δt+1 = ‖Gt([wt,θt])−G′t([w′t,θ′t])‖
= ‖Gt([wt,θt])−Gt([w′t,θ′t]) +Gt([w

′
t,θ
′
t])−G′t([w′t,θ′t])‖

≤ ‖Gt([wt,θt])−Gt([w′t,θ′t])‖+ ‖Gt([w′t,θ′t])−G′t([w′t,θ′t])‖
≤ ξδt + ‖Gt([w′t,θ′t])− r[w′t,θ′t]‖+ ‖r[w′t,θ′t]−G′t([w′t,θ′t])‖
≤ ξδt + sup

w,θ
{‖r[w,θ]−Gt([w,θ])‖}+ sup

w,θ
{‖r[w,θ]−G′t([w,θ])‖}.

The above result for general constant r and also combined with the previous result with r = 1 finishes the proof of the first
two parts. For the final segment of the lemma, note that

δt+1 = ‖Gt([wt,θt])−G′t([w′t,θ′t])‖
= ‖G([wt,θt]) + G̃t([wt,θt])−G([w′t,θ

′
t])− G̃′t([w′t,θ′t])‖

≤ ‖G([wt,θt])−G([w′t,θ
′
t])‖+ ‖G̃t([wt,θt])− G̃′t([w′t,θ′t])‖

≤ ξ0δt + ‖G̃t([wt,θt])− G̃′t([w′t,θ′t])‖
≤ ξ0δt + ξ1δt + sup

w,θ
{‖r[w,θ]− G̃t([w,θ])‖}+ sup

w,θ
{‖r[w,θ]− G̃′t([w,θ])‖}.
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Train simultaneously, generalize better: Stability of gradient-based minimax learners

In the above equations, the last line follows from the second part of the lemma which finishes the proof.

In order to show the Theorem for SGDA updates, note that given two datsets S, S′ of size n with only one different sample
at every iteration of stochastic GDA the update rule will be the same with probability 1− 1/n and with probability 1/n we
have two different (1− αwµ+ α2

w`
2/2)-expansive operators both of which satisfy

sup
w,θ
{‖(1− αwµ)[w,θ]−GSGDA([w,θ])‖} ≤ Lαw.

The above inequality holds, because f̃ is assumed to be continuously differentiable and L-Lipschitz. As a result, Lemmas
3,1 together with the law of total probability imply that the expected norm of δSGDA

t =
√
‖wt −w′t‖2 + ‖θt − θ′t‖2 for the

SGDA updates applied to the two datasets will satisfy

E[δSGDA
t+1 ] ≤ (1− 1

n
)(1− αwµ+

α2
w`

2

2
)E[δSGDA

t ] +
1

n

(
(1− αwµ+

α2
w`

2

2
)E[δSGDA

t ] + 2αwL
)

= (1− αwµ+
α2
w`

2

2
)E[δSGDA

t ] +
2αwL

n
.

Note that in the above upper-bound 1− 1
n is the probability that the stochastic GDA algorithm chooses a shared sample

between the two datasets and 1
n is the probability of picking the index of the different sample.

Similarly, the update rule for the full-batch GDA algorithm can be written as the sum of the updates for the shared samples,
i.e.,

∑n−1
i=1

1
nGGDA([w,θ]; zi), and the different sample zn’s update 1

nGGDA([w,θ]; zn). As a result, the last part of Lemma
3 together with Lemma 1 implies that

δGDA
t+1 ≤ (1− 1

n
+

1

n
)(1− αwµ+

α2
w`

2

2
)δGDA
t +

1

n
(2αwL)

= (1− αwµ+
α2
w`

2

2
)E[δGDA

t ] +
2αwL

n
,

which is the same bound we derived for stochastic GDA. Therefore, given that δ0 = 0, for SGDA updates we have

E[δSGDA
t ] ≤ 2αwL

n

t∑
i=0

(1− αwµ+
α2
w`

2

2
)i

≤ 2αwL

n

∞∑
i=0

(1− αwµ+
α2
w`

2

2
)i

=
2αwL

n(αwµ− α2
w`

2

2 )

=
2L

n(µ− αw`2

2 )
.

Note that ‖wt−w′t‖ ≤ δt. As a result, the SGDA algorithm applied for T iterations will be (2L/n(µ−αw`2/2))-uniformly
stable in the minimization variable, and the result follows from Theorem 1. The result for the GDA algorithm will follow
from the same steps, since it shares the same growth rule with the SGDA algorithm.

Similarly, the SPPM updates will be 1/(1 + µη)-expansive due to Lemma 1. Furthermore, they will satisfy

sup
w,θ
{‖ 1

1 + ηµ
[w,θ]−GSPPM([w,θ])‖} ≤ Lη

1 + ηµ
.

The above equation holds, because for a SPPM update [wSPPM,θSPPM] = GSPPM([w,θ]) at sample z we have[
w
θ

]
=

[
(1 + ηµ)wSPPM + η∇wf̃(wSPPM,θSPPM; z)

(1 + ηµ)θSPPM − η∇θf̃(wSPPM,θSPPM; z)

]
⇒ 1

1 + ηµ

[
w
θ

]
−
[
wSPPM
θSPPM

]
=

η

1 + ηµ

[
∇wf̃(wSPPM,θSPPM; z)

−∇θf̃(wSPPM,θSPPM; z).

]
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Therefore, applying the law of total probability we will have

E[δSPPM
t+1 ] ≤ (1− 1

n
)

1

1 + µη
E[δSPPM

t ] +
1

n

( 1

1 + µη
E[δSPPM

t ] + 2
Lη

1 + ηµ

)
=

1

1 + µη
E[δSPPM

t ] +
2Lη

(1 + ηµ)n
.

Also, for the PPM algorithm given that zn denotes the different sample between datasets S, S′ note that[
w
θ

]
=

[
(1 + ηµ)wPPM + η

n

∑n−1
i=1 ∇wf̃(wPPM,θSPPM; zi) + η

n∇wf̃(wPPM,θSPPM; zn)

(1 + ηµ)θPPM − η
n

∑n−1
i=1 ∇θf̃(wPPM,θPPM; zi) + η

n∇θf̃(wPPM,θPPM; zn)

]
⇒ 1

1 + ηµ

[
w
θ

]
−
[
wSPPM
θSPPM

]
=

η

1 + ηµ

([
1
n

∑n−1
i=1 ∇wf̃(wPPM,θPPM; zi)

− 1
n

∑n−1
i=1 ∇θf̃(wPPM,θPPM; zi)

]
+

[
1
n∇wf̃(wPPM,θPPM; zn)

− 1
n∇θf̃(wPPM,θPPM; zn)

])
.

In the above, the last line shows the sum of the updates for shared samples between the two datasets, i.e., z1, . . . , zn−1, and
the different sample zn. Therefore, Lemma 3 together with Lemma 1 implies that

δPPM
t+1 ≤ (1− 1

n
+

1

n
)

1

1 + µη
δPPM
t +

2Lη

n(1 + ηµ)

=
1

1 + µη
δPPM
t +

2Lη

(1 + ηµ)n
,

which proves the same growth rule shown for SPPM also applies to the PPM algorithm. Since δ0 = 0, the above discussion
implies the following for SPPM updates:

E[δSPPM
t ] ≤ 2Lη

(1 + ηµ)n

t∑
i=0

( 1

1 + µη

)i
≤ 2Lη

(1 + ηµ)n

∞∑
i=0

( 1

1 + µη

)i
=

2Lη

(1 + ηµ)n(1− 1/(1 + µη))

=
2L

nµ
.

Since ‖wt −w′t‖ ≤ δt , the SPPM algorithm applied for T iterations will be (2L/nµ)-uniformly stable in the minimization
variable. Therefore, the theorem’s result is a corollary of Theorem 1. We can prove the result for the PPM algorithm by
repeating the same steps we did for SPPM, as the two algorithms were shown to share the same growth rule.

For GDmax and PPmax algorithms, note that f̃max(w;S) := maxθ ES [f̃(w,θ; z)]− µ
2 ‖θ‖

2 will be convex and L
√
κ2 + 1-

Lipschitz in w. Therefore, summing this function with µ
2 ‖w‖

2 will be µ-strongly convex. Since GDmax and SGDmax
apply gradient descent to the maximized function, the theorem’s result for GDmax and SGDmax follows from Theorem 3.9
in (Hardt et al., 2016). For SPPmax, we note that similar to Lemma 1 it can be seen that the proximal point updates will be
1/(1 + µη)-expansive. Moreover for the update wSPPmax = GSPPmax(w), we will have

w = (1 + ηµ)wSPPmax + η∇wf̃max(wSPPmax; z)

⇒ 1

1 + ηµ
w −wSPPmax =

η

1 + ηµ
∇wf̃max(wSPPmax; z).

As a result of Lemma 2.5 in (Hardt et al., 2016), defining δSPPmax
t = ‖wt −w′t‖ for datatsets S, S′ we will have:

E[δSPPmax
t+1 ] ≤ (1− 1

n
)

1

1 + µη
E[δSPPmax

t ] +
1

n

( 1

1 + µη
E[δSPPmax

t ] + 2
Lwη

1 + ηµ

)
=

1

1 + µη
E[δSPPmax

t ] +
2Lwη

(1 + ηµ)n
.
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Furthermore for PPmax, we will have the following for wPPM = GPPM(w) when applied to the two datasets different in
only the zn sample:

w = (1 + ηµ)wPPmax +
η

n

n−1∑
i=1

∇wf̃max(wPPmax; zi) +
η

n
∇wf̃max(wPPmax; zn)

⇒ 1

1 + ηµ
w −wPPM =

η

1 + ηµ

( 1

n

n−1∑
i=1

∇wf̃max(wPPmax; zi)
)

+
η

1 + ηµ

( 1

n
∇wf̃max(wPPmax; zn)

)
.

Applying Lemma 2.5 from (Hardt et al., 2016) and defining δPPmax
t = ‖wt −w′t‖ for datatsets S, S′ we will have:

δPPmax
t+1 ≤ (1− 1

n
+

1

n
)

1

1 + µη
δPPmax
t +

1

n

(
2
L
√
κ2 + 1η

1 + ηµ

)
=

1

1 + µη
δPPmax
t +

2L
√
κ2 + 1η

(1 + ηµ)n
.

Note that δPPmax
0 = δSPPmax

0 = 0 which implies that:

E[δSPPmax
t ] ≤ 2L

√
κ2 + 1η

(1 + ηµ)n

t∑
i=0

( 1

1 + µη

)i
≤ 2L

√
κ2 + 1η

(1 + ηµ)n

∞∑
i=0

( 1

1 + µη

)i
=

2L
√
κ2 + 1η

(1 + ηµ)n(1− 1/(1 + µη))

=
2L
√
κ2 + 1

nµ
.

Therefore, the SPPMax algorithm applied for T iterations will be (2L2
√
κ2 + 1/nµ)-uniformly stable according to (Hardt

et al., 2016)’s Definition 2.1. The result is hence a consequence of Theorem 2.2 in (Hardt et al., 2016). We can prove the
result for the PPmax algorithm by repeating the same steps.

B.4. Proof of Remark 1

Remark. Consider a convex concave minimax objective f(·, ·; z) satisfying Assumptions 1 and 2. Given constant stepsizes
αw = αθ = α, the GDA’s generalization risk over T iterations will be bounded as:

εgen(GDA) ≤ O
(αLLw(1 + α2`2)T/2

n

)
.

In particular, the bound’s exponential dependence on T is tight for the GDA’s generalization risk in the special case of
f(w,θ; z) = w>(z− θ).

Proof. As shown in Lemma 1, the GDA’s update will be
√

1 + α2`2-expansive in this case. As a result, in learning
over two datasets S, S′ which are different in only one sample, Lemma 3 shows the following growth rule for δt =√
‖wt −w′t‖22 + ‖θt − θ′t‖22:

δt+1 ≤ (
n− 1

n
+

1

n
)
√

1 + α2`2δt +
2αL

n

=
√

1 + α2`2δt +
2αL

n
.
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Considering that δ0 = 0, we get the following exponentially growing bound in T for δT :

δT ≤
T∑
t=1

(
1 + α2`2

)t/2 2αL

n

=
2αL

n

(
1 + α2`2

)(T+1)/2 − 1
√

1 + α2`2 − 1

= O
(αL(1 + α2`2

)T/2
n

)
,

which considering that f(w,θ; z) is Lw-Lipschitz in w together with Theorem 1 shows that

εgen(GDA) ≤ O
(αLLw(1 + α2`2)T/2

n

)
.

Also, note that for the special convex-concave case f(w,θ; z) = wT (z− θ) given that z̄ = 1
n

∑n
i=1 zi the GDA’s update

rule will satisfy the following [
wt+1

θt+1 − z̄

]
=

[
I αI
−αI I

] [
wt

θt − z̄

]
,

⇒
[
wt+1

θt+1

]
=

[
I αI
−αI I

] [
wt

θt

]
−
[
αz̄
0

]
.

As a result, for the updates on the two datasets S, S′ with size n differing in only the sample zn we have:[
wt+1 −w′t+1

θt+1 − θ′t+1

]
=

[
I αI
−αI I

] [
wt −w′t
θt − θ′t

]
+

[
α
n (z′n − zn)

0

]
.

Hence, knowing that w0 = w′0, θ0 = θ′0 we have[
wT −w′T
θT − θ′T

]
=

[
I αI
−αI I

]T [α
n (z′n − zn)

0

]
.

Since the matrix
[

1 α
−α 1

]
has the conjugate complex eigenvalues 1± αi, we will have

∥∥ [wT −w′T
θT − θ′T

] ∥∥
2

=
(√

1 + α2
)T∥∥ [αn (z′n − zn)

0

] ∥∥
2

=
α
(√

1 + α2
)T

n
‖z′n − zn‖2

As a consequence of the conjugate eigenvalues and the resulting iterative rotations in the complex space, the above equality
shows that as long as α 6= 0 for any constant 0 < C < 1 there will exist arbitrarily large T values such that

∥∥wT −w′T
∥∥

2
≥
Cα
(√

1 + α2
)T

n
‖z′n − zn‖2.

Equivalently, we have

‖wT −w′T ‖2 = ΩT
(α(1 + α2

)T/2
n

‖z′n − zn‖2
)
, (8)

which proves the exponential dependence of the expected generalization risk on T and completes the proof.

B.5. Proof of Theorem 3

Here we prove the following generalized version of Theorem 3 in the text for general time-varying stepsize values.
Theorem. Consider a convex-concave minimax learning objective f(·, ·; z) satisfying Assumptions 1 and 2 for every z.
Then, stochastic PPM with stepsizes ηt at iteration t over T iterations will satisfy

εmm
gen (PPM), εmm

gen (SPPM) ≤ 2LLw
n

T∑
t=1

ηt, εmm
gen (PPmax), εmm

gen (SPPmax) ≤ 2L2
w

n

T∑
t=1

ηt. (9)
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Proof. Consider two datasets S, S′ with size n which have only one different sample. As a result of Lemma 1, the
proximal point updates will be 1-expansive. Therefore, according to Lemma 3 and the Law of total probability, defining
δSPPM
t =

√
‖wt −w′t‖2 + ‖θt − θ′t‖2 we will have

E[δSPPM
t+1 ] ≤ (1− 1

n
)E[δSPPM

t ] +
1

n

(
E[δSPPM

t ] + 2ηtL
)

= E[δSPPM
t ] +

2ηtL

n

Given that δSPPM
0 = 0, we reach the following inequality for every T

E[δSPPM
T ] ≤ 2L

n

T∑
t=1

ηt.

Note that for every θ, z, f(w,θ; z) is Lw-Lipschitz, which with the above inequality implies that SPPM will be uniformly-
stable in minimization with the following degree

2LLw
n

T∑
t=1

ηt.

The theorem’s result for SPPM then becomes a consequence of Theorem 1. Furthermore, regarding the PPM algorithm
applying Lemma 3 and Lemma 1 implies that

δPPM
t+1 ≤ (1− 1

n
+

1

n
)δPPM
t +

2ηtL

n

= δPPM
t +

2ηtL

n
.

The above equation holds because the update rule of PPM can be written in the following way where zn denotes the only
different sample between the two datasets,[

w
θ

]
−
[
wPPM
θPPM

]
= η

([
1
n

∑n−1
i=1 ∇wf(wPPM,θPPM; zi)

− 1
n

∑n−1
i=1 ∇θf(wPPM,θPPM; zi)

]
+

[
1
n∇wf(wPPM,θPPM; zn)
− 1
n∇θf(wPPM,θPPM; zn)

])
.

Since δPPM
0 = 0, at iteration T we have

δPPM
T ≤ 2L

n

T∑
t=1

ηt.

As a result, we can repeat the last step of our proof for the case of SPPM to complete the proof for the PPM case. For the
PPmax and SPPmax algorithms, note that fmax(w; z) := maxθ f(w,θ; z) will be convex and Lw-Lipschitz in w. The
result is therefore a corollary of Theorem 3.8 and Lemma 4.6 in (Hardt et al., 2016).

B.6. Proof of Theorem 4

Theorem. Given a differentiable minimax objective f(w,θ; z) the average iterate updates w̄(T ) := 1
T

∑T
t=1 w

(t), θ̄(T ) :=
1
T

∑T
t=1 θ

(t) of SPPM and SPPmax with setpsize parameter η will satisfy the following optimality gaps for a saddle solution
[w∗S ,θ

∗
S ] of the empirical risk for dataset S:

SPPM : E
[
RS(w̄(T ))

]
−RS(w∗S) ≤ ‖w

(0) −w∗S‖2 + ‖θ(0) − θ∗S‖2

2ηT
,

SPPmax : E
[
RS(w̄(T ))

]
−RS(w∗S) ≤ ‖w

(0) −w∗S‖2

2ηT
.
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Proof. Note that for any proximal operator Fk such that vk+1 = vk − ηFk(vk+1) we will have the following for every v:

1

2η
‖vk − v‖2 − 1

2η
‖vk+1 − v‖2 − 1

2η
‖vk+1 − vk‖2

= − 1

η

(
‖vk+1‖2 − vTk vk+1 − vTvk+1 + vTvk

)
= − 1

η
(vk+1 − vk)T (vk+1 − v)

=Fk(vk+1)T (vk+1 − v).

As a result, we have

1

T

T∑
k=0

Fk(vk)T (vk − v) =
1

2ηT
‖v0 − v‖2 − 1

2ηT
‖vT − v‖2 − 1

T

T∑
k=0

‖vk − vk−1‖2

≤ 1

2ηT
‖v0 − v‖2.

Given that every Fk is a stochastic proximal rule for a uniformly random training sample, the law of iterated expectation
conditioned to random update vt at iteration t implies that

E
[

1

T

T∑
k=0

Fk(vk)T (vk − v)

]
=

1

T

T∑
k=0

E
[
Fk(vk)T (vk − v)

]

=
1

T

T∑
k=0

E
[
E
[
Fk(vk)T (vk − v)

∣∣vk]]

=
1

T

T∑
k=0

E
[
E
[
Fk(vk)

∣∣vk]T (vk − v)

]

=
1

T

T∑
k=0

E
[
E
[
F̄ (vk)

∣∣vk]T (vk − v)

]

=
1

T

T∑
k=0

E
[
F̄ (vk)T (vk − v)

]

= E
[

1

T

T∑
k=0

F̄ (vk)T (vk − v)

]

where F̄ denotes the gradient update for the averaged loss over the training samples. Therefore, we have

E
[

1

T

T∑
k=0

F̄ (vk)T (vk − v)

]
≤ 1

2ηT
‖v0 − v‖2.

Considering the optimal saddle solution v = [w∗S ,θ
∗
S ] for the SPPM algorithm, combining the above result with Lemma 2

in (Mokhtari et al., 2019) proves the theorem’s result on the convergence of SPPM’s average iterates. For the convergence
result on SPPmax updates, note that given a convex function f and its gradient F and minimizer v∗ we have

f
( 1

T

T∑
t=1

v(t)
)
− f(v∗) ≤ 1

T

T∑
t=1

[
f(v(t))− f(v∗)

]
≤ 1

T

T∑
t=1

F (v(t))T (v(t) − v∗). (10)

The above equation together with the property shown for the stochastic updates of SPPmax completes the theorem’s
proof.
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B.7. Proof of Corollary 1

Corollary. Consider a convex concave minimax objective that satisfies the sawpping condition in Theorem 1b, which
we optimize via PPM and PPmax with setpsize parameter η. Then, given that ‖w(0) −w∗S‖2 + ‖θ(0) − θ∗S‖2 ≤ D2 for

PPM and ‖w(0) −w∗S‖ ≤ D for PPmax holds with probability 1, it will take TSPPM =
√

nD2

2η2LLw
and TSPPmax =

√
nD2

2η2L2
w

iterations for the average iterates to achieve the following bounded excess risks where w∗ denotes the optimal learner
minimizing the true risk R(w):

PPM,SPPM : E
[
R(w̄(TSPPM))

]
−R(w∗) ≤

√
2D2LLw

n
,

PPmax,SPPmax : E
[
R(w̄(TSPPmax))

]
−R(w∗) ≤

√
2D2L2

w

n
.

Proof. First, we show that using a constant stepsize parameter η the average iterates reach 1/2 of the generalization bound for
the final iterates in Theorem 3. For the average iterates (w̄t, θ̄t) and (w̄′t, θ̄

′
t) we have the following application of Jensen’s

inequality on the convex norm function for the difference of average iterates δ̄t =
√
‖w̄(t) − w̄′(t)‖2 + ‖θ̄(t) − θ̄′(t)‖2

δ̄t : =
√
‖w̄(t) − w̄′(t)‖2 + ‖θ̄(t) − θ̄′(t)‖2

≤ 1

t

t−1∑
k=0

√
‖wk −w′k‖2 + ‖θk − θ′k‖2

=
1

t

t−1∑
k=0

δt.

Similarly, one can show that δ̄w,t ≤ 1
t

∑t
k=1 δw,t. Therefore, knowing that E[δt] ≤ 2LLwtη

n implies that

E[δ̄t] ≤
1

t

t∑
k=1

E[δt] ≤
1

t

t−1∑
k=0

2LLwkη

n
≤ LLwtη

n
.

Hence, at the T th average iterate of PPM and SPPM we will have

EA[R(w̄(T ))]−RS [w̄(T )] ≤ LLwTη

n

which together with (Mokhtari et al., 2019)’s Theorem 1 for the PPM and and our generalization of that theorem to stochastic
PPM in Theorem 4 shows that

EA,S [R(w̄(T ))]− ES [RS [w̄(T )]] ≤ LLwηT

n
+

D2

2ηT
.

Note that ES [RS(wS)] ≤ ES [RS(w∗)] = R(w∗), indicating that

EA,S [R(w̄(T ))]−R(w∗) ≤ LLwηT

n
+

D2

2ηT
.

The above upper-bound will be minimized when ηT =
√

nD2

2LLw
and the optimized excess risk upper-bound for PPM and

SPPM will be

EA,S [R(w̄(T ))]−R(w∗) ≤
√

2LLwD2

n
.

Similarly, it can be seen that for PPmax and SPPmax the optimal bound will be achieved at ηT =
√

nD2

2L2
w

which suggests
the following excess risk bound:

EA,S [R(w̄(T ))]−R(w∗) ≤
√

2L2
wD

2

n
.

The proof is therefore complete.
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B.8. Proof of Theorem 5

Theorem. Let learning objective f(w,θ; z) be non-convex µ-strongly-concave and satisfy Assumptions 1 and 2. Also,
we assume that fmax(w; z) := maxθ∈Θ f(w,θ; z) is bounded as 0 ≤ fmax(w; z) ≤ 1 for every w, z. Then, defining
κ := `/µ we have

1. The SGDA algorithm with vanishing stepsizes αw,t = c/t, αθ,t = cr2/t for constants c > 0, 1 ≤ r ≤ κ satisfies the
following bound over T iterations:

εgen(SGDA) ≤
1 + 1

(r+1)c`

n

(
12cL2(r + 1)

√
κ2 + 1

) 1
(r+1)c`+1T

(r+1)c`
(r+1)c`+1 . (11)

2. The SGDmax algorithm with vanishing stepsize αw,t = c/t for constant c > 0 satisfies the following bound over T
iterations:

εgen(SGDmax) ≤
1 + 2

(κ+2)`c

n− 1

(
2cL2

√
κ2 + 1

) 2
(κ+2)`c+2T

(κ+2)`c
(κ+2)`c+2 . (12)

Proof. We start by proving the following lemmas.

Lemma 4. Let f(w,θ; z) satisgy Assumptions 1,2 and assume that fmax(w;S) := maxθ ES [f(w,θ; z)] is bounded 0 ≤
fmax(w; z) ≤ 1. Then, in applying SGDA for learning over two datasets S, S′ which differ in only one sample the updated
variables wt,w

′
t will satisfy the following inequality for every t0 ∈ {1, . . . , n} where δt :=

√
‖wt −w′t‖2 + ‖θ − θ′t‖2:

∀S : E
[
|fmax(wt;S)− fmax(w′t;S)|

]
≤ t0
n

+ L
√
κ2 + 1E[δt|δt0 = 0].

Proof. Define the event Et0 = I(δt0 = 0) as the indicator of the outcome δt0 = 0. Then, due to the law of total probability

E
[
|fmax(wt; z)− fmax(w′t; z)|

]
= Pr(Et0)E

[
|fmax(wt; z)− fmax(w′t; z)|

∣∣Et0]
+ Pr(Ect0)E

[
|fmax(wt; z)− fmax(w′t; z)|

∣∣Ect0]
(a)

≤E
[
|fmax(wt; z)− fmax(w′t; z)|

∣∣Et0]+ Pr(Ect0)

(b)

≤L
√
κ2 + 1E

[
‖wt −w′t‖

∣∣Et0]+ Pr(Ect0)

(c)

≤L
√
κ2 + 1E

[
δt
∣∣δt0 = 0

]
+
t0
n
.

In the above equations, (a) follows from the boundedness assumption on fmax. (b) is the consequence of Lw-Lipschitzness
of f which also transfers to fmax. Finally, (c) holds because ‖wt −w′t‖ ≤ δt according to the definition. Then, using the
union bound on the outcome I = It where I is the index of different samples in S, S′ and It is the index of sample used by
SGDA at iteration t we obtain that

Pr(Ect0) = Pr(δt0 > 0) ≤
t0∑
i=1

Pr(I = Ii) =
t0
n
.

The lemma’s proof is therefore complete.

In order to prove the theorem for SGDA updates, we provide an extension of Lemma 1 for non-convex concave minimax
objectives.

Lemma 5. Consider a non-convex µ-strongly concace objective f(w,θ) satisfying Assumption 2. Then, for every two
pairs (w,θ), (w′,θ′) the GDA updates [wGDA,θGDA] = GGDA([w,θ]), [w′GDA,θ

′
GDA] = GGDA([w′,θ′]) with stepsizes

αw, αθ ≤ 1
` will satisfy the following expansivity equation:[

‖wGDA −w′GDA‖
‖θGDA − θ′GDA‖

]
≤
[
1 + αw` αw`
αθ` 1− αθµ

2

] [
‖w −w′‖
‖θ − θ′‖

]
.
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Proof. Note that

‖wGDA −w′GDA‖ = ‖w − αw∇wf(w,θ)−w′ + αw∇wf(w′,θ′)‖
≤ ‖w − αw∇wf(w,θ)−w′ + αw∇wf(w′,θ)‖

+ ‖αw∇wf(w′,θ)− αw∇wf(w′,θ′)‖
≤ (1 + αw`)‖w −w′‖+ αw`‖θ − θ′‖.

Furthermore, we have

‖θGDA − θ′GDA‖ = ‖θ + αθ∇θf(w,θ)− θ′ − αθ∇θf(w′,θ′)‖
≤ ‖θ + αθ∇θf(w,θ)− θ′ − αθ∇θf(w,θ′)‖

+ ‖αθ∇θf(w,θ′)− αθ∇θf(w′,θ′)‖

≤
(
1− αθµ

2

)
‖θ − θ′‖+ αθ`‖w −w′‖,

where the last inequality follows from Lemma 3.7 in (Hardt et al., 2016) knowing that µ ≤ `. Therefore, the lemma’s proof
is complete.

Lemma 6. Consider two sequence of updates G1, . . . , GT and G′1, . . . , G
′
T for minimax objective f(w,θ). Define

δw,t = ‖wt −w′t‖ and δθ,t = ‖θt − θ′t‖. Assume that Gt is η-expansive for matrix η2×2, i.e. it satisfies the following
inequality for every [wGt ,θGt ] := Gt(w,θ), [w′Gt ,θ

′
Gt

] := Gt(w
′,θ′)[

‖wGt −w′Gt‖
‖θGt − θ′Gt‖

]
≤ η

[
‖w −w′‖
‖θ − θ′‖

]
.

Also, suppose that for every [wGt ,θGt ] := Gt(w,θ), [wGt ,θG′
t
] := G′t(w,θ) we have

sup
w,θ
‖wGt −w‖ ≤ σw, sup

w,θ
‖θGt − θ‖ ≤ σθ,

sup
w,θ
‖wG′

t
−w‖ ≤ σw, sup

w,θ
‖θG′

t
− θ‖ ≤ σθ.

Then, we have [
δw,t+1

δθ,t+1

]
≤ η

[
δw,t
δθ,t

]
+ 2

[
σw
σθ

]
.

Proof. Note that [
δw,t+1

δθ,t+1

]
=

[
‖Gt,w(wt,θt)−G′t,w(w′t,θ

′
t)‖

‖Gt,θ(wt,θt)−G′t,θ(w′t,θ′t)‖

]
=

[
‖Gt,w(wt,θt)−Gt,w(w′t,θ

′
t) +Gt,w(w′t,θ

′
t)−G′t,w(w′t,θ

′
t)‖

‖Gt,θ(wt,θt)−Gt,θ(w′t,θ′t) +Gt,θ(w
′
t,θ
′
t)−G′t,θ(w′t,θ′t)‖

]
=

[
‖Gt,w(wt,θt)−Gt,w(w′t,θ

′
t)‖

‖Gt,θ(wt,θt)−Gt,θ(w′t,θ′t)‖

]
+

[
‖Gt,w(w′t,θ

′
t)−G′t,w(w′t,θ

′
t)‖

‖Gt,θ(w′t,θ′t)−G′t,θ(w′t,θ′t)‖

]
=

[
‖Gt,w(wt,θt)−Gt,w(w′t,θ

′
t)‖

‖Gt,θ(wt,θt)−Gt,θ(w′t,θ′t)‖

]
+

[
‖Gt,w(w′t,θ

′
t)−w′t‖

‖Gt,θ(w′t,θ′t)− θ′t‖

]
+

[
‖w′t −G′t,w(w′t,θ

′
t)‖

‖θ′t −G′t,θ(w′t,θ′t)‖

]
≤ η

[
δw,t
δθ,t

]
+ 2

[
σw
σθ

]
,

which makes the proof complete.
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To prove the theorem’s result on SGDA note that Lemma 5 suggests that the SGDA update at iteration t for non-convex
non-concave problems will be expansive with the following matrix:

Bt :=

[
1 + αw,t` αw,t`
αθ,t` 1− αθ,tµ

2

]
= I + αw,t`

[
1 1
αθ,t
αw,t

−µαθ,t`αw,t

]
= I +

c`

t

[
1 1
r2 −r2/κ

]
.

For analyzing the powers of the above matrix, we diagonalize it using its eigenvalues λ1, λ2 and corresponding eigenvectors

ν1,ν2. Note that the product of the eigenvalues of
[

1 1
r2 −r2/κ

]
, i.e. the matrix’s determinant, is negative and hence the

matrix has two different real eigenvalues with opposite signs. This implies that the matrix is diagonlizable and so is a linear
combination of the matrix with the identity matrix. As a result, given the invertible matrix ν = [ν1,ν2] we have

Bt =

[
1 + αw,t` αw,t`
αθ,t` 1− αθ,tµ

2

]
= ν−1

[
1 + c`λ1

t 0

0 1 + c`λ2

t

]
ν.

Also, notice that we have the following closed-form solution for λ1, λ2:

λ1 =
κ− r2 +

√
4κ2r2 + (κ+ r2)2

2κ
, λ2 =

κ− r2 −
√

4κ2r2 + (κ+ r2)2

2κ
.

Therefore, since we assume 1 ≤ r ≤ κ,

max{λ1, λ2} ≤
1− r2

κ + (2r + ( r
2

κ + 1))

2
= r + 1.

Now, applying the law of total probability as well as Lemma 6 shows that

[
E[δw,t+1]
E[δθ,t+1]

]
≤ (1− 1

n
)Bt

[
E[δw,t]
E[δθ,t]

]
+

1

n

(
Bt

[
E[δw,t]
E[δθ,t]

]
+ 2

[
αw,tLw
αθ,tLθ

])
= Bt

[
E[δw,t]
E[δθ,t]

]
+

[ 2cLw
nt

2cr2Lθ
nt

]
.

Therefore, over T iterations we will have

[
E[δw,T ]
E[δθ,T ]

]
≤

T∑
t=t0+1

{ T∏
k=t+1

Bk
} [ 2cLw

nt
2cr2Lθ
nt

]

=

T∑
t=t0+1

ν−1
{ T∏
k=t+1

[
1 + c`λ1

k 0

0 1 + c`λ2

k

]}
ν

[ 2cLw
nt

2cr2Lθ
nt

]
.

Hence, denoting the minimum and maximum singular values of ν with σmin(ν), σmax(ν) and noting that ν−1’s operator
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norm is equal to 1/σmin(ν) we will have∥∥∥∥ [E[δw,T ]
E[δθ,T ]

] ∥∥∥∥
2

≤ σmax(ν)

σmin(ν)

T∑
t=t0+1

∥∥∥∥{ T∏
k=t+1

[
1 + c`λ1

k 0

0 1 + c`λ2

k

]} [ 2cLw
nt

2cr2Lθ
nt

]∥∥∥∥
2

≤ σmax(ν)

σmin(ν)

T∑
t=t0+1

∥∥∥∥ T∏
k=t+1

[
exp( c`λ1

k ) 0

0 exp( c`λ2

k )

]∥∥∥∥
2

∥∥ [ 2cLw
nt

2cr2Lθ
nt

] ∥∥
2

=
σmax(ν)

σmin(ν)

T∑
t=t0+1

∥∥∥∥
[

exp(
∑T
k=t+1

c`λ1

k ) 0

0 exp(
∑T
k=t+1

c`λ2

k )

]∥∥∥∥
2

∥∥[ 2cLw
nt

2cr2Lθ
nt

]∥∥
2

≤ σmax(ν)

σmin(ν)

T∑
t=t0+1

exp(

T∑
k=t+1

c`(r + 1)

k
)
∥∥ [ 2cLw

nt
2cr2Lθ
nt

] ∥∥
2

≤ 2crLσmax(ν)

nσmin(ν)

T∑
t=t0+1

exp(
∑T
k=t+1

c`(r+1)
k )

t

=
2crLσmax(ν)T c`(r+1)

nσmin(ν)

T∑
t=t0+1

t−c`(r+1)−1

≤ 2rLσmax(ν)

(r + 1)`nσmin(ν)

(T
t0

)c`(2r+1)

≤ 12L

n`

(T
t0

)c`(r+1)
.

We note that assuming r ≥ 1 we have ν’s condition number σmax(ν)/σmin(ν) ≤ (
√

2 + 1)/(
√

2− 1) ≤ 6. This is because

given an eigenvalue λ of
[

1 1
r2 −r2/κ

]
and its corresponding eigenvector [ν1, ν2] we have ν2 = (λ − 1)ν1 and hence

the eigenvector aligns with [1, λ− 1]. Therefore, we can bound the condition number of the following symmetric matrix,
because we can consider any vector column along the eigenvector’s direction:[

1 λ1 − 1
λ1 − 1 (λ1 − 1)(λ2 − 1)

]
=

 1
−1− r2κ +

√
4r2+(1+r2/κ)2

2
−1− r2κ +

√
4r2+(1+r2/κ)2

2 −r

 .
Since the above matrix is symmetric, its eigenvalues have the same absolute value as its singular values, and therefore the
condition number will be bounded as

σmax(ν)

σmin(ν)
≤
√

(r − 1)2 + 4(r + (λ1 − 1)2) + (r − 1)√
(r − 1)2 + 4(r + (λ1 − 1)2)− (r − 1)

≤

√
(r − 1)2 + 4(r + (r − r+1

2 )2) + (r − 1)√
(r − 1)2 + 4(r + (r − r+1

2 )2)− (r − 1)

≤

√
(r − 1)2 + 4(r − r+1

2 )2 + (r − 1)√
(r − 1)2 + 4(r − r+1

2 )2 − (r − 1)

=

√
2(r − 1)2 + (r − 1)√
2(r − 1)2 − (r − 1)

=

√
2 + 1√
2− 1

.

As a result, we showed that conditioned to δt0 = 0 we will have

E
[
δw,T

∣∣δt0 = 0
]
≤ 12L

n`

(T
t0

)c`(r+1)
.
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Combining the above equation with Lemma 4, we obtain that

∀z, t0 : E
[
|fmax(wT ; z)− fmax(w′T ; z)|

]
≤ t0
n

+
12L2

√
κ2 + 1

n`

(T
t0

)c`(r+1)
.

The above bound will be approaximately minimized at

t0 =
(
12(r + 1)cLL2

√
κ2 + 1

) 1
(r+1)c`+1T

(r+1)c`
(r+1)c`+1

which leads to the following bound

∀z : E
[
|fmax(wT ; z)− fmax(w′T ; z)|

]
≤

1 + 1
(r+1)c`

n

(
12(r + 1)cLL2

√
κ2 + 1

) 1
(r+1)c`+1T

(r+1)c`
(r+1)c`+1 .

The theorem’s bound on SGDA updates is then a consequence of Theorem 2.2 in (Hardt et al., 2016).

For the theorem’s bound on SGDmax updates, note that fmax(w;S) will be L
√
κ2 + 1-Lipschitz. Also, Lemma 2 implies

that fmax(w;S) will be `(κ2 + 1)-smooth in w. Therefore, the result follows from Theorem 3.12 in (Hardt et al., 2016).

B.9. Proof of Theorem 6

Theorem. Let minimax cost 0 ≤ f(·, ·; z) ≤ 1 be a bounded non-convex non-concave objective which satisfies Assumptions
1 and 2. Then, the SGDA algorithm with vanishing stepsizes max{αw,t, αθ,t} ≤ c/t for constant c > 0 satisfies the
following bound over T iterations:

εmm
gen (SGDA) ≤

1 + 1
`c

n

(
2cLLw

) 1
`c+1T

`c
`c+1 . (13)

Proof. To show this result, we apply Lemma 4. Defining δt =
√
‖wt −w′t‖2 + ‖θt − θ′t‖2 for the norm difference of

parameters learned by SGDA over two datasets S, S′ with one different sample, according to the law of total probability we
have:

E[δt+1] ≤ (1− 1

n
)(1 +

c`

t
)E[δt] +

1

n

(
(1 +

c`

t
)E[δt] +

2cL

t

)
= (1 +

c`

t
)E[δt] +

2cL

nt
.

As a result, conditioned on δt0 = 0 we will have

E[δT
∣∣δt0 = 0] ≤

T∑
t=t0+1

T∏
k=t+1

{
1 +

c`

k

}2cL

nt

≤
T∑

t=t0+1

T∏
k=t+1

{
exp(

c`

k
)
}2cL

nt

=

T∑
t=t0+1

exp
( T∑
k=t+1

c`

k

)2cL

nt

≤
T∑

t=t0+1

exp(c`log(T/t))
2cL

nt

=
2cLT c`

n

T∑
t=t0+1

t−c`−1

≤ 2L

n`

(T
t0

)c`
.
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Train simultaneously, generalize better: Stability of gradient-based minimax learners

Therefore, Lemma 4 shows that for every t0 and z:

E
[
|fmax(wt; z)− fmax(w′t; z)|

]
≤ t0
n

+
2LLw
n`

(T
t0

)c`
.

The above upper-bound will be approximately minimized at

t0 = (2cLLw)
1

`c+1T
`c
`c+1 .

Plugging in the above t0 to the upper-bound we obtain the following bound for every z:

E
[
|fmax(wt; z)− fmax(w′t; z)|

]
≤

1 + 1
`c

n
(2cLLw)

1
`c+1T

`c
`c+1 .

The above result combined with Theorem 2.2 from (Hardt et al., 2016) proves the theorem.
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