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Abstract
The success of minimax learning problems of
generative adversarial networks (GANs) has been
observed to depend on the minimax optimization
algorithm used for their training. This dependence
is commonly attributed to the convergence speed
and robustness properties of the underlying opti-
mization algorithm. In this paper, we show that
the optimization algorithm also plays a key role
in the generalization performance of the trained
minimax model. To this end, we analyze the gen-
eralization properties of standard gradient descent
ascent (GDA) and proximal point method (PPM)
algorithms through the lens of algorithmic sta-
bility as defined by Bousquet & Elisseeff, 2002
under both convex concave and non-convex non-
concave minimax settings. While the GDA al-
gorithm is not guaranteed to have a vanishing
excess risk in convex concave problems, we show
the PPM algorithm enjoys a bounded excess risk
in the same setup. For non-convex non-concave
problems, we compare the generalization perfor-
mance of stochastic GDA and GDmax algorithms
where the latter fully solves the maximization
subproblem at every iteration. Our generalization
analysis suggests the superiority of GDA provided
that the minimization and maximization subprob-
lems are solved simultaneously with similar learn-
ing rates. We discuss several numerical results
indicating the role of optimization algorithms in
the generalization of learned minimax models.

1. Introduction
In recent years, minimax learning frameworks including
generative adversarial networks (GANs) (Goodfellow et al.,
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2014) and adversarial training (Madry et al., 2017) have
achieved great success over a wide array of learning tasks.
In these approaches, the learning problem is modeled as a
zero-sum game between two ”min” and ”max” players that
is commonly solved by a minimax optimization algorithm.
The minimax optimization problem of these learning frame-
works is typically formulated using deep neural networks,
which greatly complicates the theoretical and numerical
analysis of the optimization problem. Current studies in
the machine learning literature focus on fundamental under-
standing of general minimax problems with emphasis on
convergence speed and optimality.

The primary focus of optimization-related studies of mini-
max learning problems has been on the convergence speed
and robustness properties of minimax optimization algo-
rithms. Several recently proposed algorithms have been
shown to achieve faster convergence rates and more robust
behavior around local solutions. However, training speed
and robustness are not the only factors required for the suc-
cess of a minimax optimization algorithm in a learning task.
In this work, we aim to show that the generalization perfor-
mance of the learned minimax model is another key property
that is influenced by the underlying optimization algorithm.
To this end, we present theoretical and numerical results
demonstrating that:

Different minimax optimization algorithms can learn mod-
els with different generalization properties.

In order to analyze the generalization behavior of minimax
optimization algorithms, we use the algorithmic stability
framework as defined by (Bousquet & Elisseeff, 2002) for
general learning problems and applied by (Hardt et al., 2016)
for analyzing stochastic gradient descent. Our extension of
(Bousquet & Elisseeff, 2002)’s stability approach to mini-
max settings allows us to analyze and compare the general-
ization properties of standard gradient descent ascent (GDA)
and proximal point method (PPM) algorithms. Furthermore,
we compare the generalization performance between the
following two types of minimax optimization algorithms: 1)
simultaneous optimization algorithms such as GDA where
the minimization and maximization subproblems are solved
simultaneously, and 2) non-simultaneous optimization algo-
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rithms such as GDmax where the maximization variable is
fully optimized at every iteration.

In our generalization analysis, we consider both the tradi-
tional convex concave and general non-convex non-concave
classes of minimax optimization problems. For convex
concave minimax problems, our bounds indicate a simi-
lar generalization performance for simultaneous and non-
simultaneous optimization methods. Specifically, we show
for strongly-convex strongly-concave minimax problems
all the discussed algorithms have a bounded generalization
error on the order of O(1/n) with n denoting the number
of training samples. However, in general convex concave
problems we show that the GDA algorithm with a constant
learning rate is not guaranteed to have a properly bounded
generalization risk. On the other hand, we prove that proxi-
mal point methods still achieve a controlled generalization
error, resulting in a vanishing O(

√
1/n) excess risk with

respect to the best minimax learner with the optimal perfor-
mance on the underlying distribution.

For more general minimax problems, our results indicate
that models trained by simultaneous and non-simultaneous
algorithms can reach different generalization performances.
Specifically, we consider the class of non-convex strongly-
concave problems where we establish stability-based gen-
eralization bounds for both stochastic GDA and GDmax
algorithms. Our generalization bounds indicate that the
stochastic GDA learner is expected to generalize better pro-
vided that the min and max players are trained simultane-
ously with similar learning rates. In addition, we show a
generalization bound for the stochastic GDA algorithm in
general non-convex non-concave problems, which further
supports the simultaneous optimization of the two min and
max players in general minimax settings. Our results indi-
cate that simultaneous training of the two players not only
can provide a faster training, but also can learn a model
with better generalization performance. Our generalization
analysis, therefore, revisits the notion of implicit competi-
tive regularization introduced by (Schäfer et al., 2019) for
simultaneous gradient methods in training GANs.

Finally, we discuss the results of our numerical experiments
and compare the generalization performance of GDA and
PPM algorithms in convex concave settings and single-
step and multi-step gradient-based methods in non-convex
non-concave GAN problems. Our numerical results also
suggest that in general non-convex non-concave problems
the models learned by simultaneous optimization algo-
rithms can generalize better than the models learned by
non-simultaneous optimization methods. We can summa-
rize the main contributions of this paper as follows:

• Extending the algorithmic stability framework for analyz-
ing generalization in minimax settings,

• Analyzing the generalization properties of minimax mod-
els learned by GDA and PPM algorithms in convex concave
problems,

• Studying the generalization of stochastic GDA and
GDmax learners in non-convex non-concave problems,

• Providing numerical results on the role of optimization
algorithms in the generalization performance of learned
minimax models.

2. Related Work
Generalization in GANs: Several related papers have stud-
ied the generalization properties of GANs. Arora et al.
(2017) study the generalization behavior of GANs’ learned
models and prove a uniform convergence generalization
bound in terms of the number of the discriminator’s param-
eters. Wu et al. (2019) connect the algorithmic stability
notion to differential privacy in GANs and numerically an-
alyze the generalization behavior of GANs. References
(Zhang et al., 2017; Bai et al., 2018) show uniform con-
vergence bounds for GANs by analyzing the Rademacher
complexity of the players. Feizi et al. (2020) provide a uni-
form convergence bound for the W2GAN problem. Unlike
the mentioned related papers, our work provides algorithm-
dependent generalization bounds by analyzing the stabil-
ity of gradient-based optimization algorithms. Also, the
related works (Arora & Zhang, 2017; Thanh-Tung et al.,
2019) conduct empirical studies of generalization in GANs
using birthday paradox-based and gradient penalty-based
approaches, respectively.

Generalization in adversarial training: Understanding
generalization in the context of adversarial training has re-
cently received great attention. Schmidt et al. (2018) show
that in a simplified Gaussian setting generalization in ad-
versarial training requires more training samples than stan-
dard non-adversarial learning. Farnia et al. (2018); Yin
et al. (2019); Khim & Loh (2018); Wei & Ma (2019); At-
tias et al. (2019) prove uniform convergence generalization
bounds for adversarial training schemes through Pac-Bayes
(McAllester, 1999; Neyshabur et al., 2017b), Rademacher
analysis, margin-based, and VC analysis approaches. Zhai
et al. (2019) study the value of unlabeled samples in obtain-
ing a better generalization performance in adversarial train-
ing. We note that unlike our work the generalization anal-
yses in the mentioned papers prove uniform convergence
results. In another related work, Rice et al. (2020) empiri-
cally study the generalization performance of adversarially-
trained models and suggest that the generalization behavior
can significantly change during training.

Stability-based generalization analysis: Algorithmic sta-
bility and its connections to the generalization properties
of learning algorithms have been studied in several related
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works. As a concurrent work, Lei et al. (2021) analyze the
generalization of stochastic gradient methods for solving
min-max optimization problems through the algorithmic sta-
bility approach. In a related paper, Zhang et al. (2020c) ana-
lyze the generalization of saddle points in strongly-concave-
concave problems using a stability-based approach. On
the other hand, our generalization bounds are algorithm-
dependent and apply to convex-concave and nonconvex-
nonconcave settings. Shalev-Shwartz et al. (2010) discuss
learning problems where learnability is feasible consider-
ing algorithmic stability, while it is infeasible with uniform
convergence. Hardt et al. (2016) bound the generalization
risk of the stochastic gradient descent learner by analyzing
its algorithmic stability. Feldman & Vondrak (2018; 2019);
Bousquet et al. (2020) provide sharper stability-based gen-
eralization bounds for standard learning problems. While
the above works focus on standard learning problems with
a single learner, we use algorithmic stability to analyze
generalization in minimax settings with two players.

Connections between generalization and optimization
in deep learning: The connections between generaliza-
tion and optimization in deep learning have been studied
in several related works. Analyzing the double descent
phenomenon (Belkin et al., 2019; Nakkiran et al., 2019;
Mei & Montanari, 2019), the effect of overparameteriza-
tion on generalization (Allen-Zhu et al., 2019; Arora et al.,
2019; Li & Liang, 2018), and the sharpness of local minima
(Keskar et al., 2016; Dinh et al., 2017; Neyshabur et al.,
2017a) have been performed in the literature to understand
the implicit regularization of gradient methods in deep learn-
ing (Neyshabur et al., 2014; Zhang et al., 2016; Ma et al.,
2018; Chatterjee, 2020). Schäfer et al. (2019) extend the
notion of implicit regularization to simultaneous gradient
methods in GAN settings and discuss an optimization-based
perspective to this regularization mechanism. However, we
focus on the generalization aspect of the implicit regulariza-
tion mechanism. Also, Nagarajan & Kolter (2019) suggest
that uniform convergence bounds may be unable to explain
generalization in supervised deep learning.

Analyzing convergence and stability of minimax opti-
mization algorithms: A large body of related papers
(Heusel et al., 2017; Sanjabi et al., 2018; Lin et al., 2019;
Fiez et al., 2019; Nouiehed et al., 2019; Hsieh et al., 2019;
Du & Hu, 2019; Mazumdar et al., 2019; Thekumparampil
et al., 2019; Mazumdar et al., 2020; Zhang et al., 2020b)
study convergence properties of first-order and second-order
minimax optimization algorithms. Also, the related works
(Daskalakis et al., 2017; Gidel et al., 2018; Liang & Stokes,
2019; Mokhtari et al., 2020; Zhang & Wang, 2020; Zhang
et al., 2020a) analyze the convergence behavior of optimistic
methods and extra gradient (EG) methods as approximations
of the proximal point method.

3. Preliminaries
In this paper, we focus on two standard families of minimax
optimization algorithms: Gradient Descent Ascent (GDA)
and Proximal Point Method (PPM). To review the update
rules of these algorithms, consider the following minimax
optimization problem for minimax objective f(w,θ) and
feasible setsW,Θ:

min
w∈W

max
θ∈Θ

f(w,θ). (1)

Then, for stepsize values αw, αθ, the followings are the
GDA’s and GDmax’s update rules:

GGDA(

[
w
θ

]
) :=

[
w − αw∇wf(w,θ)
θ + αθ∇θf(w,θ)

]
,

GGDmax(

[
w
θ

]
) :=

[
w − αw∇wf(w,θ)

argmaxθ̃∈Θf(w, θ̃)

]
(2)

In the above, argmaxθ∈Θf(w,θ) is the optimal maximizer
for w. Also, given stepsize parameter η the update rule of
PPM is as follows:

GPPM(

[
w
θ

]
) := argmin

w̃∈W
argmax

θ̃∈Θ

{
f(w̃, θ̃) (3)

+
1

2η
‖w̃ −w‖22 −

1

2η
‖θ̃ − θ‖22

}
,

In the Appendix, we also consider and analyze the PPmax
algorithm that is a proximal point method fully solving the
maximization subproblem at every iteration. Throughout
the paper, we commonly use the following assumptions on
the Lipschitzness and smoothness of the minimax objective.

Assumption 1. f(w,θ) is jointlyL-Lipschitz in (w,θ) and
Lw-Lipschitz in w over W × Θ, i.e., for every w,w′ ∈
W, θ,θ′ ∈ Θ we have∣∣f(w,θ)− f(w′,θ′)

∣∣ ≤ L√‖w −w′‖22 + ‖θ − θ′‖22,∣∣f(w,θ)− f(w′,θ)
∣∣ ≤ Lw‖w −w′‖2.

Assumption 2. f(w,θ) is continuously differentiable and
`-smooth on W × Θ, i.e.,

[
∇wf(w,θ),∇θf(w,θ)

]
is `-

Lipschitz onW ×Θ.

We focus on several classes of minimax optimization prob-
lems based on the convexity properties of the objective
function. Note that a differentiable function g(u) is called
convex in u if it satisfies the following inequality for every
u1,u2:

g(u2) ≥ g(u1) +∇g(u1)>(u2 − u1).

Furthermore, g is called µ-strongly-convex if for every
u1,u2 it satisfies

g(u2) ≥ g(u1) +∇g(u1)>(u2 − u1) +
µ

2
‖u2 − u1‖22.
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Also, g is called concave and µ-strongly-concave if −g is
convex and µ-strongly-convex, respectively.

Definition 1. Consider convex feasible setsW,Θ in mini-
max problem (1). Then,

• The problem is called convex concave if f(·,θ) and
f(w, ·) are respectively convex and concave functions for
every w,θ.

• The problem is called µ-strongly-convex strongly-concave
if f(·,θ) and f(w, ·) are respectively µ-strongly-convex
and µ-strongly-concave functions for every w,θ.

• The problem is called non-convex µ-strongly-concave if
f(w, ·) is µ-strongly-concave for every w.

4. Stability-based Generalization Analysis in
Minimax Settings

Consider the following optimization problem for a minimax
learning task:

min
w∈W

max
θ∈Θ

R(w,θ) := EZ∼PZ
[
f(w,θ;Z)

]
(4)

The above minimax objective represents a cost function
f(w,θ;Z) for minimization and maximization variables
w,θ and data variable Z that is averaged under the underly-
ing distribution PZ. We call the objective function R(w,θ)
the true minimax risk. We also define R(w) as the worst-
case minimax risk over the maximization variable θ:

R(w) := max
θ∈Θ

R(w,θ) (5)

In the context of GANs, the worst-case risk R(w) repre-
sents a divergence measure between the learned and true
distributions, and in the context of adversarial training it
represents the learner’s risk under adversarial perturbations.
Since the learner does not have access to the underlying dis-
tribution PZ, we estimate the minimax objective using the
empirical samples in dataset S = (z1, . . . , zn) which are
drawn according to PZ. We define the empirical minimax
risk as:

RS(w,θ) :=
1

n

n∑
i=1

f(w,θ; zi). (6)

Then, the worst-case empirical risk over the maximization
variable θ is defined as

RS(w) := max
θ∈Θ

RS(w,θ). (7)

We define the minimax generalization risk εgen(w) of min-
imization variable w as the difference between the worst-
case true and empirical risks:

εgen(w) := R(w)−RS(w). (8)

The above generalization score measures the difference
of empirical and true worst-case minimax risks. For a
randomized algorithm A which outputs random outcome
A(S) = (Aw(S), Aθ(S)) for dataset S we define A’s ex-
pected generalization risk as

εgen(A) := ES,A
[
R(Aw(S))−RS(Aw(S))

]
. (9)

We further define A’s expected minimax generalization risk
as the worst-case expected difference between the true and
empirical minimax risks:

εmm
gen (A) := max

θ∈Θ
ES,A

[
R(Aw(S),θ)−RS(Aw(S),θ)

]
.

(10)

Definition 2. A randomized minimax optimization algo-
rithm A is called ε-uniformly stable in minimization if for
every two datasets S, S′ ∈ Zn which differ in only one
sample, for every z ∈ Z,θ ∈ Θ we have

EA
[
f(Aw(S),θ; z)− f(Aw(S′),θ; z)

]
≤ ε. (11)

We further call A ε-uniformly stable in the minimization
solution if it satisfies the following for every S, S′ ∈ Zn:

EA
[∥∥Aw(S)−Aw(S′)

∥∥
2

]
≤ ε. (12)

Considering the above definition, we show the following
theorem that connects the definition of uniform stability to
the generalization risk of the learned minimax model.

Theorem 1. (a) Assume minimax learner A is ε-uniformly
stable in minimization. Then, A’s expected minimax gener-
alization risk is bounded as εmm

gen (A) ≤ ε.
(b) Assume minimax learner A is ε-uniformly stable in min-
imization. If the maximization problem over θ ∈ Θ can be
swapped with the expectation over Z, A’s expected general-
ization risk will be bounded as εgen(A) ≤ ε.
(c) Assume that minimax learner A is ε-uniformly stable
in the minimization solution and the minimax objective is
µ-strongly-concave in θ over a convex feasible set Θ and
satisfies Assumptions 1,2. Then, defining the condition num-
ber κ := `/µ, A’s expected generalization risk is bounded
as εgen(A) ≤

√
κ2 + 1L ε.

Proof. We defer the proof to the Appendix.

Note that the condition in the above part (b) on swapping the
maximization and expectation typically holds in standard
adversarial training problems (Madry et al., 2017) where
the maximization subproblem decouples across samples and
can be independently solved for every data point. Next, we
apply the above results to analyze generalization for convex
concave and non-convex non-concave minimax learning
problems.
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5. Generalization Analysis for Convex
Concave Minimax Problems

Analyzing convergence rates for convex concave minimax
problems is well-explored in the optimization literature.
Here, we use the algorithmic stability framework to bound
the expected generalization risk in convex concave minimax
learning problems. We start by analyzing the generalization
risk in strongly-convex strongly-concave problems. The
following theorem applies the stability framework to bound
the expected generalization risk under this scenario.

Theorem 2. Let minimax learning objective f(·, ·; z) be
µ-strongly-convex strongly-concave and satisfy Assumption
2 for every z. Assume that Assumption 1 holds for convex-
concave f̃(w,θ; z) := f(w,θ; z) + µ

2 (‖θ‖22 − ‖w‖22) and
every z. Then, defining κ = `/µ full-batch and stochastic
GDA and GDmax algorithms with stepsize αw = αθ ≤ µ

`2

will satisfy the following bounds over T iterations:

εgen(GDA) ≤ 2L2
√
κ2 + 1

(µ− αw`2

2 )n
, εgen(GDmax) ≤ 2L2

√
κ2 + 1

µn
.

Proof. We defer the proof to the Appendix.

Note that regarding Assumption 1 in the above theorem,
we suppose the assumption holds for the deregularized f̃ ,
because a strongly-convex strongly-concave objective can-
not be Lipschitz over an unbounded feasible set. We still
note that the theorem’s bounds will hold for the original f
if in Assumption 1 we define f ’s Lipschitz constants over
bounded feasible setsW,Θ.

Given sufficiently small stepsizes for GDA, Theorem 2 sug-
gests a similar generalization performance between GDA
and GDmax. For general convex concave problems, it is
well-known in the minimax optimization literature that the
GDA algorithm can diverge from an optimal saddle point
solution. As we show in the following remark, the general-
ization bound suggested by the stability framework will also
grow exponentially with the iteration count in this scenario.

Remark 1. Consider a convex concave minimax objective
f(·, ·; z) satisfying Assumptions 1 and 2. Given constant
stepsizes αw = αθ = α, the GDA’s generalization risk over
T iterations will be bounded as:

εgen(GDA) ≤ O
(αLLw(1 + α2`2)T/2

n

)
.

In particular, the bound’s exponential dependence on T is
tight for the GDA’s generalization risk in the special case
of f(w,θ; z) = w>(z− θ).

Proof. We defer the proof to the Appendix.

On the other hand, proximal point methods have been shown
to resolve the convergence issues of GDA methods in convex
concave problems (Mokhtari et al., 2019; 2020). Here, we
also show that these algorithms enjoy a generalization risk
growing at most linearly with T .

Theorem 3. Consider a convex-concave minimax learning
objective f(·, ·; z) satisfying Assumptions 1 and 2 for every
z. Then, full-batch and stochastic PPM with parameter η
will satisfy the following bound over T iterations:

εmm
gen (PPM) ≤ 2ηLLwT

n
.

Furthermore, under the swapping condition in Theorem 1-b
we also have

εgen(PPM) ≤ 2ηLLwT

n
.

Proof. We defer the proof to the Appendix.

The above generalization bound allows us to analyze the
true worst-case minimax risk of PPM learners in convex
concave problems. To this end, we decompose the true
worst-case risk into the sum of the stability and empirical
worst-case risks and optimize the sum of these two error
components’ upper-bounds. Note that Theorem 3 bounds
the generalization risk of PPM in terms of stepsize parameter
η and number of iterations T . Therefore, we only need to
bound the iteration complexity of PPM’s convergence to
an ε-approximate saddle point. To do this, we show the
following theorem that extends (Mokhtari et al., 2019)’s
result for PPM to stochastic PPM.

Theorem 4. Given a differentiable minimax objec-
tive f(w,θ; z) the average iterate updates w̄(T ) :=
1
T

∑T
t=1 w

(t), θ̄(T ) := 1
T

∑T
t=1 θ

(t) of stochastic PPM
(SPPM) with setpsize parameter η will satisfy the follow-
ing for a saddle point [w∗S ,θ

∗
S ] of the empirical risk under

dataset S:

EA
[
RS(w̄(T ))

]
−RS(w∗S) ≤

∥∥[w(0),θ(0)]− [w∗S ,θ
∗
S ]
∥∥2

2

2ηT
.

Proof. We defer the proof to the Appendix.

The above convergence result suggests that the expected em-
pirical worst-case risk of applying T iterations of stochastic
PPM will be at most O(1/ηT ). In addition, Theorem 3
shows that using that number of iterations the generalization
risk will be bounded by O(ηT/n). Minimizing the sum of
these two error components, the following corollary bounds
the excess risk suffered by the PPM algorithm.

Corollary 1. Consider a convex concave minimax objec-
tive that satisfies the swapping condition in Theorem 1b
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and a proximal point method with constant parameter η.
Given that ‖w(0)−w∗‖2 + ‖θ(0)− θ∗‖2 ≤ D2 holds with
probability 1 for optimal saddle solution (w∗,θ∗) of the

minimax risk, it will take TPPM =
√

nD2

2η2LLw
iterations for

the average iterate w̄(T ) = 1
T

∑T
t=1 w

(t) of full-batch and
stochastic PPM to have the following bounded excess risk:

ES,A
[
R(w̄(TPPM))

]
−R(w∗) ≤

√
2D2LLw

n
.

Proof. We defer the proof to the Appendix. In the Appendix,
we prove a similar bound for full-batch and stochastic PP-
max as well.

6. Generalization Analysis for Non-convex
Non-concave Minimax Problems

In the previous section, we showed that in convex-concave
minimax problems simultaneous and non-simultaneous
optimization algorithms have similar generalization error
bounds which are different by a constant factor L/Lw. How-
ever, here we demonstrate that this result does not generalize
to general non-convex non-concave problems. We first study
the case of non-convex strongly-concave minimax learning
problems, where we can analytically characterize the gen-
eralization bounds for both stochastic GDA and GDmax
algorithms. The following theorem states the results of
applying the algorithmic stability framework to bound the
generalization risk in such minimax problems.

Theorem 5. Let learning objective f(w,θ; z) be non-
convex µ-strongly-concave and satisfy Assumptions 1 and
2. Also, we assume that fmax(w; z) := maxθ∈Θ f(w,θ; z)
is bounded as 0 ≤ fmax(w; z) ≤ 1 for every w, z. Then,
defining κ := `/µ we have

1. The stochastic GDA (SGDA) algorithm with stepsizes
αw,t = c/t, αθ,t = cr2/t for constants c > 0, 1 ≤ r ≤ κ
satisfies the following bound over T iterations:

εgen(SGDA) ≤
1 + 1

(r+1)c`

n

×
(
12cL2(r + 1)

√
κ2 + 1

) 1
(r+1)c`+1T

(r+1)c`
(r+1)c`+1 .

2. The stochastic GDmax (SGDmax) algorithm with step-
size αw,t = c/t for constant c > 0 satisfies the following
bound over T iterations:

εgen(SGDmax) ≤
1 + 1

(κ+1)`c

n

×
(
2cL2(κ2 + 1)

) 1
(κ+1)`c+1T

(κ+1)`c
(κ+1)`c+1 .

Proof. We defer the proof to the Appendix.

The above result shows that the generalization risks of
stochastic GDA and GDmax change with the number of
iterations and training set size as:

εgen(SGDA) ≈ O
(
T

`(r+1)c
`(r+1)c+1 /n

)
,

εgen(SGDmax) ≈ O
(
T

`(κ+1)c
`(κ+1)c+1 /n

)
. (13)

Therefore, considering a maximization to minimization step-
size ratio of r2 < κ2 will result in a better generalization
bound for stochastic GDA compared to stochastic GDmax
over a fixed and sufficiently large number of iterations.

Next, we consider general non-convex non-concave min-
imax problems and apply the algorithmic stability frame-
work to bound the generalization risk of the stochastic GDA
algorithm. Note that the maximized value of a non-strongly-
concave function is in general non-smooth. Consequently,
the stability framework does not result in a bounded general-
ization risk for the GDmax algorithm in general non-convex
non-concave problems.

Theorem 6. Let 0 ≤ f(·, ·; z) ≤ 1 be a bounded
non-convex non-concave objective satisfying Assumptions
1 and 2. Then, the SGDA algorithm with stepsizes
max{αw,t, αθ,t} ≤ c/t for constant c > 0 satisfies the
following bound over T iterations:

εmm
gen (SGDA) ≤

1 + 1
`c

n

(
2cLLw

) 1
`c+1T

`c
`c+1 . (14)

Moreover, under the swapping condition in Theorem 1b we
also have

εgen(SGDA) ≤
1 + 1

`c

n

(
2cLLw

) 1
`c+1T

`c
`c+1 . (15)

Proof. We defer the proof to the Appendix.

Theorem 6 also shows that the SGDA algorithm with van-
ishing stepsize values will have a bounded generalization
risk of O(T

`c
`c+1 /n) over T iterations. On the other hand,

the stochastic GDmax algorithm could not enjoy a bounded
algorithmic stablility degree in non-convex non-concave
problems, since the optimal maximization value behaves
non-smoothly in general.

7. Numerical Experiments
Here, we numerically examine the theoretical results of
the previous sections. We first focus on a Gaussian setting
for analyzing strongly-convex strongly-concave and convex
concave minimax problems. Then, we empirically study
generative adversarial networks (GANs) as non-convex non-
concave minimax learning tasks.
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Figure 1. Generalization risk vs. iteration in the strongly-convex
strongly-concave setting optimized by (top) stochastic GDA and
(bottom) stochastic PPM.

7.1. Convex Concave Minimax Problems

To analyze our generalization results for convex concave
minimax settings, we considered an isotropic Gaussian data
vector Z ∼ N (0, Id×d) with zero mean and identity co-
variance. In our experiments, we chose Z’s dimension to
be d = 50. We drew n = 1000 independent samples
from the underlying Gaussian distribution to form a train-
ing dataset S = (z1, . . . , zn). For the µ-strongly-convex
strongly-concave scenario, we considered the following min-
imax objective:

f1(w,θ; z) = w>(z− θ) +
µ

2

(
‖w‖22 − ‖θ‖22

)
. (16)

In our experiments, we used µ = 0.1 and constrained
the optimization variables to satisfy the norm bounds
‖w‖2, ‖θ‖2 ≤ 100 which we enforced by projection after
every optimization step. Note that for the above minimax
objective we have

εgen(w) = w>(E[Z]− ES [Z]), (17)

where E[Z] = 0 is the underlying mean and ES [Z] :=
1
n

∑n
i=1 zi is the empirical mean.

To optimize the empirical minimax risk, we applied stochas-
tic GDA with stepsize parameters αw = αθ = 0.02

Figure 2. Generalization risk vs. iteration in the convex concave
bilinear setting optimized by (top) stochastic GDA and (bottom)
stochastic PPM.

and stochastic PPM with parameter η = 0.02 each for
T = 20, 000 iterations. Figure 1 shows the generalization
risk values over the optimization achieved by the stochastic
GDA (top) and PPM (bottom) algorithms. As shown in this
figure, the absolute value of generalization risk remained
bounded during the optimization for both the learning al-
gorithms. In our experiments, we also observed a similar
generalization behavior with full-batch GDA and PPM al-
gorithms. We defer the results of those experiments to the
supplementary document. Hence, our experimental results
support Theorem 2’s generalization bounds.

Regarding convex concave minimax problems, as suggested
by Remark 1 we considered the following bilinear minimax
objective in our experiments:

f2(w,θ; z) = w>(z− θ). (18)

We constrained the norm of optimization variables as
‖w‖2, ‖θ‖2 ≤ 100 which we enforced through projection
after every optimization iteration. Similar to the strongly-
convex strongly-concave objective (16), for the above mini-
max objective we have the generalization risk in (17) with
E[Z] and ES [Z] being the true and empirical mean vectors.

We optimized the minimax objective (18) via stochastic and
full-batch GDA and PPM algorithms. Figure 2 demonstrates
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Figure 3. Minimax risk vs. iteration in the non-convex non-
concave SN-GAN problem on CIFAR-10 data optimized by (top)
1,1 Adam descent ascent and (bottom) 1,100 Adam descent ascent

the generalization risk evaluated at different iterations of
applying stochastic GDA and PPM algorithms. As sug-
gested by Remark 1, the generalization risk of stochastic
GDA grew exponentially over the first 15,000 iterations
before the variables reached the boundary of their feasible
sets and then the generalization risk oscillated with a nearly
constant amplitude of 6.2. On the other hand, we observed
that the generalization risk of the stochastic PPM algorithm
stayed bounded and below 0.5 for all the 20,000 iterations
(Figure 2-bottom). Therefore, our numerical experiments
also indicate that while in general convex concave problems
the stochastic GDA learner can potentially suffer from a
poor generalization performance, the PPM algorithm has a
bounded generalization risk as shown by Theorem 3.

7.2. Non-convex Non-concave Problems

To numerically analyze generalization in general non-
convex non-concave minimax problems, we experimented
the performance of simultaneous and non-simultaneous op-
timization algorithms in training GANs. In our GAN ex-
periments, we considered the standard architecture of DC-
GANs (Radford et al., 2015) with 4-layer convolutional

Figure 4. Minimax risk vs. iteration in the non-convex non-
concave SN-GAN problem on CelebA data optimized by (top)
1,1 Adam descent ascent and (bottom) 1,100 Adam descent ascent.

neural net generator and discriminator functions. For the
minimax objective, we used the formulation of vanilla GAN
(Goodfellow et al., 2014) that is

f(w,θ; z) = log(Dw(z)) + Eν

[
log(1−Dw(Gθ(ν)))

]
.

For computing the above objective, we used Monte-
Carlo simulation using 100 fresh latent samples νi ∼
N (0, Ir=128) to approximate the expected value over gen-
erator’s latent variable ν at every optimization step. We
followed all the experimental details from (Gulrajani et al.,
2017)’s standard implementation of DC-GAN. Furthermore,
we applied spectral normalization (Miyato et al., 2018) to
regularize the discriminator function and assist reaching
a near optimal solution for discriminator via boundedly
many iterations needed for non-simultaneous optimization
methods. We trained the spectrally-normalized GAN (SN-
GAN) problem over CIFAR-10 (Krizhevsky et al., 2009)
and CelebA (Liu et al., 2018) datasets. We divided the
CIFAR-10 and CelebA datasets to 50,000, 160,000 training
and 10,000, 40,000 test samples, respectively.

To optimize the minimax risk function, we used the standard
Adam algorithm (Kingma & Ba, 2014) with batch-size 100.
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For simultaneous optimization algorithms we applied 1,1
Adam descent ascent with the parameters lr = 10−4, β1 =
0.5, β2 = 0.9 for both minimization and maximization
updates. To apply a non-simultaneous algorithm, we used
100 Adam maximization steps per minimization step and
increased the maximization learning rate to 5×10−4. We
ran each GAN experiment for T =100,000 iterations.

Figures 3, 4 show the estimates of the empirical and true
minimax risks in the CIFAR-10 and CelebA experiments, re-
spectively. We used 2000 randomly-selected samples from
the training and test sets for every estimation task. As seen
in these figures, for the experiments applying simultaneous
1,1 Adam optimization the empirical minimax risk general-
izes properly from training to test samples (Figures 3,4-top).
In contrast, in both the experiments with non-simultaneous
methods after 30,000 iterations the empirical minimax risk
suffers from a considerable generalization gap from the true
minimax risk (Figures 3,4-bottom). The gap between the
training and test minimax risks grew between iterations
30,000-60,000. The test minimax risk fluctuated over the
subsequent iterations, which could be due to the insuffi-
ciency of 100 Adam ascent steps to follow the optimal
discriminator solution at those iterations.

The numerical results of our GAN experiments suggest that
non-simultaneous algorithms which attempt to fully solve
the maximization subproblem at every iteration can lead
to large generalization errors. On the other hand, standard
simultaneous algorithms used for training GANs enjoy a
bounded generalization error which can help the training
process find a model with nice generalization properties.
We defer further experimental results to the supplementary
document.

8. Conclusion

In this paper, we study the generalization properties of
standard gradient-based min-max optimization algorithm
from the lens of algorithmic stability. We establish gen-
eralization error bounds for the simultaneous and non-
simultaneous update optimization algorithms. In the
strongly-convex strongly-concave case, our bounds indicate
a similar generalization behavior between simultaneous and
non-simultaneous optimization algorithms, whereas in the
non-convex strongly-concave scenario our bounds suggest
a superior performance for simultaneous stochastic GDA
than non-simultaneous stochastic GDmax provided that the
min-max stepsize ratio is below the condition number of the
problem. As potential future directions, analyzing the tight-
ness of the shown bounds and extending the stability-based
analysis to standard GAN and adversarial training settings
can be further explored.
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