
Lossless Compression of Efficient Private Local Randomizers

Supplementary Material
A Proofs and Extensions for “Local Pseudo-Randomizers”

Lemma A.1 (Lemma 3.2 restated). For a t-samplable deletion ε-DP local randomizer R : X → Y and G : {0, 1}` →
{0, 1}t, let D denote the following family of tests which take r′ ∈ {0, 1}t as an input:

D :=

{
ind

(
Pr[R(x) = R∅(r′)]

Prr∼{0,1}t [R∅(r) = R∅(r′)]
≥ θ
) ∣∣∣∣ x ∈ X, θ ∈ [0, eε]

}
,

where ind denotes the {0, 1} indicator function of a condition. If G β-fools D for β < 1/(2eε) then R[G] is a deletion
(ε+ 2eεβ)-DP local randomizer. Furthermore, for every γ > 0,R[G, γ] is a deletion (ε+ 2eεβ)-DP local randomizer.

Proof. We demonstrate that ifR[G] is not a deletion (ε+2eεβ)-DP randomizer then there exists a test inD that distinguishes
the output of G from true randomness that succeeds with probability at least β. To analyze the privacy guarantees ofR[G]
we let the reference distribution ρG be the uniform distribution over {0, 1}`. For brevity, for y ∈ Y we denote the density
ratio ofR(x) to ρ at y by

πx(y) :=
Pr[R(x) = y]

Prr∼{0,1}t [R∅(r) = y]
.

Then,R[G] outputs a seed s with probability:

µx(s) :=
πx(R∅(G(s)))∑

s′∈{0,1}` πx(R∅(G(s′)))
.

By definition of our reference distribution, ρG(s) = 2−` for all s. Therefore

µx(s)

ρG(s)
=
µx(s)

2−`
=

πx(R∅(G(s)))

Es′∼{0,1}` [πx(R∅(G(s′)))]
.

We observe that, by the fact that R(x) is ε-DP we have that πx(R∅(G(s))) ∈ [e−ε, eε]. Therefore, to show that R[G] is
(ε+ 2eεβ)-DP, it suffices to show that the denominator is in the range [e−2eεβ , e2eεβ]. To show this, we assume for the sake
of contradiction that it is not true. Namely, that either

E
s′∼{0,1}`

[πx(R∅(G(s′)))] > e2eεβ > 1 + eεβ

or
E

s′∼{0,1}`
[πx(R∅(G(s′)))] < e−2eεβ < 1− eεβ,

where we used the assumption that β < 1/(2eε) in the second inequality.

We first deal with the case when Es′∼{0,1}` [πx(R∅(G(s′)))] > 1 + eεβ (as the other case will be essentially identical).
Observe that for true randomness we have:

E
r′∼{0,1}t

[πx(R∅(r′))] = E
r′∼{0,1}t

[
Pr[R(x) = R∅(r′)]

Prr∼{0,1}t [R∅(r) = R∅(r′)]

]
= 1.

Using the fact that πx(y) ∈ [0, eε] we have that

E
s′∼{0,1}`

[πx(R∅(G(s′)))] =

∫ eε

0

Pr
s′∼{0,1}`

[πx(R∅(G(s′))) ≥ θ]dθ

and, similarly,

E
r′∼{0,1}t

[πx(R∅(r′))] =

∫ eε

0

Pr
r′∼{0,1}t

[πx(R∅(r′)) ≥ θ] dθ.

Lossless Compression of Efficient Private Local Randomizers

Thus, by our assumption,∫ eε

0

(
Pr

s′∼{0,1}`
[πx(R∅(G(s′))) ≥ θ]− Pr

r′∼{0,1}t
[πx(R∅(r′)) ≥ θ]

)
dθ > eεβ.

This implies that there exists θ ∈ [0, eε] such that

Pr
s′∼{0,1}`

[πx(R∅(G(s′))) ≥ θ]− Pr
r′∼{0,1}t

[πx(R∅(r′)) ≥ θ] > β.

Note that ind (πx(R∅(r′)) ≥ θ) ∈ D, for all x ∈ X and θ ∈ [0, eε] contradicting our assumption on G. Thus we obtain that
Es′∼{0,1}` [πx(R∅(G(s′)))] ≤ 1 + eεβ. We can arrive at a contradiction in the case when Es′∼{0,1}` [πx(R∅(G(s′)))] <
1− eεβ in exactly the same way.

To show thatR[G, γ] is a deletion (ε+ 2eεβ)-DP local randomizer we observe that for every x, conditioned on accepting
one of the samples,R[G, γ](x) outputs a sample distributed exactly according toR[G](x). IfR[G, γ](x) does not accept
any samples than it samples from the reference distribution ρG. Thus given thatR[G](x) is (ε+ 2eεβ)-close to ρG we have
that the output distributionR[G, γ](x) is also (ε+ 2eεβ)-close to ρG.

As the first step for proving Lemma 3.3 we show that when used with the identity G, the resulting randomizer is γ-close in
total variation distance toR.

Lemma A.2. Let R be a deletion ε-DP t-samplable local randomizer. Then for the identity function IDt : {0, 1}t →
{0, 1}t and any γ > 0 we have that R[IDt, γ] is a deletion ε-DP local randomizer and for every x ∈ X ,
TV(R∅(R[IDt, γ](x)),R(x)) ≤ γ.

Proof. When applied with G = IDt, y is distributed according to the reference distribution of R. Thus the algorithm
performs standard rejection sampling until it accepts a sample or exceeds the bound J on the number of steps. Note that
deletion DP implies that Pr[R(x)=y]

eε Prr∼{0,1}t [R∅(r)=y] ≤ 1. At each step, conditioned on success the algorithm samples s such that

R∅(s) is distributed identically toR(x). Further, the acceptance probability at each step is

E
y∼ρ

[
Pr[R(x) = y]

eεPrr∼{0,1}t [R∅(r) = y]

]
=
∑
y∈Y

Pr[R(x) = y]

eε
=

1

eε
.

Thus the probability that all the steps reject is≤ (1−e−ε)J ≤ γ. This implies that TV(R∅(R[IDt, γ](x)),R(x)) ≤ γ.

We can now state the implications of using a sufficiently strong PRG on the output of the randomizer.

Lemma A.3 (Lemma 3.3 restated). Let R be a deletion ε-DP t-samplable local randomizer, let G : {0, 1}` → {0, 1}t
be (T, β)-PRG. Let T (R, G, γ) denote the running time of R[G, γ] and assume that T > T (R, G, γ). Then for all
x ∈ X , R∅(G(R[G, γ](x))) is (T ′, β′)-computationally indistinguishable from R(x), where β′ = γ + eε ln(1/γ)β and
T ′ = T − T (R, G, γ).

Proof. By Lemma A.2, TV(R∅(R[IDt, γ](x)),R(x)) ≤ γ and thus it is sufficient to prove that R∅(G(R[G, γ](x)))
is (T ′, eε ln(1/γ)β)-computationally indistinguishable from R∅(R[IDt, γ](x)). To prove this, assume for the sake of
contradiction, that there exists a test D′ running in time T ′ such that for some x,∣∣Pr[D′(R∅(G(R[G, γ](x)))) = 1]−

Pr[D′(R∅(R[IDt, γ](x))) = 1]
∣∣ ≥ eε ln(1/γ)β.

Then we claim that there exists a test for distinguishing G(s) for s ∼ {0, 1}` from a truly random seed r ∼ {0, 1}t. Note
that R∅(G(R[G, γ])) can be seen as R[G, γ] that outputs directly y = R∅(G(s)) instead of s itself. Next we observe
that R∅(G(R[G, γ])) uses the output of G at most J = eε ln(1/γ) times in place of truly random t-bit string used by
R∅(R[IDt, γ]). Thus, by the standard hybrid argument, one of those applications can be used to test G with success
probability at least eε ln(1/γ)β/J = β. This test requires running a hybrid betweenR∅(G(R[G, γ])) andR∅(R[IDt, γ])
in addition to D′ itself. We can assume that sampling a fresh t bits takes less time than sampling ` bits and applying G and
therefore the running time of the resulting test is at most T ′ + T (R, G, γ) = T . Thus we obtain a contradiction to G being
(T, β)-PRG.

Lossless Compression of Efficient Private Local Randomizers

Theorem A.4 (Theorem 3.4 restated). LetR be a deletion ε-DP t-samplable local randomizer, let G : {0, 1}` → {0, 1}t
be (T, β)-PRG for β < 1/(2eε). Let T (R, G, γ) be the running time of R[G, γ] and assume that T > T (R, G, γ). Then
R[G, γ] is a deletion (ε+ 2eεβ)-DP local randomizer and for all x ∈ X ,R∅(G(R[G, γ](x))) is (T ′, β′)-computationally
indistinguishable fromR(x), where β′ = γ + eε ln(1/γ)β and T ′ = T − T (R, G, γ).

Proof. The second part of the claim is exactly Lemma 3.3. To see the first part of the claim note that by our assumption
T > T (R, G, γ) and computation of the ratio of densities Pr[R(x)=R∅(r′)]

eε Prr∼{0,1}t [R∅(r)=R∅(r′)]
for any r′ ∈ {0, 1}t is part ofR[G, γ].

This implies that the test family D defined in Lemma 3.2 can be computed in time T . Now applying Lemma 3.2 gives us the
privacy claim.

Lemma A.5 (Lemma 3.5 restated). LetR be a deletion ε-DP t-samplable local randomizer, let G : {0, 1}` → {0, 1}t be
an arbitrary function. ThenR[G, γ] is a deletion 2ε-DP local randomizer.

Proof. As in the proof of Lemma 3.2 we observe that if we take the reference distribution to be uniform over {0, 1}` we
will get that, conditioned on accepting a sample, the seed s is output with probability µx(s) such that

µx(s)

ρG(s)
=
µx(s)

2−`
=

πx(R∅(G(s)))

Es′∼{0,1}` [πx(R∅(G(s′)))]
.

By the fact thatR(x) is ε-DP we have that for every s′ ∈ {0, 1}`, πx(R∅(G(s′))) ∈ [e−ε, eε] and thus µx(s)
ρG(s) ∈ [e−2ε, e2ε].

A.1 Extension to Replacement DP

We now show that the same approach can be used to compress a replacement εr-DP randomizerR. To do this we first let ρ
be some reference distribution relative to whichR is deletion ε-DP for some ε ≤ εr. One possible way to define ρ is to pick
some fixed x0 ∈ X and let ρ be the distribution ofR(x0). In this case ε = εr. But other choices of ρ are possible that give
an easy to sample distribution and ε < εr. In fact, for some standard randomizers such as addition of Laplace noise we will
get ε = εr/2.

Now assuming that ρ is t-samplable and given a PRG G : {0, 1}` → {0, 1}t we defineR[G] as in Def. 3.1 andR[G, γ] us
in Algorithm 1. The randomizerR is deletion ε-DP so all the results we proved apply to it as well (with the deletion ε and
not the replacement εr). In addition we show that replacement privacy is preserved as well.
Lemma A.6. For a t-samplable deletion ε-DP and replacement εr-DP local randomizerR : X → Y and G : {0, 1}` →
{0, 1}t, let D denote the following family of tests which take r′ ∈ {0, 1}t as an input:

D :=

{
ind

(
Pr[R(x) = R∅(r′)]

Prr∼{0,1}t [R∅(r) = R∅(r′)]
≥ θ
) ∣∣∣∣ x ∈ X, θ ∈ [0, eε]

}
.

If G β-fools D for β < 1/(2eε) then R[G] is a replacement (εr + 4eεβ)-DP local randomizer. Furthermore, for every
γ > 0,R[G, γ] is a replacement (εr + 4eεβ)-DP local randomizer.

Proof. As in the proof of Lemma 3.2, for y ∈ Y , we denote the density ratio ofR(x) to ρ at y by

πx(y) :=
Pr[R(x) = y]

Prr∼{0,1}t [R∅(r) = y]

and note thatR[G] outputs a seed s with probability:

µx(s) :=
π(R∅(G(s)))∑

s′∈{0,1}` π(R∅(G(s′)))
.

Thus for two inputs x, x′ ∈ X and any s ∈ {0, 1}` we have that

µx(s)

µx′(s)
=

πx(R∅(G(s)))

πx′(R∅(G(s)))
·
∑
s′∈{0,1}` πx′(R∅(G(s′)))∑
s′∈{0,1}` πx(R∅(G(s′)))

=
Pr[R(x) = R∅(G(s′))]

Pr[R(x′) = R∅(G(s′))]
· Es

′∼{0,1}` [πx′(R∅(G(s′)))]

Es′∼{0,1}` [πx(R∅(G(s′)))]

Lossless Compression of Efficient Private Local Randomizers

NowR is εr-replacement-DP and therefore the first term satisfies:

Pr[R(x) = R∅(G(s′))]

Pr[R(x′) = R∅(G(s′))]
∈
[
e−εr , eεr

]
.

At the same time, we showed in Lemma 3.2 that Es′∼{0,1}` [πx(R∅(G(s′)))] ∈ [e−2eεβ , e2eεβ] and also

Es′∼{0,1}` [πx′(R∅(G(s′)))] ∈ [e−2eεβ , e2eεβ]. Therefore µx(s)
µx′ (s)

∈ [e−εr−4eεβ , eεr+4eεβ].

To show that R[G, γ] is a replacement (εr + 4eεβ)-DP local randomizer we observe that for every x, R[G, γ](x) is a
mixture ofR[G](x) and ρG. As we showed,R[G](x) is (εr + 4eεβ)-close toR[G](x′) and we also know from Lemma 3.2
that ρG is (ε+ 2eεβ)-close toR[G](x′). By quasi-convexity we obtain thatR[G, γ](x) is (εr + 4eεβ)-close toR[G](x′).
We also know thatR[G, γ](x) is (ε+ 2eεβ)-close to ρG. Appealing to quasi-convexity again, we obtain thatR[G, γ](x) is
(εr + 4eεβ)-close toR[G, γ](x′).

A.2 Extension to (ε, δ)-DP

We next extend our approach to (ε, δ)-DP randomizers. The approach here is similar, except that we for some outputs
y = R∅(G(s)), the prescribed “rejection probability” in the original approach would be larger than one. To handle this, we
simply truncate this ratio at 1 to get a probability. Algorithm 4 is identical to Algorithm 1 except for this truncation in the
step where we sample b.

Algorithm 4R[G, γ]: PRG compression of deletion (ε, δ)-DPR
Input: x ∈ X , ε, γ > 0; seeded PRG G : {0, 1}` → {0, 1}t; t-samplable ε-DP randomizerR.

1: j = 0; J = eε ln(1/γ)/(1− δ)
2: Sample a random seed s ∈ {0, 1}`.
3: while j < J do
4: y = R∅(G(s))

5: Sample b from Bernoulli
(

min
(

1, Pr[R(x)=y]
eε Prr∼{0,1}t [R∅(r)=y]

))
6: if b == 1 then
7: BREAK
8: end if
9: j = j + 1

10: Sample a random seed s ∈ {0, 1}`.
11: end while
12: Send s

The proof is fairly similar to that for the pure DP randomizer. We start with a lemma that relates the properties of the PRG
to the properties of the randomizer that need to be preserved in order to ensure that it satisfies deletion (ε′, δ′)-LDP.

Lemma A.7. For a t-samplable deletion (ε, δ)-DP local randomizerR : X → Y and G : {0, 1}` → {0, 1}t, let D denote
the following family of tests which take r′ ∈ {0, 1}t as an input:

D :=

{
ind

(
Pr[R(x) = R∅(r′)]

Prr∼{0,1}t [R∅(r) = R∅(r′)]
≥ θ
) ∣∣∣∣ x ∈ X, θ ∈ [0, eε]

}
.

Suppose that G β-fools D and let πx(y) := min(Pr[R(x)=y],eε Pr[R(∅)=y])
Prr∼{0,1}t [R∅(r)=y] . Then

E
s′∼{0,1}`

[πx(R∅(G(s′)))] ∈ [1− δ − eεβ, 1 + eεβ]

and
E

s′∼{0,1}`

[
|1− eεπx(R∅(G(s′)))|+

]
≤ δ + β.

Proof. Let ρG be the uniform distribution over {0, 1}`. Let νx(y) := Pr[R(x) = y] and let ν̃x(y) :=
min(νx(y), eεPr[R(∅) = y]). Note that ν̃x(·) does not necessarily define a probability distribution. For S = {y :

Lossless Compression of Efficient Private Local Randomizers

ν̃x(y) < νx(y)}, we have

νx(S) =
∑
y∈S

νx(y)

=
∑
y∈S

ν̃x(y) +
∑
y∈S

(νx(y)− ν̃x(y))

=
∑
y∈S

eερ(y) +
∑
y

(νx(y)− ν̃x(y))

= eερ(S) + (1−
∑
y

ν̃x(y)).

Then deletion (ε, δ)-DP ofR implies that
∑
y ν̃x(y) ≥ 1− δ. Observe that this implies that for true randomness we have:

E
r′∼{0,1}t

[πx(R∅(r′))] = E
r′∼{0,1}t

[
ν̃x(R∅(r′))

Prr∼{0,1}t [R∅(r) = R∅(r′)]

]
= E
r′∼{0,1}t

[
ν̃x(R∅(r′))
ρ(R∅(r′))

]
= E
y∼ρ

[
ν̃x(y)

ρ(y)

]
=
∑
y∈Y

ρ(y) · ν̃x(y)

ρ(y)

=
∑
y∈Y

ν̃x(y) ∈ [1− δ, 1].

Using the fact that πx(y) ∈ [0, eε] we have that

E
s′∼{0,1}`

[πx(R∅(G(s′)))] =

∫ eε

0

Pr
s′∼{0,1}`

[πx(R∅(G(s′))) ≥ θ]dθ

and, similarly,

E
r′∼{0,1}t

[πx(R∅(r′))] =

∫ eε

0

Pr
r′∼{0,1}t

[πx(R∅(r′)) ≥ θ] dθ.

Thus, it follows that

∣∣∣∣ E
s′∼{0,1}`

[πx(R∅(G(s′)))]− E
r′∼{0,1}t

[πx(R∅(r′))]
∣∣∣∣ =

∣∣∣∣∣
∫ eε

0

(
Pr

s′∼{0,1}`
[πx(R∅(G(s′))) ≥ θ]− Pr

r′∼{0,1}t
[πx(R∅(r′)) ≥ θ]

)
dθ

∣∣∣∣∣
≤
∫ eε

0

∣∣∣∣ Pr
s′∼{0,1}`

[πx(R∅(G(s′))) ≥ θ]− Pr
r′∼{0,1}t

[πx(R∅(r′)) ≥ θ]
∣∣∣∣ dθ

≤ eεβ,

where in the last step, we have used the property of the pseudorandom generator that it fools D, and the fact that for
θ ∈ [0, eε), ν̃x(y)

Pr[R(∅)=y] < θ if and only if νx(y)
Pr[R(∅)=y] < θ. The first part of the claim follows.

Lossless Compression of Efficient Private Local Randomizers

For the second part of the claim we first note that deletion (ε, δ)-DP ofR implies that

E
r′∼{0,1}t

[|1− eεπx(R∅(r′))|+] = E
y∼ρ

[|1− eεπx(y)|+]

= E
y∼ρ

[|1− eεπx(y)|+]

=
∑
y∈Y

ρ(y)|1− eεπx(y)|+

=
∑
y∈Y
|ρ(y)− eεν̃x(y)|+

=
∑
y∈Y
|ρ(y)− eενx(y)|+ ≤ δ.

Also note that

E
r′∼{0,1}t

[|1− eεπx(R∅(r′))|+] =

∫ 1

0

Pr
r′∼{0,1}t

[1− eεπx(R∅(r′)) ≥ θ] dθ = 1−
∫ 1

0

Pr
r′∼{0,1}t

[
πx(R∅(r′)) ≥

θ

eε

]
dθ.

Similarly,

E
s′∼{0,1}`

[|1− eεπx(R∅(G(s′)))|+] = 1−
∫ 1

0

Pr
s′∼{0,1}`

[
πx(R∅(G(s′))) ≥ θ

eε

]
dθ.

Thus by the same argument as before, the fact that G, β-fools D implies that

E
s′∼{0,1}`

[
|1− eεπx(R∅(G(s′)))|+

]
≤ E
r′∼{0,1}t

[|1− eεπx(R∅(r′))|+] + β ≤ δ + β.

We can now give an analogue of Lemma 3.2 for deletion (ε, δ)-DP randomizers.

Lemma A.8. For a t-samplable deletion (ε, δ)-DP local randomizerR : X → Y and G : {0, 1}` → {0, 1}t, let D denote
the following family of tests which take r′ ∈ {0, 1}t as an input:

D :=

{
ind

(
Pr[R(x) = R∅(r′)]

Prr∼{0,1}t [R∅(r) = R∅(r′)]
≥ θ
) ∣∣∣∣ x ∈ X, θ ∈ [0, eε]

}
.

If G β-fools D where δ + eεβ < 1/2 then R[G] is a deletion (ε+ 2δ + 2eεβ, δ + β)-DP local randomizer. Furthermore,
for every γ > 0,R[G, γ] is a deletion (ε+ 2δ + 2eεβ, δ + β)-DP local randomizer.

Proof. As before, we let the reference distribution ρG be the uniform distribution over {0, 1}`. Using the definitions in the
proof of Lemma A.7 we observe thatR[G](x) outputs s with probability:

µx(s) :=
π(R∅(G(s)))∑

s′∈{0,1}` π(R∅(G(s′)))
=

ν̃x(R∅(G(s)))
ρ(R∅(G(s)))

Es′∼{0,1}` [πx(R∅(G(s′)))]

2`

= ρG(s) ·
ν̃x(R∅(G(s)))
ρ(R∅(G(s)))

Es′∼{0,1}` [πx(R∅(G(s′)))]
.

Now, by definition of ν̃x we have that the numerator satisfies ν̃x(R∅(G(s)))
ρ(R∅(G(s))) ≤ e

ε. In addition, by Lemma A.7 the denominator
Es′∼{0,1}` [πx(R∅(G(s′)))] ≥ 1− δ − eεβ. Therefore

µx(s) ≤ ρG(s) · eε

1− δ − eεβ
≤ eε+2δ+eεβρG(s).

Lossless Compression of Efficient Private Local Randomizers

Now for the other side of (ε, δ)-closeness we simply observe that by the Lemma A.7,∑
s∈{0,1}`

∣∣∣ρG(s)− eε+e
εβµx(s)

∣∣∣
+

=
∑

s∈{0,1}`

∣∣∣∣ρG(s)− eε+e
εβρG(s) · πx(R∅(G(s)))

Es′∼{0,1}` [πx(R∅(G(s′)))]

∣∣∣∣
+

≤
∑

s∈{0,1}`
|ρG(s)− eερG(s) · πx(R∅(G(s)))|+

= E
s∼{0,1}`

[
|1− eεπx(R∅(G(s)))|+

]
≤ δ + β.

Now, to establish that R[G, γ] is (ε+ 2δ + 2eεβ, δ + β) we, as before, appeal to quasi-convexity.

To establish the utility guarantees for R[G, γ] we follow the same approach by establishing the utility guarantees for
R[IDt, γ] and then using the properties of G.

Lemma A.9. Let R be a deletion ε-DP t-samplable local randomizer. Then for the identity function IDt : {0, 1}t →
{0, 1}t and any γ > 0 we have that R[IDt, γ] is a deletion ε-DP local randomizer and for every x ∈ X ,
TV(R∅(R[IDt, γ](x)),R(x)) ≤ δ + γ.

Proof. Conditioned on accepting a sample, R[IDt, γ] outputs a sample from the truncated version of the distribution
of R(x). Specifically, y is output with probability ν̄x(y) := ν̃(y)∑

y∈Y ν̃(y) , where νx(y) := Pr[R(x) = y] and ν̃x(y) :=

min(νx(y), eεPr[R(∅) = y]). From the proof of Lemma A.7, we know that
∑
y∈Y ν̃x(y) ≥ 1− δ. Thus

TV(νx, ν̄x) =
1

2

∑
y∈Y
|νx(y)− ν̄x(y)|

≤ 1

2

∑
y∈Y

(|νx(y)− ν̃x(y)|+ |ν̃x(y)− ν̄x(y)|)

=
1

2

∑
y∈Y

(νx(y)− ν̃x(y) + ν̄x(y)− ν̃x(y)) ≤ δ.

Truncation of the distribution also reduces the probability that a sample is accepted. Specifically,

E
y∼ρ

[
ν̃x(y)

eερ(y)

]
=
∑
y∈Y

ν̃x(y)

eε
≥ 1− δ

eε
.

R[G, γ] tries at least eε ln(1/γ)/(1− δ) samples and therefore, as in the proof of Lemma A.2, failure to accept any samples
adds at most γ to the total variation distance.

From here we can directly obtain the analogues of Lemma 3.3 and Theorem3.4.

Finally, to deal with the replacement version of (ε, δ)-DP we combine the ideas we used in Lemmas A.6 and A.8. The main
distinction is a somewhat stronger test that we need to fool in this case.

Lemma A.10. For a t-samplable replacement (εr, δr)-DP and deletion (ε, δ)-DP local randomizer R : X → Y and
G : {0, 1}` → {0, 1}t, let D and Dr denote the following families of tests which take r′ ∈ {0, 1}t as an input:

D :=

{
ind

(
Pr[R(x) = R∅(r′)]

ρ(R∅(r′))
≥ θ
) ∣∣∣∣ x ∈ X, θ ∈ [0, eε]

}
;

Dr :=

{
ind

(
ν̃x(R∅(r′))
ρ(R∅(r′))

− eε ν̃x
′(R∅(r′))
ρ(R∅(r′))

≥ θ
) ∣∣∣∣ x, x′ ∈ X, θ ∈ [0, eε]

}
,

where ρ is the reference distribution of R and ν̃x(y) := min(Pr[R(x) = y], eερ(y)). If G β-fools D ∪ Dr where
δ + eεβ < 1/2 then R[G] is a replacement (εr + 2δ + 3eεβ, 2δr + 2eεβ)-DP local randomizer. Furthermore, for every
γ > 0,R[G, γ] is a (εr + 2δ + 3eεβ, 2δr + 2eεβ)-DP local randomizer.

Lossless Compression of Efficient Private Local Randomizers

Proof. First we observe that R being (εr, δr) replacement DP implies that ν̃x and ν̃x′ are (εr, δr) close in the following
sense:

E
r′∼{0,1}t

[∣∣∣∣ ν̃x(R∅(r′))
ρ(R∅(r′))

− eεr ν̃x
′(R∅(r′))
ρ(R∅(r′))

∣∣∣∣
+

]
= E
y∼ρ

[∣∣∣∣ ν̃x(y)

ρ(y)
− eεr ν̃x

′(y)

ρ(y)

∣∣∣∣
+

]
=
∑
y∈Y
|ν̃x(y)− eεr ν̃x′(y)|+

≤
∑
y∈Y
|νx(y)− eεrνx′(y)|+ ≤ δr,

where we used the fact that if νx′(y) > ν̃x′(y) then ν̃x′(y) = eερ(y) ≥ ν̃x(y) and so

|ν̃x(y)− eεr ν̃x′(y)|+ = |ν̃x(y)− eεrνx′(y)|+ .

Using the decomposition

E
r′∼{0,1}t

[∣∣∣∣ ν̃x(R∅(r′))
ρ(R∅(r′))

− eεr ν̃x
′(R∅(r′))
ρ(R∅(r′))

∣∣∣∣
+

]
=

∫ eε

0

Pr
r′∼{0,1}t

[
ν̃x(R∅(r′))
ρ(R∅(r′))

− eεr ν̃x
′(R∅(r′))
ρ(R∅(r′))

≥ θ
]
dθ

and the fact that G β fools Dr we obtain that

E
s′∼{0,1}`

[∣∣∣∣ ν̃x(R∅(G(s′)))

ρ(R∅(G(s′)))
− eεr ν̃x

′(R∅(G(s′)))

ρ(R∅(G(s′)))

∣∣∣∣
+

]
≤ δr + eεβ. (2)

By Lemma A.7 we have that for πx(y) := ν̃x(y)
ρ(y) it holds that

ζx := E
s′∼{0,1}`

[πx(R∅(G(s′)))] ∈ [1− δ − eεβ, 1 + eεβ].

Now following the notation in Lemma A.8 we know that the distribution ofR[G](x) is

µx(s) = ρG(s) ·
ν̃x(R∅(G(s)))
ρ(R∅(G(s)))

Es′∼{0,1}` [πx(R∅(G(s′)))]
=
ρG(s) · ν̃x(R∅(G(s)))

ζx · ρ(R∅(G(s)))
.

Thus setting ε′ = εr + 2δ + 3eεβ we obtain:∑
s′∈{0,1}`

|µxs− eε
′
µx′(s)|+ = E

s′∼{0,1}`

[∣∣∣∣ µxs

ρG(s′)
− eε

′ µx′

ρG(s′)

∣∣∣∣
+

]

= E
s′∼{0,1}`

[∣∣∣∣ µxs

ρG(s′)
− eε

′ µx′

ρG(s′)

∣∣∣∣
+

]

= E
s′∼{0,1}`

[∣∣∣∣ ν̃x(R∅(G(s′)))

ζx · ρ(R∅(G(s′)))
− eε

′ ν̃x′(R∅(G(s′)))

ζx′ · ρ(R∅(G(s′)))

∣∣∣∣
+

]

=
1

ζx
· E
s′∼{0,1}`

[∣∣∣∣ ν̃x(R∅(G(s′)))

ρ(R∅(G(s′)))
− eε

′ ζx · ν̃x′(R∅(G(s′)))

ζx′ · ρ(R∅(G(s′)))

∣∣∣∣
+

]

≤ 1

1− δ − eεβ
· E
s′∼{0,1}`

[∣∣∣∣ ν̃x(R∅(G(s′)))

ρ(R∅(G(s′)))
− eε

′ (1− δ − eεβ)ν̃x′(R∅(G(s′)))

(1 + eεβ)ρ(R∅(G(s′)))

∣∣∣∣
+

]

≤ 1

1− δ − eεβ
· E
s′∼{0,1}`

[∣∣∣∣ ν̃x(R∅(G(s′)))

ρ(R∅(G(s′)))
− eεr ν̃x

′(R∅(G(s′)))

ρ(R∅(G(s′)))

∣∣∣∣
+

]
≤ 2(δr + eεβ),

where we used that 1+eεβ
1−δ−eεβ ≤ e

2δ+3eεβ and 1
1−δ−eεβ ≤ 2 whenever δ + eεβ < 1/2.

Lossless Compression of Efficient Private Local Randomizers

B Proofs and Details for “Frequency Estimation”

Lemma B.1 (Lemma 4.1 restated). PI-RAPPOR randomizer (Alg. 2) is deletion max
{
α1

α0
, 1−α0

1−α1

}
-DP and replacement

α1(1−α0)
α0(1−α1) -DP.

Proof. While it is easy to analyze the privacy guarantees of PI-RAPPOR directly it is instructive to show that these
guarantees follow from our general compression technique. Specifically, there is a natural way to sample from the reference
distribution of RAPPOR relative to which our pairwise PRG fools the density tests given in Lemma 3.2.

To sample from the reference distribution of RAPPOR we pick k values z1, . . . , zk randomly independently and uniformly
from Fp and then output bool(z1), bool(z2), . . . , bool(zk) (we note that samplability is defined using uniform distribution
over binary strings length t as an input but any other distribution can be used instead). By our choice of parameter p and
definition of bool, this gives k i.i.d. samples from Bernoulli(α0), which is the reference distribution for RAPPOR. LetR
denote the RAPPOR randomizer. For any j ∈ [k] and z′ ∈ Fkp the ratio of densities at z′ satisfies:

Pr[R(j) = R∅(z′)]
Prz∼Fk

p
[R∅(z) = R∅(z′)]

=

{
α1

α0
, if bool(z′j) = 1

1−α1

1−α0
, otherwise.

.

With probability α1, PI-RAPPOR algorithm samples φ uniformly from Φj,1 and with probability 1 − α1 PI-RAPPOR
algorithm samples φ uniformly from Φj,0. This means that PI-RAPPOR is exactly equal toR[G], where G : F2

p → Fkp is
defined as G(φ) = φ(1), φ(2), . . . , φ(k).

Now to prove that PI-RAPPOR has the same deletion privacy guarantees as RAPPOR it suffices to prove that G 0-fools the
tests based on the ratio of densities above. This follows immediately from the fact that bool(φ(j)) for φ ∼ Φ is distributed
in the same way as bool(zj) for z ∼ Fkp .

To prove that PI-RAPPOR has the same replacement privacy guarantees as RAPPOR we simply use the same reference
distribution and apply Lemma A.6.

Lemma B.2 (Lemma 4.2 restated). For any dataset S ∈ [k]n, the estimate c̃ computed by PI-RAPPOR algorithm (Algs. 2,3)
satisfies:

• E[c̃] = c(S)

• For all j ∈ [k],

Var[c̃j] = c(S)j
1− α0 − α1

α1 − α0
+ n

α0(1− α0)

(α1 − α0)2

For the symmetric case α0 = 1− α1 this simplifies to Var[c̃j] = nα0(1−α0)
(1−2α0)2 .

In particular, the expected `2 squared error is

E
[
‖c̃− c(S)‖22

]
= n

1− α0 − α1

α1 − α0
+ nk

α0(1− α0)

(α1 − α0)2
.

Proof. We first note that

c̃j =
∑
i∈[n]

bool(φi(j))− α0

α1 − α0
,

where φi is the output of the PI-RAPPOR randomizer on input xi. Thus to prove the claim about the expectation it is
sufficient to prove that for every i,

E

[
bool(φi(j))− α0

α1 − α0

]
= ind (xi = j)

and to prove the claim for variance it is sufficient to prove that

Var

[
bool(φi(j))− α0

α1 − α0

]
= ind (xi = j)

1− α0 − α1

α1 − α0
+
α0(1− α0)

(α1 − α0)2
.

Lossless Compression of Efficient Private Local Randomizers

If xi = j then both of these claims follow directly from the fact that, by definition of PI-RAPPOR randomizer, in this case
the distribution of bool(φi(j)) is Bernoulli(α1).

If, on the other hand xi 6= j, we use pairwise independence of bool(φ(xi)) and bool(φ(j)) for φ ∼ Φ to infer that
conditioning the distribution bool(φ(xi)) = b (for any b) does not affect the distribution of bool(φ(xi)). Thus, if xi 6= j
then bool(φi(j)) is distributed as Bernoulli(α0) and we can verify the desired property directly.

Finally,

E
[
‖c̃− c(S)‖22

]
= E

∑
j∈[k]

(c̃j − c(S)j)
2

 =
∑
j∈[k]

Var[c̃j] = n
1− α0 − α1

α1 − α0
+ nk

α0(1− α0)

(α1 − α0)2

Below, we analyze the computational and communication cost of PI-RAPPOR and discuss the choice of p.
Lemma B.3. PI-RAPPOR randomizer (Alg. 2) can be implemented in Õ(log p) time and uses 2dlog2 pe bits of communica-
tion.

Proof. The running time of PI-RAPPOR is dominated by the time to pick a random and uniform element in Φj,b. This
can be done by picking φ1 ∈ Fp randomly and uniformly. We then need to pick φ0 randomly and uniformly from the set
{φ0 | bool(φ(j)) = b}. Given the result of multiplication jφ1 this can be done in O(log p) time. For example for b = 1 this
set is equal to {−jφ1,−jφ1 + 1, . . . ,−jφ1 +α0p−1} where all arithmetic operations are in Fp. The set consists of at most
two contiguous ranges of integers and thus a random and uniform element can be chosen in O(log p) time. Multiplication in
Fp can be done in O(log(p) · (log log p)2) (e.g. (Menezes et al., 2018)) but in most practical settings standard Montgomery
modular multiplication that takes O(log2(p)) time would be sufficiently fast.

The analysis of the running time of decoding and aggregation is similarly straightforward since decoding every bit of
message takes time that is dominated by the time of a single multiplication in Fp.

Lemma B.4. For every j ∈ k, the server-side of PI-RAPPOR (Alg. 3) computes c̃j in time Õ(n log p). In particular, the
entire histogram is computed in time Õ(kn log p).

Note that the construction of the entire histogram on the server is relatively expensive. For comparison we note that
aggregation in the compression schemes in (Acharya et al., 2019) and (Chen et al., 2020) can be done in Õ(n+ k). However
these schemes require Ω(k) computation on each client and thus the entire system also performs Ω(nk) computation. They
also do not give a frequency oracle since the decoding time of even a single message is linear in k.

Finally, we need to discuss how to pick p. In addition to the condition that is p a prime larger than k, our algorithm requires
that α0p be an integer. We observe that while, in general, we cannot always guarantee that α0 = p/(eε + 1), by picking p
that is a sufficiently large multiple of max{eε, 1/ε} we get an ε′-DP PI-RAPPOR algorithm for ε′ that is slightly smaller
than ε (which also implies that its utility is slightly worse). We make this formal below.
Lemma B.5. There exists a constant c0 such that for any ε > 0, k ∈ N, ∆ > 0 and any prime p ≥ c0 max{eε, 1/ε}/∆ we
have that symmetric PI-RAPPOR with parameter α0 = dp/(eε + 1)e/p satisfies deletion ε-DP and outputs an estimate that
satisfies: for all j ∈ [k], Var[c̃j] ≤ n (1+∆)eε

(eε−1)2 . Further, PI-RAPPOR with α0 = dp/(eε + 1)e/p and α1 = 1/2 satisfies

replacement ε-DP and outputs an estimate that satisfies: for all j ∈ [k], Var[c̃j] = c(S)j + n 4(1+∆)eε

(eε−1)2 .

Proof. We first note that by our definition, α0p = dp/(eε + 1)e and therefore is an integer (as required by PI-RAPPOR).
We denote by ε′ = ln(1− p/α0) (so that α0 = 1/(eε

′
+ 1) and note that ε′ ≤ ε. Thus the symmetric PI-RAPPOR satisfies

ε-DP. We now note that |1/(eε′ + 1)− 1/(eε + 1)| ≤ 1/p. This implies that the bound on variance of PI-RAPPOR satisfies:

Var[c̃j] = n
α0(1− α0)

(1− 2α0)2
= n

1
eε′+1

(1− 1
eε′+1

)

(1− 2 1
eε′+1

)2

≤ n
(1
eε+1 + 1

p)(1− 1
eε+1)

(1− 2 1
eε′+1

− 2
p)2

.

Lossless Compression of Efficient Private Local Randomizers

Var[c̃j] = n
α0(1− α0)

(1− 2α0)2
= n

1
eε′+1

(1− 1
eε′+1

)

(1− 2 1
eε′+1

)2
≤ n

(1
eε+1 + 1

p)(1− 1
eε+1)

(1− 2 1
eε′+1

− 2
p)2

.

If ε ≤ 1 then 1
eε′+1

≥ 1
e+1 and 1− 2 1

eε′+1
≥ ε

e+1 . Thus the addition/subtraction of 1/p to these quantities for p ≥ c0/(ε∆)

increases the bound by at most a multiplicative factor (1 + ∆) (for a sufficiently large constant c0).

Otherwise (if ε > 1), then 1
eε′+1

≥ 1
eε and 1− 2 1

eε′+1
≥ e−1

e+1 . Thus the addition/subtraction of 1/p to these quantities for
p ≥ c0eε/∆ increases the bound by at most a multiplicative factor (1 + ∆) (for a sufficiently large constant c0).

The analysis for replacement DP is analogous.

In practice, setting ∆ = 1/100 will make the loss of accuracy insignificant. Thus we can conclude that PI-RAPPOR with
p ≥ c1 max{k, eε, 1/ε} for a sufficiently large constant c1 achieves essentially the same guarantees as RAPPOR. This
means that the communication cost of PI-RAPPOR is 2 log2(max{k, eε, 1/ε}) +O(1). Also we are typically interested in
compression when k � max{eε, 1/ε} and in such case the communication cost is 2 log2(k) +O(1).

C Details and Empirical Results for “Mean Estimation”
Below we describe the simple reduction by repetition and state the resulting guarantees.

Lemma C.1. Assume that for some ε > 0 there exists a local ε-DP randomizerRε : Bd → Y and a decoding procedure
decode : Y → Rd that for all x ∈ Bd, satisfies: E[decode(Rε(x))] = x and E[‖decode(Rε(x))− x‖22] ≤ αε. Further
assume thatRε uses ` bits of communication and runs in time T . Then for every integer m ≥ 2 there is a local (mε)-DP
randomizerRmε : Bd → Y m and decoding procedure decodem : Y m → Rd that uses m` bits of communication, runs in
time mT and for every x ∈ Bd satisfies: E[decodem(R′ε(x))] = x and E[‖decodem(Rmε (x))− x‖22] ≤ αε

m .

In particular, if for every ε ∈ (1/2, 1], αε ≤ cd
ε2 for some constant c, then for every ε > 0 there is a local ε-DP randomizer

R′ε and decoding procedure decode′ that uses dεe` bits of communication, runs in time dεeT and for every x ∈ Bd satisfies:
E[decode′(R′ε(x))] = x and E[‖decode′(R′ε(x))− x‖22] ≤ 2cd

min{ε,ε2} .

Proof. The randomizer Rmε (x) runs Rε(x) m times independently to obtain y1, . . . , ym and outputs these values. To
decode we define decodem(y1, . . . , ym) := 1

m (decode(y1) + · · ·+ decode(ym)). By (simple) composition of differential
privacy,Rmε is (εm)-DP. The utility claim follows directly from linearity of expectation and independence of the estimates:

E[‖decodem(Rmε (x))− x‖22] =
1

m
·E[‖decode(Rε(x))− x‖22] ≤ αε

m
.

For the second part of the claim we defineR′ε as follows. For ε ≤ 1,R′ε(x) just outputsRε(x) and in this case decode′ is
the same as decode. For ε > 1, we let m = dεe and apply the lemma to Rε′ for ε′ = ε/dεe. Note that ε′ ∈ (1/2, 1) and
therefore the resulting bound on variance is

E[‖decode′(R′ε(x))− x‖22] ≤ 1

dεe
cd

ε′2
=

cd

εε′
≤ 2cd

ε
.

For example, by using the reduction in Lemma C.1, we can reduce the computational cost to Õ(dεed) while increasing the
communication to O(dεe log d). The server side reconstruction now requires sampling and averaging ndεe d-dimensional
vectors. Thus the running time is Õ(ndε).

C.1 Empirical Comparison of Budget Splitting for Mean Estimation Algorithms

Figure 2 shows the results of applying Lemma C.1 to PrivHS, PrivUnit and PrivUnitOptimized. We plot the single
repetition version of SQKR for comparison. The SQKR algorithm does not get more efficient for smaller ε and thus splitting
it makes it worse in every aspect. As its error grows quickly with splitting, we do not plot the split version of SQKR in these
plots. The results demonstrate that splitting does have some cost in terms of expected squared error, and going from ε = 8
to two runs of ε = 4 costs us about 2× in expected squared error, and that the error continues to increase as we split more.
These results can inform picking an appropriate point on the computation cost-error tradeoff and suggest that for ε around 8,

Lossless Compression of Efficient Private Local Randomizers

Figure 2. Expected `22 error of mechanisms PrivHS, PrivUnit and PrivUnitOptimized for a total ε = 8, as a function of the number
of repetitions of the mechanism with a proportionately smaller ε. The SQKR v2 line is for a single run with ε = 8 without splitting.

the choice in most cases will be between not splitting and splitting into two mechanisms. Note that even with two or three
repetitions, PrivUnitOptimized has 2− 3× smaller error compared to PrivHS and SQKR. For PrivHS, the sweet spot
seems to be splitting into multiple mechanisms each with ε ≈ 2.

