A. Missing proofs from Section 3

Theorem A. 1 (A version of Lemma 14 of (Sohler and Woodruff, 2018)). Let P be an r dimensional subspace of \mathbb{R}^{d} such that

$$
\sum_{i} \operatorname{dist}\left(a_{i}, P\right)-\sum_{i} \operatorname{dist}\left(a_{i}, \operatorname{span}(P \cup H)\right) \leq \frac{\varepsilon^{2}}{80} \operatorname{SubApx}_{k, 1}(A)
$$

for all k-dimensional subspaces H. Let $B \in \mathbb{R}^{d \times r}$ be an orthonormal basis for the subspace P. For each a_{i}, let $a_{i}^{B} \in \mathbb{R}^{r}$ be such that $\operatorname{dist}\left(a_{i}, B a_{i}^{B}\right) \leq\left(1+\varepsilon_{c}\right) \operatorname{dist}\left(a_{i}, P\right)$ and let $\left(1-\varepsilon_{c}\right) \operatorname{dist}\left(a_{i}, P\right) \leq \operatorname{apx}_{i} \leq\left(1+\varepsilon_{c}\right) \operatorname{dist}\left(a_{i}, P\right)$ for $\varepsilon_{c}=\varepsilon^{2} / 6$. Then for any k dimensional shape S,

$$
\sum_{i} \sqrt{\operatorname{dist}\left(B a_{i}^{B}, S\right)^{2}+\mathrm{apx}_{i}^{2}}=(1 \pm 5 \varepsilon) \sum_{i} \operatorname{dist}\left(a_{i}, S\right)
$$

Proof. We have by the Pythagorean theorem that $\operatorname{dist}\left(B a_{i}^{B}, a_{i}\right)^{2}=\operatorname{dist}\left(B a_{i}^{B}, \mathbb{P}_{P} a_{i}\right)^{2}+\operatorname{dist}\left(a_{i}, P\right)^{2} \leq(1+$ $\left.3 \varepsilon_{c}\right) \operatorname{dist}\left(a_{i}, P\right)^{2}$ which implies that $\operatorname{dist}\left(B a_{i}^{B}, \mathbb{P}_{P} a_{i}\right)^{2} \leq\left(3 \varepsilon_{c}\right) \operatorname{dist}\left(a_{i}, P\right)^{2}$.
Given a shape S, we partition $[n]$ into two sets small and large. We say $i \in[n]$ is small if $\operatorname{dist}\left(\mathbb{P}_{P} a_{i}, S\right) \leq$ $\operatorname{dist}\left(\mathbb{P}_{P} a_{i}, B a_{i}^{B}\right)$. In that case, $\operatorname{dist}\left(B a_{i}^{B}, S\right)^{2} \leq 4 \operatorname{dist}\left(\mathbb{P}_{P} a_{i}, B a_{i}^{B}\right)^{2} \leq 12 \varepsilon_{c} \operatorname{dist}\left(a_{i}, P\right)^{2}$ by the triangle inequality and $\sqrt{\operatorname{dist}\left(B a_{i}^{B}, S\right)^{2}+\mathrm{apx}_{i}^{2}} \leq \sqrt{1+15 \varepsilon_{c}} \operatorname{dist}\left(a_{i}, P\right) \leq \sqrt{1+15 \varepsilon_{c}} \sqrt{\operatorname{dist}\left(a_{i}, P\right)^{2}+\operatorname{dist}\left(\mathbb{P}_{P} a_{i}, S\right)^{2}}$. Similarly, $\sqrt{\operatorname{dist}\left(B a_{i}^{B}, S\right)^{2}+\mathrm{apx}_{i}^{2}} \geq \operatorname{apx}_{i} \geq\left(1-\varepsilon_{c}\right) \operatorname{dist}\left(a_{i}, P\right) \geq\left(1-4 \varepsilon_{c}\right) \sqrt{\operatorname{dist}\left(\mathbb{P}_{P} a_{i}, S\right)^{2}+\operatorname{dist}\left(a_{i}, P\right)^{2}}$ by using the fact that $\operatorname{dist}\left(\mathbb{P}_{P} a_{i}, S\right)^{2} \leq 3 \varepsilon_{c} \operatorname{dist}\left(a_{i}, P\right)^{2}$.
We say that any $i \in[n]$ that is not small, is large. By the triangle inequality, we obtain that

$$
\begin{equation*}
\operatorname{dist}\left(\mathbb{P}_{P} a_{i}, S\right)-\operatorname{dist}\left(\mathbb{P}_{P} a_{i}, B a_{i}^{B}\right) \leq \operatorname{dist}\left(B a_{i}^{B}, S\right) \leq \operatorname{dist}\left(\mathbb{P}_{P} a_{i}, S\right)+\operatorname{dist}\left(B a_{i}^{B}, \mathbb{P}_{P} a_{i}\right) \tag{2}
\end{equation*}
$$

As i is large, $\operatorname{dist}\left(\mathbb{P}_{P} a_{i}, S\right)-\operatorname{dist}\left(\mathbb{P}_{P} a_{i}, B a_{i}^{B}\right)>0$ and therefore by the AM-GM inequality, we obtain that

$$
\operatorname{dist}\left(B a_{i}^{B}, S\right)^{2}=(1 \pm \varepsilon) \operatorname{dist}\left(\mathbb{P}_{P} a_{i}, S\right)^{2}+\left(1 \pm \frac{1}{\varepsilon}\right) \operatorname{dist}\left(B a_{i}^{B}, \mathbb{P}_{P} a_{i}\right)^{2}
$$

Thus, $\operatorname{dist}\left(B a_{i}^{B}, S\right)^{2} \leq(1+\varepsilon) \operatorname{dist}\left(\mathbb{P}_{P} a_{i}, S\right)^{2}+(2 / \varepsilon)\left(3 \varepsilon_{c}\right) \operatorname{dist}\left(a_{i}, P\right)^{2}$ and $\operatorname{dist}\left(B a_{i}^{B}, S\right)^{2} \geq(1-\varepsilon) \operatorname{dist}\left(\mathbb{P}_{P} a_{i}, S\right)^{2}-$ $(1 / \varepsilon)\left(3 \varepsilon_{c}\right) \operatorname{dist}\left(a_{i}, P\right)^{2}$. Letting $\varepsilon_{c}=\varepsilon^{2} / 6$, we finally have

$$
\operatorname{dist}\left(B a_{i}^{B}, S\right)^{2}+\operatorname{apx}_{i}^{2} \leq(1+\varepsilon) \operatorname{dist}\left(\mathbb{P}_{P} a_{i}, S\right)^{2}+(1+2 \varepsilon) \operatorname{dist}\left(a_{i}, P\right)^{2}
$$

and

$$
\operatorname{dist}\left(B a_{i}^{B}, S\right)^{2}+\operatorname{apx}_{i}^{2} \geq(1-\varepsilon) \operatorname{dist}\left(\mathbb{P}_{P} a_{i}, S\right)^{2}+(1-3 \varepsilon) \operatorname{dist}\left(a_{i}, P\right)^{2}
$$

Therefore, by combining both small and large indices,

$$
\sum_{i} \sqrt{\operatorname{dist}\left(B a_{i}^{B}, S\right)^{2}+\mathrm{apx}_{i}^{2}} \leq \sqrt{1+O(\varepsilon)} \sum_{i} \sqrt{\operatorname{dist}\left(\mathbb{P}_{P} a_{i}, S\right)^{2}+\operatorname{dist}\left(a_{i}, P\right)^{2}}
$$

and

$$
\sum_{i} \sqrt{\operatorname{dist}\left(B a_{i}^{B}, S\right)^{2}+\operatorname{apx}_{i}^{2}} \geq \sqrt{1-O(\varepsilon)} \sum_{i} \sqrt{\operatorname{dist}\left(\mathbb{P}_{P} a_{i}, S\right)^{2}+\operatorname{dist}\left(a_{i}, P\right)^{2}}
$$

The theorem now follows from Theorem 8 of (Sohler and Woodruff, 2018).

B. Missing Proofs from Section 4

B.1. Lopsided Embeddings and Gaussian Matrices

Recall $\|\cdot\|_{h}$ is defined as $\|A\|_{h}=\sum_{j}\left\|A_{* j}\right\|_{2}$. Note that $\|A\|_{h}=\left\|A^{\top}\right\|_{1,2}$ for all matrices A. The following lemma shows that lopsided- ε embeddings for certain matrices w.r.t. the norm $\|\cdot\|_{h}$ imply a dimension reduction for $\|\cdot\|_{1,2}$ subspace approximation.

Lemma B.1. Given a matrix $A \in \mathbb{R}^{n \times d}$ and a parameter $k \in \mathbb{Z}_{>0}$, let $U_{k} \in \mathbb{R}^{n \times k}$ and $V_{k}^{\top} \in \mathbb{R}^{k \times d}$ be matrices such that

$$
\left\|U_{k} V_{k}^{\top}-A\right\|_{1,2}=\min _{\text {rank-k } X}\|A(I-X)\|_{1,2}
$$

If S is a lopsided ε-embedding for $\left(V_{k}, A^{\top}\right)$ with respect to the norm $\|\cdot\|_{h}$, then

$$
\min _{\text {rank-k } X}\left\|A S^{\top} X-A\right\|_{1,2} \leq(1+O(\varepsilon)) \min _{\text {rank-k } X}\|A(I-X)\|_{1,2}
$$

Proof. Note that $\left\|V_{k} U_{k}^{\top}-A^{\top}\right\|_{h}=\min _{Y}\left\|V_{k} Y^{\top}-A^{\top}\right\|_{h}$. By definition of a lopsided embedding, we have the following for any matrix Y :

$$
\left\|Y V_{k}^{\top} S^{\top}-A S^{\top}\right\|_{1,2}=\left\|S V_{k} Y^{\top}-S A^{\top}\right\|_{h} \geq(1-\varepsilon)\left\|V_{k} Y^{\top}-A^{\top}\right\|_{h}=(1-\varepsilon)\left\|Y V_{k}^{\top}-A\right\|_{1,2}
$$

and also that

$$
\left\|U_{k} V_{k}^{\top} S^{\top}-A S^{\top}\right\|_{1,2}=\left\|S V_{k} U_{k}^{\top}-S A^{\top}\right\|_{h} \leq(1+\varepsilon)\left\|V_{k} U_{k}^{\top}-A^{\top}\right\|_{h}=(1+\varepsilon)\left\|U_{k} V_{k}^{\top}-A\right\|_{1,2}
$$

Using these guarantees we now show that the column span of the matrix $A S^{\top}$ contains a good solution to the subspace approximation problem. First consider the minimization problem

$$
\min _{Y}\left\|Y V_{k}^{\top}-A\right\|_{1,2}
$$

Clearly, U_{k} is the optimal solution to the problem. Now consider the optimal solution \tilde{Y} to the sketched version of the above problem

$$
\tilde{Y}=\underset{Y}{\arg \min }\left\|Y V_{k}^{\top} S^{\top}-A S^{\top}\right\|_{1,2}
$$

We can see that $\tilde{Y}=\left(A S^{\boldsymbol{\top}}\right)\left(V_{k}^{\boldsymbol{\top}} S^{\boldsymbol{\top}}\right)^{+}$. Now

$$
\left\|\widetilde{Y} V_{k}^{\top}-A\right\|_{1,2} \leq \frac{1}{1-\varepsilon}\left\|\tilde{Y} V_{k}^{\top} S^{\top}-A S^{\top}\right\|_{1,2} \leq \frac{1}{1-\varepsilon}\left\|U_{K} V_{k}^{\top} S^{\top}-A S^{\top}\right\| \leq \frac{1+\varepsilon}{1-\varepsilon}\left\|U_{k} V_{k}^{\top}-A\right\|_{1,2}
$$

Therefore,

$$
\min _{\text {rank-k } X}\left\|A S^{\top} X-A\right\|_{1,2} \leq\left\|A S^{\top}\left(V_{k}^{\top} S^{\top}\right)^{+}\left(V_{k}^{\top}\right)-A\right\|_{1,2} \leq \frac{1+\varepsilon}{1-\varepsilon}\left\|U_{k} V_{k}^{\top}-A\right\|_{1,2} \leq(1+3 \varepsilon) \min _{\text {rank }-k X}\|A(I-X)\|_{1,2}
$$

Thus, if the number of rows of S is less than d, we obtain a dimension reduction for $\|\cdot\|_{1,2}$ subspace approximation.
Clarkson and Woodruff (2015) give the following sufficient conditions for a distribution of matrices to be an ε-lopsided embedding for (A, B). For the sake of completeness we reproduce their proof here.
Lemma B. 2 (Sufficient Conditions). Given matrices (A, B), let \mathbf{S} be a matrix drawn from a distribution such that

1. the matrix \mathbf{S} is a subspace ε-contraction for A with respect to $\|\cdot\|_{2}$, i.e., simultaneously for all vectors x

$$
\|\mathbf{S} A x\|_{2} \geq(1-\varepsilon)\|A x\|_{2}
$$

with probability $1-\delta / 3$,
2. for all $i \in\left[d^{\prime}\right]$, with probability at least $1-\delta \varepsilon^{2} / 3$ the matrix \mathbf{S} is a subspace ε^{2}-contraction for $\left[A B_{* i}\right]$ with respect to $\|\cdot\|_{2}$, i.e., for all vectors x,

$$
\left\|\mathbf{S} A x-\mathbf{S} B_{* i}\right\|_{2} \geq\left(1-\varepsilon^{2}\right)\left\|A x-B_{* i}\right\|_{2}
$$

and
3. the matrix \mathbf{S} is an ε^{2}-dilation for B^{*} with respect to $\|\cdot\|_{h}$, i.e., $\left\|\mathbf{S} B^{*}\right\|_{h} \leq\left(1+\varepsilon^{2}\right)\left\|B^{*}\right\|_{h}$ with probability $\geq 1-\delta / 3$.

In the Condition 3 above, $B^{*}=A X^{*}-B$ where $X^{*}=\arg \min _{X}\|A X-B\|_{h}$. With failure probability at most δ, the matrix \mathbf{S} is an affine 6ε-contraction for (A, B) with respect to $\|\cdot\|_{h}$, i.e., for all matrices X,

$$
\|\mathbf{S}(A X-B)\|_{h} \geq(1-6 \varepsilon)\|A X-B\|_{h}
$$

and therefore a lopsided 6ε-embedding for (A, B) with respect to $\|\cdot\|_{h}$.
Importantly, note that Condition 2 in the lemma is about the probability of \mathbf{S} being a subspace contraction for $\left[A B_{* i}\right]$ separately for each i and not the probability of \mathbf{S} being simultaneously a subspace contraction for $\left[A B_{* i}\right]$ for all $i \in\left[d^{\prime}\right]$.

Proof. Condition on the event that 1 and 3 hold. For $i \in\left[d^{\prime}\right]$, let \mathbf{Z}_{i} be an indicator random variable where $\mathbf{Z}_{i}=0$ if the matrix \mathbf{S} is a subspace ε^{2}-contraction for $\left[A B_{* i}\right]$ and $\mathbf{Z}_{i}=1$ otherwise. From the properties of \mathbf{S}, we have that $\operatorname{Pr}\left[\mathbf{Z}_{i}=1\right] \leq \delta \varepsilon^{2} / 3$ for all i. If $\mathbf{Z}_{i}=1$, we call $i \mathrm{bad}$ and if $\mathbf{Z}_{i}=0$, we call i good.

Consider an arbitrary matrix X. Say a bad i is large if $\left\|(A X-B)_{* i}\right\|_{2} \geq(1 / \varepsilon)\left(\left\|B_{* i}\right\|_{2}+\left\|\mathbf{S} B_{* i}\right\|_{2}\right)$, otherwise a bad i is small. We have

$$
\begin{equation*}
\sum_{\text {small } i}\left\|(A X-B)_{* i}\right\|_{2} \leq(1 / \varepsilon) \sum_{\text {small } i}\left\|B_{* i}\right\|_{2}+\left\|\mathbf{S} B_{* i}\right\|_{2} \leq(1 / \varepsilon) \sum_{\text {bad } i}\left\|B_{* i}\right\|_{2}+\left\|\mathbf{S} B_{* i}\right\|_{2} \tag{3}
\end{equation*}
$$

Using condition 2 , we obtain that $\mathbb{E}\left[\sum_{b a d i}\left\|B_{* i}^{*}\right\|_{2}\right] \leq\left(\delta \varepsilon^{2} / 3\right) \sum_{i}\left\|B_{* i}^{*}\right\|_{2} \leq\left(\delta \varepsilon^{2} / 3\right) \Delta^{*}$. By a Markov bound, we have that with probability $\geq 1-\delta / 3, \sum_{b a d i}\left\|B_{* i}^{*}\right\| \leq \varepsilon^{2} \Delta^{*}$. Assume that this event holds. Similarly,

$$
\begin{aligned}
\sum_{\text {bad } i}\left\|\mathbf{S} B_{* i}^{*}\right\|_{2} & =\left\|\mathbf{S} B^{*}\right\|_{h}-\sum_{\text {good } i}\left\|\mathbf{S} B_{* i}^{*}\right\|_{2} \\
& \leq\left(1+\varepsilon^{2}\right) \Delta^{*}-\left(1-\varepsilon^{2}\right) \sum_{\text {good } i}\left\|B_{* i}^{*}\right\|_{2} \\
& \leq\left(1+\varepsilon^{2}\right) \Delta^{*}-\left(1-\varepsilon^{2}\right)\left(\Delta^{*}-\varepsilon^{2} \Delta^{*}\right) \\
& \leq 3 \varepsilon^{2} \Delta^{*}
\end{aligned}
$$

Thus, we can bound the RHS of (3) and obtain

$$
\sum_{\text {small } i}\left\|(A X-B)_{* i}\right\|_{2} \leq(1 / \varepsilon)\left(\varepsilon^{2} \Delta^{*}+3 \varepsilon^{2} \Delta^{*}\right) \leq 4 \varepsilon \Delta^{*}
$$

Now we lower bound $\sum_{\text {bad } i}\left\|\mathbf{S}(A X-B)_{* i}\right\|_{2}$.

$$
\begin{aligned}
\sum_{\text {bad } i}\left\|\mathbf{S}(A X-B)_{* i}\right\|_{2} & \geq \sum_{\text {large } i}\left\|\mathbf{S}(A X-B)_{* i}\right\|_{2} \\
& \geq \sum_{\text {large } i}\left\|\mathbf{S}\left(A X-A X^{*}\right)_{* i}\right\|_{2}-\left\|\mathbf{S} B_{* i}^{*}\right\|_{2} \\
& \geq \sum_{\text {large } i}(1-\varepsilon)\left\|\left(A X-A X^{*}\right)_{* i}\right\|_{2}-\left\|\mathbf{S} B_{* i}^{*}\right\|_{2} \\
& \geq \sum_{\text {large } i}(1-\varepsilon)\left\|(A X-B)_{* i}\right\|_{2}-(1-\varepsilon)\left\|B_{* i}^{*}\right\|_{2}-\left\|\mathbf{S} B_{* i}^{*}\right\|_{2} \\
& \geq \sum_{\text {large } i}(1-\varepsilon)\left\|(A X-B)_{* i}\right\|_{2}-\varepsilon\left\|(A X-B)_{* i}\right\|_{2} \\
& \geq(1-2 \varepsilon) \sum_{\text {large } i}\left\|(A X-B)_{* i}\right\|_{2} .
\end{aligned}
$$

In the above, we repeatedly used the triangle inequality for the $\|\cdot\|_{2}$ norm, and that \mathbf{S} is a subspace ε-embedding for matrix A and for large i, we upper bound $(1-\varepsilon)\left\|B_{* i}^{*}\right\|_{2}+\left\|\mathbf{S} B_{* i}^{*}\right\|_{2}$ by $\varepsilon\left\|(A X-B)_{* i}\right\|_{2}$. We can finally lower bound
$\|\mathbf{S}(A X-B)\|_{h}$.

$$
\begin{aligned}
\|\mathbf{S}(A X-B)\|_{h}= & \sum_{\text {good } i}\left\|\mathbf{S}(A X-B)_{* i}\right\|_{2}+\sum_{\text {bad } i}\left\|\mathbf{S}(A X-B)_{* i}\right\|_{2} \\
\geq & \left(1-\varepsilon^{2}\right) \sum_{\text {good } i}\left\|(A X-B)_{* i}\right\|_{2}+(1-2 \varepsilon) \sum_{\text {large } i}\left\|(A X-B)_{* i}\right\|_{2} \\
\geq & \left(1-\varepsilon^{2}\right) \sum_{\text {good } i}\left\|(A X-B)_{* i}\right\|_{2}+(1-2 \varepsilon) \sum_{\text {bad } i}\left\|(A X-B)_{* i}\right\|_{2} \\
& -(1-2 \varepsilon) \sum_{\text {small } i}\left\|(A X-B)_{* i}\right\|_{2} \\
\geq & (1-2 \varepsilon)\|A X-B\|_{h}-(1-2 \varepsilon) 4 \varepsilon \Delta^{*} \\
\geq & (1-6 \varepsilon)\|A X-B\|_{h} .
\end{aligned}
$$

Thus, by a union bound, with failure probability $\leq \delta, \mathbf{S}$ is an affine 6ε-contraction for (A, B) with respect to $\|\cdot\|_{h}$.
Lemma B. 3 (Gaussian Matrices are Lopsided Embeddings). Given arbitrary matrices A of rank k and B of any rank, a Gaussian matrix \mathbf{S} with $\widetilde{O}\left(k / \varepsilon^{4}+1 / \varepsilon^{4} \delta^{2}\right)$ rows is an ε-lopsided embedding for (A, B) with probability $\geq 1-\delta$.

Proof. We now show that a Gaussian matrix, with small dimension equal to $\widetilde{O}\left(k / \varepsilon^{4}+1 / \varepsilon^{4} \delta^{2}\right)$, satisfies all of the sufficient conditions of Lemma B.2. Clearly, a Gaussian matrix with $O\left((k+\log (1 / \delta)) / \varepsilon^{2}\right)$ rows satisfies condition 1 and a Gaussian matrix with $O\left((k+\log (1 / \delta \varepsilon)) / \varepsilon^{4}\right)$ rows satisfies condition 2 (Woodruff, 2014).
We now show that a Gaussian matrix with at least $O\left(1 / \varepsilon^{4}\right)$ rows satisfies

$$
\mathbb{E}\left[\left(\|\mathbf{S} y\|_{2}^{2}-1\right)^{2}\right] \leq \varepsilon^{4}
$$

for any given unit vector y. If \mathbf{S} is a Gaussian matrix of t rows with each entry drawn i.i.d. from $N(0,1 / t)$, then the entries of $S y$ are each drawn i.i.d. from $N\left(0,\|y\|_{2}^{2} / t\right)=N(0,1 / t)$. Therefore, $\|\mathbf{S} y\|_{2}^{2}=\mathbf{Y}_{1}^{2}+\ldots+\mathbf{Y}_{t}^{2}$, where $\mathbf{Y}_{i} \sim N(0,1 / t)$, which gives

$$
\begin{aligned}
\mathbb{E}\left[\left(\|\mathbf{S} y\|_{2}^{2}-1\right)^{2}\right] & =\mathbb{E}\left[\left(\mathbf{Y}_{1}^{2}+\ldots+\mathbf{Y}_{t}^{2}-1\right)^{2}\right] \\
& =t \mathbb{E}\left[\mathbf{Y}_{1}^{4}\right]+1+2\binom{t}{2} \mathbb{E}\left[\mathbf{Y}_{1}^{2} \mathbf{Y}_{2}^{2}\right]-2 t \mathbb{E}\left[\mathbf{Y}_{1}^{2}\right]=t \frac{3}{t^{2}}+1+2\binom{t}{2} \frac{1}{t^{2}}-2 t \frac{1}{t} \\
& =2 / t
\end{aligned}
$$

Thus, with $t \geq 1 / \varepsilon^{4}$, we have that $\mathbb{E}\left[\left(\|\mathbf{S} y\|_{2}^{2}-1\right)^{2}\right] \leq \varepsilon^{4}$. By Lemma 28 of (Clarkson and Woodruff, 2015), we obtain that $\mathbb{E}\left[\max \left(\|\mathbf{S} y\|_{2}^{4}, 1\right)\right] \leq\left(1+\varepsilon^{2}\right)^{2} \leq 1+3 \varepsilon^{2}$. Now, by Holder's inequality,

$$
\mathbb{E}\left[\max \left(\|\mathbf{S} y\|_{2}, 1\right)\right] \leq \mathbb{E}\left[\max \left(\|\mathbf{S} y\|_{2}, 1\right)^{4}\right]^{1 / 4} \leq\left(1+3 \varepsilon^{2}\right)^{1 / 4} \leq 1+(3 / 4) \varepsilon^{2}
$$

As $\left(\|\mathbf{S} y\|_{2}-1\right)_{+}=\max \left(\|\mathbf{S} y\|_{2}, 1\right)-1$, we obtain that $\mathbb{E}\left[\left(\|\mathbf{S} y\|_{2}-1\right)_{+}\right] \leq(3 / 4) \varepsilon^{2}$, which implies by scaling that for an arbitrary vector y,

$$
\mathbb{E}\left[\left(\|\mathbf{S} y\|_{2}-\|y\|_{2}\right)_{+}\right] \leq(3 / 4) \varepsilon^{2}\|y\|_{2}
$$

which gives

$$
\mathbb{E}\left[\left(\left\|\mathbf{S} B^{*}\right\|_{h}-\left\|B^{*}\right\|_{h}\right)_{+}\right] \leq(3 / 4) \varepsilon^{2}\left\|B^{*}\right\|_{h}
$$

By Markov's inequality, with probability $\geq 1-\delta / 3,\left(\left\|\mathbf{S} B^{*}\right\|_{h}-\left\|B^{*}\right\|_{h}\right)_{+} \leq(9 / 4)\left(\varepsilon^{2} / \delta\right)\left\|B^{*}\right\|_{h}$ and hence, with probability $\geq 1-\delta / 3,\left\|\mathbf{S} B^{*}\right\|_{h} \leq\left(1+(9 / 4)\left(\varepsilon^{2} / \delta\right)\right)\left\|B^{*}\right\|_{h}$. Thus, a Gaussian matrix with $m=O\left(1 / \varepsilon^{4} \delta^{2}\right)$ rows satisfies that with probability $\geq 1-\delta / 3$ that

$$
\left\|\mathbf{S} B^{*}\right\|_{h} \leq\left(1+\varepsilon^{2}\right)\left\|B^{*}\right\|_{h}
$$

B.2. Utilizing Sampling based ℓ_{1} embeddings

Let A be a matrix that has r columns. Suppose \mathbf{L} is a random matrix such that with probability $\geq 9 / 10$, simultaneously for all vectors y,

$$
\alpha\|A y\|_{1} \leq\|\mathbf{L} A y\|_{1} \leq \beta\|A y\|_{1}
$$

Assume the above event holds. Let X be an arbitrary matrix with t columns. We have that for a suitably scaled Gaussian matrix \mathbf{G} with $\widetilde{O}\left(t / \varepsilon^{2}\right)$ columns, with probability $\geq 9 / 10$, simultaneously for all vectors $x \in \mathbb{R}^{t},\left\|x^{\top} \mathbf{G}\right\|_{1}=(1 \pm \varepsilon)\|x\|_{2}$ (Matoušek, 2013). Thus there exists a matrix M with $\widetilde{O}\left(t / \varepsilon^{2}\right)$ columns such that for all vectors $x \in \mathbb{R}^{t}$,

$$
\left\|x^{\top} M\right\|_{1}=(1 \pm \varepsilon)\|x\|_{2}
$$

Therefore,

$$
\frac{1}{1+\varepsilon}\|A X M\|_{1,1} \leq\|A X\|_{1,2}=\frac{1}{1-\varepsilon}\|A X M\|_{1,1}
$$

and

$$
\frac{1}{1+\varepsilon}\|\mathbf{L} A X M\|_{1,1} \leq\|\mathbf{L} A X\|_{1,2} \leq \frac{1}{1-\varepsilon}\|\mathbf{L} A X M\|_{1,1}
$$

Now we upper bound $\|\mathbf{L} A X\|_{1,2}$.

$$
\begin{aligned}
\|\mathbf{L} A X\|_{1,2} & \leq \frac{1}{1-\varepsilon}\|\mathbf{L} A X M\|_{1,1} \leq \frac{1}{1-\varepsilon} \sum_{j}\left\|\mathbf{L} A(X M)_{* j}\right\|_{1} \\
& \leq \frac{\beta}{1-\varepsilon} \sum_{j}\left\|A(X M)_{* j}\right\|_{1}=\frac{\beta}{1-\varepsilon}\|A X M\|_{1,1} \leq \beta \frac{1+\varepsilon}{1-\varepsilon}\|A X\|_{1,2}
\end{aligned}
$$

We now lower bound $\|\mathbf{L} A X\|_{1,2}$ similarly.

$$
\begin{aligned}
\|\mathbf{L} A X\|_{1,2} & \geq \frac{1}{1+\varepsilon}\|\mathbf{L} A X M\|_{1,1}=\frac{1}{1+\varepsilon} \sum_{j}\left\|\mathbf{L} A(X M)_{* j}\right\|_{1} \\
& \geq \frac{\alpha}{1+\varepsilon} \sum_{j}\left\|A(X M)_{* j}\right\|_{1}=\frac{\alpha}{1+\varepsilon}\|A X M\|_{1,1} \geq \alpha \frac{1-\varepsilon}{1+\varepsilon}\|A X\|_{1,2}
\end{aligned}
$$

By picking appropriate ε, we conclude that for any matrix X,

$$
\begin{equation*}
\frac{\alpha}{2}\|A X\|_{1,2} \leq\|\mathbf{L} A X\|_{1,2} \leq 2 \beta\|A X\|_{1,2} \tag{4}
\end{equation*}
$$

Lemma B.4. If \mathbf{S}^{\top} is a random Gaussian matrix with $O(k)$ columns such that with probability $\geq 9 / 10$,

$$
\min _{\text {rank-k } X}\left\|A \mathbf{S}^{\top} X-A\right\|_{1,2} \leq(3 / 2) \min _{\text {rank-k } X}\|A X-A\|_{1,2}
$$

and if \mathbf{L} is a random matrix drawn from a distribution such that with probability $\geq 9 / 10$ over the draw of matrix \mathbf{L},

$$
\alpha\left\|A \mathbf{S}^{\top} y\right\|_{1} \leq\left\|\mathbf{L} A \mathbf{S}^{\top} y\right\|_{1} \leq \beta\left\|A \mathbf{S}^{\top} y\right\|_{1}
$$

for all vectors y and

$$
\mathbb{E}_{\mathbf{L}}\left[\|\mathbf{L} M\|_{1,2}\right]=\|M\|_{1,2}
$$

for any matrix M, then with probability $\geq 3 / 5$, all matrices X such that $\left\|\mathbf{L} A \mathbf{S}^{\top} X-\mathbf{L} A\right\|_{1,2} \leq 10 \cdot \operatorname{SubApx}_{k, 1}(A)$ satisfy

$$
\left\|A \mathbf{S}^{\top} X-A\right\|_{1,2} \leq(2+40 / \alpha) \operatorname{SubApx}_{k, 1}(A)
$$

Proof. Let $X_{1}=\arg \min _{\text {rank-k }}\left\|A \mathbf{S}^{\top} X-A\right\|_{1,2}$. With probability $\geq 9 / 10$, we have that $\left\|A \mathbf{S}^{\top} X_{1}-A\right\|_{1,2} \leq$ $(3 / 2) \operatorname{SubApx}_{k, 1}(A)$. By a Markov bound, we obtain that with probability $\geq 4 / 5,\left\|\mathbf{L} A \mathbf{S}^{\top} X_{1}-\mathbf{L} A\right\|_{1,2} \leq$ $10 \operatorname{SubApx}_{k, 1}(A)$. Assume this event holds. For any matrix X,

$$
\left\|\mathbf{L} A \mathbf{S}^{\top} X-\mathbf{L} A\right\|_{1,2} \geq\left\|\mathbf{L} A \mathbf{S}^{\top} X-\mathbf{L} A \mathbf{S}^{\top} X_{1}\right\|_{1,2}-\left\|\mathbf{L} A \mathbf{S}^{\top} X_{1}-\mathbf{L} A\right\|_{1,2}
$$

We have

$$
\left\|\mathbf{L} A \mathbf{S}^{\top} X-\mathbf{L} A\right\|_{1,2} \geq\left\|\mathbf{L} A \mathbf{S}^{\top} X-\mathbf{L} A \mathbf{S}^{\top} X_{1}\right\|_{1,2}-10 \cdot \operatorname{SubApx}_{k, 1}(A)
$$

From (4), we have

$$
\begin{aligned}
\left\|\mathbf{L} A \mathbf{S}^{\top} X-\mathbf{L} A\right\|_{1,2} & \geq \frac{\alpha}{2}\left\|A \mathbf{S}^{\top} X-A \mathbf{S}^{\top} X_{1}\right\|_{1,2}-10 \cdot \operatorname{SubApx}_{k, 1}(A) \\
& \geq \frac{\alpha}{2}\left\|A \mathbf{S}^{\top} X-A\right\|_{1,2}-\frac{\alpha}{2}\left\|A \mathbf{S}^{\top} X_{1}-A\right\|_{1,2}-10 \cdot \operatorname{SubApx}_{k, 1}(A) \\
& \geq \frac{\alpha}{2}\left\|A \mathbf{S}^{\top} X-A\right\|_{1,2}-(3 \alpha / 4+10) \cdot \operatorname{SubApx}_{k, 1}(A)
\end{aligned}
$$

Thus, for any matrix X of rank r, if $\left\|A \mathbf{S}^{\top} X-A\right\|_{1,2}>(2 / \alpha)(20+3 \alpha / 4) \cdot \operatorname{SubApx}_{k, 1}(A)$, then $\left\|\mathbf{L} A \mathbf{S}^{\top} X-\mathbf{L} A\right\|_{1,2}>$ $10 \cdot \operatorname{SubApx}_{k, 1}(A)$.

B.3. Main Theorem for constructing an $(O(1), \widetilde{O}(k))$-bicriteria solution

Theorem B.1. Given any matrix $A \in \mathbb{R}^{n \times d}$ and a matrix $B \in \mathbb{R}^{d \times c_{1}}$ with orthonormal columns, Algorithm 1 returns a matrix \widehat{X} with $\widetilde{O}(k)$ orthonormal columns that with probability $1-\delta$ satisfies

$$
\left\|A\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\boldsymbol{\top}}\right)\right\|_{1,2} \leq O(1) \cdot \operatorname{SubApx}_{k, 1}\left(A\left(I-B B^{\boldsymbol{\top}}\right)\right)
$$

in time $\widetilde{O}((\operatorname{nnz}(A)+d \operatorname{poly}(k / \varepsilon)) \log (1 / \delta))$.

Proof. It is shown in Lemma B. 3 that a Gaussian matrix with $O(k)$ rows is a $1 / 6$-lopsided embedding for $\left(V_{k}, A^{\top}\right)$ with probability $\geq 9 / 10$. Thus by Lemma B.1, we obtain that

$$
\min _{\text {rank-k } X}\left\|A\left(I-B B^{\boldsymbol{\top}}\right) \mathbf{S}^{\top} X-A\left(I-B B^{\boldsymbol{\top}}\right)\right\|_{1,2} \leq(3 / 2) \operatorname{SubApx}_{k, 1}\left(A\left(I-B B^{\boldsymbol{\top}}\right)\right)
$$

with probability $\geq 9 / 10$. (Cohen and Peng, 2015) show that a sampling matrix \mathbf{L} obtained using Lewis weights has $\widetilde{O}(k)$ rows and is a $(1 / 2,3 / 2) \ell_{1}$ subspace embedding for the matrix $A\left(I-B B^{\boldsymbol{\top}}\right) \mathbf{S}^{\boldsymbol{\top}}$. Thus, the matrices $\mathbf{S}^{\boldsymbol{\top}}$ and \mathbf{L} constructed in Algorithm 1 satisfy the conditions of Lemma 4.1. Therefore from Lemma B.4, with probability $\geq 3 / 5$, if a matrix X satisfies $\left\|\mathbf{L} A\left(I-B B^{\boldsymbol{\top}}\right) \mathbf{S}^{\boldsymbol{\top}} X-\mathbf{L} A\left(I-B B^{\boldsymbol{\top}}\right)\right\|_{1,2} \leq 10 \cdot \operatorname{SubApx}_{k, 1}\left(A\left(I-B B^{\boldsymbol{\top}}\right)\right)$, then $\| A\left(I-B B^{\boldsymbol{\top}}\right) \mathbf{S}^{\boldsymbol{\top}} X-A(I-$ $\left.B B^{\boldsymbol{\top}}\right) \|_{1,2} \leq 82 \cdot \operatorname{SubApx}_{k, 1}\left(A\left(I-B B^{\boldsymbol{\top}}\right)\right)$.
Let $\widetilde{X}=\arg \min _{\text {rank-k } X}\left\|A\left(I-B B^{\boldsymbol{\top}}\right) \mathbf{S}^{\boldsymbol{\top}} X-A\left(I-B B^{\boldsymbol{\top}}\right)\right\|_{1,2}$. We have $\left\|A\left(I-B B^{\boldsymbol{\top}}\right) \mathbf{S}^{\boldsymbol{\top}} \widetilde{X}-A\left(I-B B^{\boldsymbol{\top}}\right)\right\|_{1,2} \leq$ $(3 / 2) \operatorname{SubApx}_{k, 1}\left(A\left(I-B B^{\boldsymbol{\top}}\right)\right)$. By Markov's bound, with probability $\geq 3 / 4,\left\|\mathbf{L} A\left(I-B B^{\boldsymbol{\top}}\right) \mathbf{S}^{\boldsymbol{\top}} \widetilde{X}-\mathbf{L} A\left(I-B B^{\boldsymbol{\top}}\right)\right\|_{1,2} \leq$ $10 \cdot \operatorname{SubApx}_{k, 1}\left(A\left(I-B B^{\top}\right)\right)$. We now have the following:

$$
\left\|\mathbf{L} A\left(I-B B^{\boldsymbol{\top}}\right) \mathbf{S}^{\boldsymbol{\top}} \tilde{X}\left(\mathbf{L} A\left(I-B B^{\boldsymbol{\top}}\right)\right)^{+} \mathbf{L} A\left(I-B B^{\boldsymbol{\top}}\right)-\mathbf{L} A\left(I-B B^{\boldsymbol{\top}}\right)\right\|_{1,2} \leq 10 \cdot \operatorname{SubApx}_{k, 1}\left(A\left(I-B B^{\boldsymbol{\top}}\right)\right)
$$

Thus $\left\|A\left(I-B B^{\boldsymbol{\top}}\right) \mathbf{S}^{\boldsymbol{\top}} \tilde{X}\left(\mathbf{L} A\left(I-B B^{\boldsymbol{\top}}\right)\right)^{+} \mathbf{L} A\left(I-B B^{\boldsymbol{\top}}\right)-A\left(I-B B^{\boldsymbol{\top}}\right)\right\|_{1,2} \leq 82 \cdot \operatorname{SubApx}_{k, 1}\left(A\left(I-B B^{\boldsymbol{\top}}\right)\right)$. Finally,

$$
\begin{aligned}
& \left\|A\left(I-B B^{\top}\right)\left(\mathbf{L} A\left(I-B B^{\boldsymbol{\top}}\right)\right)^{+}\left(\mathbf{L} A\left(I-B B^{\boldsymbol{\top}}\right)\right)-A\left(I-B B^{\boldsymbol{\top}}\right)\right\|_{1,2} \\
& \leq\left\|A\left(I-B B^{\boldsymbol{\top}}\right) \mathbf{S}^{\boldsymbol{\top}} \widetilde{X}\left(\mathbf{L} A\left(I-B B^{\boldsymbol{\top}}\right)\right)^{+} \mathbf{L} A\left(I-B B^{\boldsymbol{\top}}\right)-A\left(I-B B^{\boldsymbol{\top}}\right)\right\|_{1,2} \\
& \leq 82 \cdot \operatorname{SubApx}_{k, 1}\left(A\left(I-B B^{\boldsymbol{\top}}\right)\right)
\end{aligned}
$$

The first inequality follows from the fact that for all x and $y,\left\|x^{\top}(\mathbf{L} A)^{+}(\mathbf{L} A)-x^{\top}\right\|_{2} \leq\left\|y^{\top}(\mathbf{L} A)^{+}(\mathbf{L} A)-x^{\top}\right\|_{2}$.

By a union bound, with probability $\geq 1 / 2$, the matrix \widehat{X} computed by Algorithm 1, which is an orthonormal basis for the rowspace of $\mathbf{L} A\left(I-B B^{\mathbf{\top}}\right)$, satisfies

$$
\left\|A\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\boldsymbol{\top}}\right)\right\|_{1,2} \leq 82 \cdot \operatorname{SubApx}_{k, 1}\left(A\left(I-B B^{\boldsymbol{\top}}\right)\right)
$$

Thus the matrix \widehat{X} which has the minimum value over $\widetilde{O}(\log (1 / \delta))$ trials satisfies with probability $\geq 1-\delta$ that

$$
\left\|A\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X} \hat{X}^{\boldsymbol{\top}}\right)\right\|_{1,2} \leq O(1) \cdot \operatorname{SubApx}_{k, 1}\left(A\left(I-B B^{\boldsymbol{\top}}\right)\right)
$$

The running time of Lewis weight sampling can be seen to be $O\left(\left(\operatorname{nnz}(A)+k^{2} d\left(c_{1}+k\right)\right) \log (\log (n))\right)$ from (Cohen and Peng, 2015). Thus, the total running time is $\widetilde{O}\left(\left(n n z(A)+k^{2} d\left(c_{1}+k\right)\right) \log (1 / \delta)\right)$.

B.4. Finding Best Solution Among Candidate Solutions

Algorithm 1 finds candidate solutions $\widehat{X}^{(1)}, \ldots, \widehat{X}^{(t)}$ for $t=O(\log (1 / \delta))$ and returns the best candidate solution that minimizes the cost

$$
\begin{equation*}
\left\|A\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\boldsymbol{\top}}\right)\right\|_{1,2} \tag{5}
\end{equation*}
$$

The proof of Theorem 4.1 shows that, for all $i=1, \ldots, t$, with probability $\geq 3 / 5,\left\|A\left(I-B B^{\top}\right)\left(I-\widehat{X}^{(i)}\left(\widehat{X}^{(i)}\right)^{\top}\right)\right\|_{1,2} \leq$ $O(1) \cdot \operatorname{SubApx}_{k, 1}\left(A\left(I-B B^{\boldsymbol{\top}}\right)\right)$. Therefore with probability $\geq 1-\delta / 2$

$$
\begin{equation*}
\min _{i}\left\|A\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X}^{(i)}\left(\widehat{X}^{(i)}\right)^{\top}\right)\right\|_{1,2} \leq O(1) \cdot \operatorname{SubApx}_{k, 1}\left(A\left(I-B B^{\boldsymbol{\top}}\right)\right) \tag{6}
\end{equation*}
$$

i.e., with probability $\geq 1-\delta$, there is a solution $\widehat{X}^{(i)}$ among the t potential solutions that has a cost at most $O(1)$. $\operatorname{SubApx}_{k, 1}\left(A\left(I-B B^{\top}\right)\right)$. We first compute

$$
\operatorname{apx}_{i}=\left\|A\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X}^{(i)}\left(\widehat{X}^{(i)}\right)^{\top}\right) \mathbf{G}\right\|_{1,2}
$$

where \mathbf{G} is a scaled Gaussian matrix with $O(\log (n / \delta))$ columns. Values of apx ${ }_{j}$ for all $j \in[t]$ can be computed in time $\widetilde{O}((\operatorname{nnz}(A)+(n+d) \operatorname{poly}(k / \varepsilon)) \cdot \log (1 / \delta))$. We have using the union bound that, with probability $\geq 1-\delta / 2$, for all $j \in[n]$ and $i \in[t]$ that

$$
\begin{equation*}
\left\|A_{j *}\left(I-B B^{\top}\right)\left(I-\widehat{X}^{(i)}\left(\widehat{X}^{(i)}\right)^{\top}\right) \mathbf{G}\right\|_{2}=(1 / 2,3 / 2)\left\|A_{j *}\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X}^{(i)}\left(\widehat{X}^{(i)}\right)^{\top}\right)\right\|_{2} \tag{7}
\end{equation*}
$$

Therefore with probability $\geq 1-\delta / 2$, for all $i \in[t]$,

$$
\begin{equation*}
\operatorname{apx}_{i} \in(1 / 2,3 / 2)\left\|A\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X}^{(i)}\left(\widehat{X}^{(i)}\right)^{\top}\right)\right\|_{1,2} \tag{8}
\end{equation*}
$$

Let $\tilde{i}=\arg \min _{i \in[t]} \operatorname{apx}_{i}$ and $i^{*}=\arg \min _{i \in[t]}\left\|A\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X}^{(i)}\left(\widehat{X}^{(i)}\right)^{\boldsymbol{\top}}\right)\right\|_{1,2}$. By a union bound, with probability $\geq 1-\delta$

$$
\begin{aligned}
\left\|A\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X}^{(\widetilde{i})}\left(\widehat{X}^{\widetilde{(})}\right)^{\top}\right)\right\|_{1,2} & \leq 2 \operatorname{apx}_{\widetilde{i}} \\
& \leq 2 \operatorname{apx}_{i^{*}} \\
& \leq 4\left\|A\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X}^{\left(i^{*}\right)}\left(\widehat{X}^{\left(i^{*}\right)}\right)^{\top}\right)\right\|_{1,2} \\
& \leq O(1) \cdot \operatorname{SubApx}_{k, 1}\left(A\left(I-B B^{\boldsymbol{\top}}\right)\right)
\end{aligned}
$$

Thus, Algorithm 1, with probability $\geq 1-\delta$, returns a subspace that has cost at most $O(\sqrt{k}) \cdot \operatorname{SubApx}_{k, 1}\left(A\left(I-B B^{\boldsymbol{\top}}\right)\right)$ and has a running time of $\widetilde{O}((\mathrm{nnz}(A)+(n+d) \operatorname{poly}(k / \varepsilon)) \cdot \log (1 / \delta))$.

B.5. Main Theorem for Constructing a $\left(1+\varepsilon, k^{3.5} / \varepsilon^{2}\right)$ Bicriteria Solution

Theorem B. 2 (Residual Sampling). Given matrix $A \in \mathbb{R}^{n \times d}$, matrices $B \in \mathbb{R}^{d \times c_{1}}$ and $\widehat{X} \in \mathbb{R}^{d \times c_{2}}$ with orthonormal columns such that $\left\|A\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\boldsymbol{\top}}\right)\right\|_{1,2} \leq K \cdot \operatorname{SubApx}{ }_{1, k}\left(A\left(I-B B^{\boldsymbol{\top}}\right)\right)$, Algorithm 2 returns a matrix U having $c=\widetilde{O}\left(c_{2}+K \cdot k^{3} / \varepsilon^{2} \cdot \log (1 / \delta)\right)$ orthonormal columns such that with probability $\geq 1-\delta$

$$
\begin{equation*}
\left\|A\left(I-B B^{\boldsymbol{\top}}\right)\left(I-U U^{\boldsymbol{\top}}\right)\right\|_{1,2} \leq(1+\varepsilon) \operatorname{SubApx}_{1, k}\left(A\left(I-B B^{\boldsymbol{\top}}\right)\right) \tag{9}
\end{equation*}
$$

in time $\widetilde{O}(\operatorname{nnz}(A)+d \cdot \operatorname{poly}(k / \varepsilon))$. Moreover we also have that $U^{\top} B=0$, i.e., the column spaces of U and B are orthogonal to each other.

Proof. As the matrix G is a Gaussian matrix with $t=O(\log (n / \delta))$ columns, we have that with probability $\geq 1-(\delta / 2)$, for all $i \in[n]$,

$$
\left\|M_{i *}\right\|_{2}=\left\|A_{i *}\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\boldsymbol{\top}}\right) G\right\|_{2}=(1 \pm 1 / 10)\left\|A_{i *}\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\boldsymbol{\top}}\right) G\right\|_{2}
$$

Therefore, the probabilities p_{i} computed by Algorithm 2 are such that

$$
p_{i}=\frac{\left\|M_{i *}\right\|_{2}}{\|M\|_{1,2}} \geq \frac{(9 / 10)\left\|A_{i *}\left(I-B B^{\mathbf{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\mathbf{\top}}\right)\right\|_{2}}{(11 / 10)\left\|A\left(I-B B^{\mathbf{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\mathbf{\top}}\right)\right\|_{1,2}} \geq \frac{9}{11} \frac{\left\|A_{i *}\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\mathbf{\top}}\right)\right\|_{2}}{\left\|A\left(I-B B^{\mathbf{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\mathbf{\top}}\right)\right\|_{1,2}}
$$

Hence, by applying Lemma 4.2 to the matrix $A\left(I-B B^{\top}\right)$, we obtain that with probability $\geq 1-\delta$, the matrix U returned by Algorithm 2 satisfies

$$
\left\|A\left(I-B B^{\boldsymbol{\top}}\right)\left(I-U U^{\boldsymbol{\top}}\right)\right\|_{1,2} \leq(1+\varepsilon) \operatorname{SubApx}_{1, k}\left(A\left(I-B B^{\boldsymbol{\top}}\right)\right)
$$

The matrix M can be computed in time $O\left(\operatorname{nnz}(A) \log (n / \delta)+\left(c_{1}+c_{2}\right) d \log (n / \delta)\right)$. And $s=\widetilde{O}\left(K \cdot k^{3} / \varepsilon^{2} \cdot \log (1 / \delta)\right)$ independent samples can be drawn from the distribution p in time $O(n+s)$. Finally, the orthonormal basis U can be computed in time $O\left(d\left(c+c_{1}\right)^{2}\right)=O(d$ poly $(k / \varepsilon))$.

C. Missing Proofs from Section 5

Lemma C.1. With probability $\geq 2 / 3$, Algorithm 3 finds an $\widetilde{O}\left(k^{3} / \varepsilon^{3}\right)$-dimensional subspace S such that for all k dimensional subspaces W,

$$
\left\|A\left(I-\mathbb{P}_{S}\right)\right\|_{1,2}-\left\|A\left(I-\mathbb{P}_{S+W}\right)\right\|_{1,2} \leq 4 \varepsilon \cdot \operatorname{SubApx}_{k, 1}(A)
$$

Proof. Suppose that the loop in Algorithm 3 is run for all $t=10 / \varepsilon+1$ iterations instead of stopping after i^{*} iterations. Let $\widehat{X}_{i}, U_{i}, B_{i}$ be the values of the matrices in the algorithm at the end of i iterations. Let $B_{0}=[]$ be the empty matrix. Condition on the event that all the calls to Algorithm 1 in the algorithm succeed. By a union bound over the failure event of each call to Algorithm 1, this event holds with probability $\geq 9 / 10$. Therefore, by Theorem 4.1, we obtain that

$$
\begin{aligned}
& \left\|A\left(I-\mathbb{P}_{B_{i-1}}\right)\left(I-\mathbb{P}_{\widehat{X}_{i}}\right)\right\|_{1,2} \\
& \leq \widetilde{O}(\sqrt{k}) \cdot \operatorname{SubApx}_{k, 1}\left(A\left(I-\mathbb{P}_{B_{i-1}}\right)\right)
\end{aligned}
$$

for all $i \in[10 / \varepsilon+1]$ and also that \widehat{X}_{i} has $\widetilde{O}(k)$ columns. Now we condition on the event that all the calls to Algorithm 2 succeed. By a union bound, this holds with probability $\geq 9 / 10$. Thus we have

$$
\begin{aligned}
& \left\|A\left(I-\mathbb{P}_{B_{i}}\right)\right\|_{1,2}=\left\|A\left(I-\mathbb{P}_{B_{i-1}}\right)\left(I-\mathbb{P}_{U_{i}}\right)\right\|_{1,2} \\
& \leq(1+\varepsilon) \cdot \operatorname{SubApx}_{k, 1}\left(A\left(I-\mathbb{P}_{B_{i-1}}\right)\right)
\end{aligned}
$$

for all iterations $i \in[10 / \varepsilon+1]$ and also that U_{i} has $\widetilde{O}\left(k^{3} / \varepsilon^{2}\right)$ columns which implies that B_{i} has $\widetilde{O}\left(i k^{3} / \varepsilon^{2}\right)$ columns. In particular, we have that $\left\|A\left(I-\mathbb{P}_{B_{1}}\right)\right\|_{1,2} \leq(1+\varepsilon) \operatorname{SubApx}_{k, 1}(A)$. Therefore

$$
\begin{aligned}
& (1+\varepsilon) \operatorname{SubApx}_{k, 1}(A)-\left\|A\left(I-\mathbb{P}_{B_{t}}\right)\right\|_{1,2} \\
& \geq\left\|A\left(I-\mathbb{P}_{B_{1}}\right)\right\|_{1,2}-\left\|A\left(I-\mathbb{P}_{B_{t}}\right)\right\|_{1,2} \\
& =\sum_{i=2}^{\mathrm{T}}\left\|A\left(I-\mathbb{P}_{B_{i-1}}\right)\right\|_{1,2}-\left\|A\left(I-\mathbb{P}_{B_{i}}\right)\right\|_{1,2} \geq 0
\end{aligned}
$$

The last inequality follows from the fact that colspace $\left(B_{i}\right) \supseteq \operatorname{colspace}\left(B_{i-1}\right)$. The summation in the above equation has $10 / \varepsilon$ non-negative summands that all sum to at most $(1+\varepsilon) \operatorname{SubApx}_{k, 1}(A)$. Therefore, at least $9 / \varepsilon$ summands have value $\leq \varepsilon(1+\varepsilon) \operatorname{SubApx}_{k, 1}(A)$. In particular, with probability $\geq 9 / 10$,

$$
\left\|A\left(I-\mathbb{P}_{B_{i^{*}}}\right)\right\|_{1,2}-\left\|A\left(I-\mathbb{P}_{B_{i^{*}+1}}\right)\right\|_{1,2} \leq \varepsilon(1+\varepsilon) \operatorname{SubApx}_{k, 1}(A)
$$

But we also have that

$$
\begin{aligned}
\left\|A\left(I-\mathbb{P}_{B_{i^{*}+1}}\right)\right\|_{1,2} & =\left\|A\left(I-\mathbb{P}_{B_{i^{*}}}\right)\left(I-\mathbb{P}_{U_{i^{*}}}\right)\right\|_{1,2} \\
& \leq(1+\varepsilon) \operatorname{SubApx}_{k, 1}\left(A\left(I-\mathbb{P}_{B_{i^{*}}}\right)\right) \\
& \leq(1+\varepsilon)\left\|A\left(I-\mathbb{P}_{B_{i^{*}}}\right)\left(I-\mathbb{P}_{W}\right)\right\|_{1,2} \\
& =(1+\varepsilon)\left\|A\left(I-\mathbb{P}_{B_{i^{*}}+W}\right)\right\|_{1,2}
\end{aligned}
$$

where W is any rank k matrix. The second inequality follows from the fact that $\operatorname{SubApx}_{k, 1}\left(A\left(I-\mathbb{P}_{B_{i^{*}}}\right)\right)=$ $\min _{\text {rank-k } W}\left\|A\left(I-\mathbb{P}_{B_{i^{*}}}\right)\left(I-\mathbb{P}_{W}\right)\right\|_{1,2}$. Therefore, for any rank- k matrix W, we obtain that

$$
\begin{aligned}
& \left\|A\left(I-\mathbb{P}_{B_{i^{*}}}\right)\right\|_{1,2}-\left\|A\left(I-\mathbb{P}_{B_{i^{*}} \cup W}\right)\right\|_{1,2} \\
& \leq\left\|A\left(I-\mathbb{P}_{B_{i^{*}}}\right)\right\|_{1,2}-\frac{1}{1+\varepsilon}\left\|A\left(I-\mathbb{P}_{B_{i^{*}+1}}\right)\right\|_{1,2} \\
& \leq\left\|A\left(I-\mathbb{P}_{B_{i^{*}}}\right)\right\|_{1,2}-(1-\varepsilon)\left\|A\left(I-\mathbb{P}_{B_{i^{*}+1}}\right)\right\|_{1,2} \\
& \leq\left(\left\|A\left(I-\mathbb{P}_{B_{i^{*}}}\right)\right\|_{1,2}-\left\|A\left(I-\mathbb{P}_{B_{i^{*}+1}}\right)\right\|_{1,2}\right)+\varepsilon\left\|A\left(I-\mathbb{P}_{B_{i^{*}+1}}\right)\right\|_{1,2} \\
& \leq 4 \varepsilon \cdot \operatorname{SubApx}_{k, 1}(A)
\end{aligned}
$$

Theorem C.1. Given a matrix $A \in \mathbb{R}^{n \times d}, k \in \mathbb{Z}$ and an accuracy parameter $\varepsilon>0$, Algorithm 4 returns a matrix B with $\widetilde{O}\left(k^{3} / \varepsilon^{6}\right)$ orthonormal columns and a matrix $A p x=[X v]$ such that for any k dimensional shape S, $\sum_{i} \sqrt{\operatorname{dist}\left(B X_{i *}^{\top}, S\right)^{2}+v_{i}^{2}}=(1 \pm \varepsilon) \sum_{i} \operatorname{dist}\left(A_{i}, S\right)$. The algorithm runs in time $O\left(\mathrm{nnz}(A) / \varepsilon^{2}+(n+d) \operatorname{poly}(k / \varepsilon)\right)$.

Proof. From the above lemma, we have that the subspace B satisfies with probability $\geq 9 / 10$, that for any k dimensional subspace W,

$$
\begin{equation*}
\left\|A\left(I-\mathbb{P}_{B}\right)\right\|_{1,2}-\left\|A\left(I-\mathbb{P}_{B \cup W}\right)\right\|_{1,2} \leq \frac{\varepsilon^{2}}{80} \operatorname{SubApx}_{k, 1}(A) \tag{10}
\end{equation*}
$$

From Theorem 2.10 of (Woodruff, 2014), we obtain that with probability $\geq 9 / 10$, for all $i \in[n]$, the matrix \mathbf{S}_{j} found for $i \in[n]$ is such that \mathbf{S}_{j} is a $\Theta\left(\varepsilon^{2}\right)$ subspace embedding for the matrix [$\left.B A_{i *}^{\bar{\top}}\right]$. Therefore, x_{i} is such that

$$
\left\|B x_{i}-A_{i *}^{\top}\right\|_{2} \leq\left(1+\Theta\left(\varepsilon^{2}\right)\right)\left\|\left(I-B B^{\top}\right) A_{i *}^{\top}\right\|_{2}
$$

and $v_{i}=\left(1 \pm \Theta\left(\varepsilon^{2}\right)\right)\left\|\left(I-B B^{\top}\right) A_{i *}^{\top}\right\|_{2}$. Now the proof follows from Theorem 3.1.

D. Missing Proofs from Section 6

D.1. Obtaining an $(O(1)$, poly $(k))$ Approximation

Theorem D.1. Given $A \in \mathbb{R}^{n \times d}, B \in \mathbb{R}^{d \times c_{1}}, k \in \mathbb{Z}$ and δ, Algorithm 5 returns \widehat{X} with $\widetilde{O}\left(k^{3.5}\right)$ orthonormal columns that with probability $1-\delta$ satisfies

$$
\left\|A\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\boldsymbol{\top}}\right)\right\|_{1,2} \leq O(1) \cdot \operatorname{SubApx}_{k, 1}\left(A\left(I-B B^{\boldsymbol{\top}}\right)\right)
$$

Given that the matrices $\mathbf{C}_{1} A_{I_{j}}$ for all $j \in[b]$ and $\mathbf{W} A$ are precomputed for all $O(\log (1 / \delta))$ trials, the algorithm can be implemented in time $\widetilde{O}\left(\left((n d / b) \cdot k^{3.5}+d \operatorname{poly}(k / \varepsilon)\right) \log (1 / \delta)\right)$.

Proof. The proof is similar to proof of Theorem 4.1. That proof only makes use of the facts that

1. for any fixed matrix $M, \mathbb{E}\left[\|\mathbf{L} M\|_{1,2}\right]=\mathbb{E}\left[\|M\|_{1,2}\right]$,
2. with probability $\geq 9 / 10$, for all vectors $x,(1 / 2)\|A x\|_{1} \leq\|\mathbf{L} A x\|_{1} \leq(3 / 2)\|A x\|_{1}$, and
to conclude with the statement in the theorem. We now show that the matrix \mathbf{L} computed by Algorithm 5 satisfies all the above three properties.
```
Algorithm 5 POLYAPPROXDENSE
    Input: \(A \in \mathbb{R}^{n \times d}, B \in \mathbb{R}^{d \times c_{1}}, k \in \mathbb{Z}, \delta, b\)
    Output: \(\widehat{X} \in \mathbb{R}^{d \times c_{2}}\)
    cols \(\leftarrow O\left(k+1 / \delta^{2}\right)\)
    \(\mathbf{S}^{\top} \leftarrow \mathcal{N}(0,1)^{d \times \text { cols }}\)
    \(\mathbf{W} \leftarrow \ell_{1}\) embedding for \(O(k)\) dimensions from (Wang and Woodruff, 2019)
    \([Q, R] \leftarrow \mathrm{QR}\) decomposition of \((\mathbf{W} A)\left(I-B B^{\boldsymbol{\top}}\right) \mathbf{S}^{\boldsymbol{\top}}\)
    \(I_{1}, \ldots, I_{b} \leftarrow\) Equal size partition of \([n]\) into \(b\) parts
    \(\mathbf{C}_{1} \leftarrow\) Cauchy matrix with \(O(\log (n))\) rows
    for \(j=1, \ldots, b\) do
        \(M^{(j)} \leftarrow\left(\mathbf{C}_{1} A_{I_{j}}\right)\left(I-B B^{\boldsymbol{\top}}\right) \mathbf{S}^{\boldsymbol{\top}} R^{-1}\)
        \(\operatorname{apx}_{j} \leftarrow \sum_{\mathrm{col} \in \operatorname{cols}\left(M^{(j)}\right)} \operatorname{median}\left(\operatorname{abs}\left(M_{* \operatorname{col}}^{(j)}\right)\right)\)
    end for
    \(\mathbf{C} \leftarrow\) Cauchy matrix with \(O(\log (n))\) columns
    samples \(\leftarrow \widetilde{O}\left(k^{3.5}\right)\)
    \(\mathbf{L} \leftarrow[]\)
    for samples iterations do
        Sample \(j \in[b]\) with probability proportional to apx \({ }_{j}\)
        \(P^{(j)} \leftarrow A_{I_{j}}\left(I-B B^{\boldsymbol{\top}}\right) \mathbf{S}^{\boldsymbol{\top}} R^{-1} \mathbf{C}\)
        For \(i \in I_{j}, p_{i}^{(j)} \leftarrow \operatorname{median}\left(\operatorname{abs}\left(P_{i *}^{(j)}\right)\right)\)
        Sample \(i \in I_{j}\) with probability proportional to \(p_{i}^{(j)}\)
        Append \(\frac{1}{p_{i}^{(j)}} \frac{1}{\text { apx }_{j}} \cdot\) samples \(e_{i}^{\top}\) to matrix \(\mathbf{L}\)
            \(\frac{p_{i}^{(j)}}{\sum_{i \in I(j)} p_{i}^{(j)}} \frac{1}{\sum_{j=1}^{b}{ }^{\text {apx }}{ }_{j}} \cdot\) samples
    end for
    \(\widehat{X} \leftarrow\) Orthonormal Basis for rowspace \(\left(\mathbf{L} A\left(I-B B^{\boldsymbol{\top}}\right)\right)\)
    Repeat the above \(\mathrm{O}(\log (1 / \delta))\) times and return best \(\widehat{X}\)
```

Note that the random matrix \mathbf{L} is constructed by sampling N rows, where each row is independently equal to $\left(1 / N p_{i}\right) e_{i}^{\top}$ with probability p_{i}. Thus

$$
\begin{equation*}
\mathbb{E}\left[\|\mathbf{L} M\|_{1,2}\right]=\mathbb{E}\left[\sum_{i=1}^{N}\left\|\mathbf{L}_{i *} M\right\|_{2}\right]=N \mathbb{E}\left[\left\|\mathbf{L}_{1 *} M\right\|_{2}\right]=N \sum_{j=1}^{n}\left\|\left(1 / N p_{j}\right) e_{j}^{\top} M\right\|_{2} p_{j}=\sum_{j=1}^{n}\left\|M_{j *}\right\|_{2}=\|M\|_{1,2} \tag{11}
\end{equation*}
$$

We now prove property 2. From Theorem 1.3 of (Wang and Woodruff, 2019), we have that \mathbf{W} has $O(k \log (k))$ rows and that with probability $\geq 99 / 100$, for all vectors x

$$
\left\|A\left(I-B B^{\boldsymbol{\top}}\right) \mathbf{S}^{\boldsymbol{\top}} x\right\|_{1} \leq\left\|\mathbf{W} A\left(I-B B^{\boldsymbol{\top}}\right) \mathbf{S}^{\boldsymbol{\top}} x\right\|_{1} \leq O(k \log (k))\left\|A\left(I-B B^{\boldsymbol{\top}}\right) \mathbf{S}^{\boldsymbol{\top}} x\right\|
$$

Let $\ell_{i}=\left\|A_{i *}\left(I-B B^{\boldsymbol{\top}}\right) \mathbf{S}^{\boldsymbol{\top}} R^{-1}\right\|_{1}$ for $i \in[n]$. From Theorem 6.1, if the probability that the $i^{\text {th }}$ row is sampled is $\geq(1 / 2)\left(\ell_{i} / \sum_{i^{\prime}} \ell_{i^{\prime}}\right)$ for all $i \in[n]$, then the matrix \mathbf{L} constructed is a $(1 / 2,3 / 2) \ell_{1}$-subspace embedding with probability $\geq 99 / 100$. Now consider sampling a row of the matrix \mathbf{L} in the algorithm. We have that the sampled row is in the direction of e_{i} with probability $\left(\operatorname{apx}_{j(i)} / \sum_{j^{\prime} \in[b]} \operatorname{apx}_{j^{\prime}}\right) \cdot\left(p_{i}^{j(i)} / \sum_{i^{\prime} \in I_{j(i)}} p_{i^{\prime}}^{j(i)}\right)$. We use $j(i)$ to denote $j \in[b]$ such that $i \in I_{j}$. We show that this probability is at least $(1 / 2)\left(\ell_{i} / \sum_{i^{\prime}} \ell_{i^{\prime}}\right)$. For $j \in[b]$,

$$
\operatorname{apx}_{j}=\sum_{\mathrm{col}} \operatorname{median}\left(\operatorname{abs}\left(M_{* \mathrm{col}}^{(j)}\right)\right) .
$$

From Theorem 1 of (Indyk, 2006), we have with probability $\geq 1-1 / 100 b$ that

$$
\operatorname{median}\left(\operatorname{abs}\left(M_{* \mathrm{col}}^{(j)}\right)\right)=(1 \pm 1 / 6)\left\|A_{I_{j}}\left(I-B B^{\top}\right) \mathbf{S}^{\top} R_{* \mathrm{col}}^{-1}\right\|_{1}
$$

Thus $\sum_{\mathrm{col}} \operatorname{median}\left(\operatorname{abs}\left(M_{* \mathrm{col}}^{(j)}\right)\right)=(1 \pm 1 / 6) \sum_{\mathrm{col}}\left\|A_{I_{j}}\left(I-B B^{\boldsymbol{\top}}\right) \mathbf{S}^{\top} R_{* \mathrm{col}}^{-1}\right\|_{1}=(1 \pm 1 / 6) \sum_{i \in I_{j}} \| A_{i *}(I-$ $\left.B B^{\boldsymbol{\top}}\right) \mathbf{S}^{\boldsymbol{\top}} R^{-1} \|_{1}=(1 \pm 1 / 6) \sum_{i \in I_{j}} \ell_{i}$. Therefore, by a union bound, with probability $\geq 99 / 100$, for all $j \in[b]$

$$
\operatorname{apx}_{j}=(1 \pm 1 / 6) \sum_{i \in I_{j}} \ell_{i} .
$$

Again, from (Indyk, 2006), we obtain that with probability $\geq 99 / 100$, that for all $i \in[n]$

$$
\operatorname{median}\left(\operatorname{abs}\left(A_{i *}\left(I-B B^{\boldsymbol{\top}}\right) \mathbf{S}^{\top} R^{-1} \mathbf{C}\right)\right)=(1 \pm 1 / 6)\left\|A_{i *}\left(I-B B^{\boldsymbol{\top}}\right) \mathbf{S}^{\top} R^{-1}\right\|_{1}=(1 \pm 1 / 6) \ell_{i}
$$

Thus, with probability $\geq 99 / 100$, for all j and $i \in I_{j}$, we have $p_{(i)}^{(j)}=(1 \pm 1 / 6) \ell_{i}$. By a union bound, with probability $\geq 98 / 100$, the probability that an arbitrary row i is sampled in an iteration of the algorithm is

$$
\left(\mathrm{apx}_{j(i)} / \sum_{j^{\prime} \in[b]} \operatorname{apx}_{j^{\prime}}\right) \cdot\left(p_{i}^{j(i)} / \sum_{i^{\prime} \in I_{j(i)}} p_{i^{\prime}}^{j(i)}\right) \geq \frac{5}{7} \frac{\sum_{i^{\prime} \in I_{j}} \ell_{i^{\prime}}}{\sum_{i^{\prime} \in[n]} \ell_{i^{\prime}}} \frac{5}{7} \frac{\ell_{i}}{\sum_{i^{\prime} \in I_{j}} \ell_{i^{\prime}}} \geq \frac{1}{2} \frac{\ell_{i}}{\sum_{i^{\prime} \in[n]} \ell_{i^{\prime}}} .
$$

Thus by a union bound, \mathbf{L} is a $(1 / 2,3 / 2)$ subspace embedding. Now the proof and argument for the running time follow.

D.2. Obtaining a $(1+\varepsilon, \operatorname{poly}(k / \varepsilon))$ Solution

```
Algorithm 6 EpsAPPROXDENSE
    Input: \(A \in \mathbb{R}^{n \times d}, B \in \mathbb{R}^{d \times c_{1}}, \widehat{X} \in \mathbb{R}^{d \times c_{2}}, k \in \mathbb{Z}, K, \varepsilon, \delta, b\)
    Output: \(U \in \mathbb{R}^{d \times c}\)
    \(t \leftarrow O(\log (n)), \mathbf{G} \leftarrow \mathcal{N}(0,1)^{d \times \text { cols }}\)
    \(I_{1}, \ldots, I_{b} \leftarrow\) Equal size partition of \([n]\) into \(b\) parts
    \(\mathbf{C}_{1} \leftarrow\) Cauchy matrix with \(O(\log (n))\) rows
    for \(j=1, \ldots, b\) do
        \(M^{(j)} \leftarrow\left(\mathbf{C}_{1} A_{I_{j}}\right)\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\mathbf{T}}\right)(\mathbf{G} / t) \sqrt{\pi / 2}\)
        \(\operatorname{apx}_{j} \leftarrow \sum_{\mathrm{col} \in \operatorname{cols}\left(M^{(j)}\right)} \operatorname{median}\left(\operatorname{abs}\left(M_{* \operatorname{col}}^{(j)}\right)\right)\)
    end for
    samples \(\leftarrow \widetilde{O}\left(K \cdot k^{3} / \varepsilon^{2} \cdot \log (1 / \delta)\right), \mathbf{S} \leftarrow \varnothing\)
    for samples iterations do
        Sample \(j \in[b]\) with probability proportional to apx \({ }_{j}\)
        \(P^{(j)} \leftarrow A_{I_{j}}\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\boldsymbol{\top}}\right) \mathbf{G}\)
        For \(i \in I_{j}, p_{i}^{(j)} \leftarrow\left\|P_{i *}^{(j)}\right\|_{2}\)
        Sample \(i \in I_{j}\) with probability proportional to \(p_{i}^{(j)}\)
        \(\mathbf{S} \leftarrow \mathbf{S} \cup i\)
    end for
    \(U \leftarrow \operatorname{colspan}\left(\left(I-B B^{\boldsymbol{\top}}\right)\left[\widehat{X}\left(A_{\mathbf{S}}\right)^{\boldsymbol{\top}}\right]\right)\)
    Return \(U\)
```

Theorem D.2. Given a matrix $A \in \mathbb{R}^{n \times d}$, orthonormal matrices $B \in \mathbb{R}^{n \times c_{1}}$ and $\widehat{X} \in \mathbb{R}^{n \times c_{2}}$ such that

$$
\left\|A\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\boldsymbol{\top}}\right)\right\|_{1,2} \leq K \cdot \operatorname{SubAp} x_{1, k}\left(A\left(I-B B^{\boldsymbol{\top}}\right)\right)
$$

and parameters k, ε, and δ, Algorithm 6 outputs a matrix U with $c=c_{1}+\widetilde{O}\left(K \cdot k^{3} / \varepsilon^{2} \cdot \log (1 / \delta)\right)$ orthonormal columns such that with probability $\geq 1-\delta$,

$$
\left\|A\left(I-B B^{\top}\right)\left(I-U U^{\top}\right)\right\|_{1,2} \leq(1+\varepsilon) \operatorname{SubApx}_{1, k}\left(A\left(I-B B^{\top}\right)\right)
$$

Given that $\mathbf{C}_{1} A_{I_{j}}$ is precomputed for all $j \in[b]$, the algorithm runs in time $\widetilde{O}\left((n d / b) \cdot\left(K \cdot k^{3} / \varepsilon^{2} \log (1 / \delta)\right)+d \operatorname{poly}(k / \varepsilon)\right)$.

Proof. We show that the probability that a row i is sampled in an iteration of the Algorithm is $\geq(1 / 12) \| A_{i *}\left(I-B B^{\top}\right)(I-$ $\left.\widehat{X} \widehat{X}^{\boldsymbol{\top}}\right)\left\|_{2} /\right\| A\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\boldsymbol{\top}}\right) \|_{1,2}$. Then the proof follows as in the proof of Theorem 4.2. First assume that apx ${ }_{j}$ for $j \in[b]$ computed by the algorithm satisfies

$$
\mathrm{apx}_{j}=(1 / 2,2) \sum_{i \in I_{j}}\left\|A_{j *}\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\boldsymbol{\top}}\right)\right\|_{2}
$$

Now the probability p_{i} with which a row i is sampled by the algorithm is given by

$$
p_{i}=\frac{\operatorname{apx}_{j(i)}}{\sum_{j \in[b]} \operatorname{apx}_{j}} \cdot \frac{\left\|A_{i *}\left(I-B B^{\mathbf{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\mathbf{\top}}\right) \mathbf{G}\right\|_{2}}{\sum_{i^{\prime} \in I_{j(i)}}\left\|A_{i^{\prime} *}\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\mathrm{T}}\right) \mathbf{G}\right\|_{2}}
$$

As \mathbf{G} is a Gaussian matrix with $t=O(\log (n / \delta))$ columns, we have that with probability $\geq 1-\delta$ that for all $i^{\prime} \in[n]$ $\left\|A_{i^{\prime} *}\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\boldsymbol{\top}}\right) \mathbf{G}\right\|_{2}=(1 \pm 1 / 2)\left\|A_{i^{\prime} *}\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\boldsymbol{\top}}\right)\right\|_{2} \cdot \sqrt{t}$. Therefore

$$
\begin{aligned}
p_{i} & =\frac{\operatorname{apx}_{j(i)}}{\sum_{j \in[b]} \mathrm{apx}_{j}} \cdot \frac{\left\|A_{i *}\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\boldsymbol{\top}}\right) \mathbf{G}\right\|_{2}}{\sum_{i^{\prime} \in I_{j(i)}}\left\|A_{i^{\prime} *}\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\boldsymbol{\top}}\right) \mathbf{G}\right\|_{2}} \\
& \geq \frac{1}{12} \frac{\left\|A_{i *}\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\boldsymbol{\top}}\right)\right\|_{2}}{\left\|A\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\top}\right)\right\|_{1,2}}
\end{aligned}
$$

We now prove our assumption which concludes the proof.
Let $x \in \mathbb{R}^{d}$ be an arbitrary vector. As \mathbf{G} is a Gaussian matrix with $t=O(\log (n / \delta))$ columns, Lemma 5.3 of (Plan and Vershynin, 2013) states that

$$
\operatorname{Pr}\left[\left|\frac{1}{t}\left\|x^{\top} G\right\|_{1}-\sqrt{\frac{2}{\pi}}\|x\|_{2}\right| \geq \alpha\|x\|_{2}\right] \leq C \exp \left(-c t \alpha^{2}\right)
$$

Picking an appropriate $\alpha=O(1)$, by a union bound, with probability $\geq 1-\delta / 3$, we obtain

$$
\begin{aligned}
& \left\|A_{i *}\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\mathbf{\top}}\right)(G / t) \sqrt{\pi / 2}\right\|_{1} \\
& =(4 / 5,6 / 5)\left\|A_{i *}\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\mathbf{\top}}\right)\right\|_{2}
\end{aligned}
$$

for all $i \in[n]$. Now, if C is a Cauchy matrix with $O(\log (n / \delta))$ rows, then with probability $1-\delta /(3 n b)$, we have that

$$
\operatorname{median}(\operatorname{abs}(C x))=(1 \pm 1 / 5)\|x\|_{1}
$$

Therefore, by a union bound, we obtain that, with probability $\geq 1-\delta / 3$, for all $j \in[b]$ and $i \in t$ that

$$
\operatorname{median}\left(\operatorname{abs}\left(C A_{I_{j} *}\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\boldsymbol{\top}}\right) \mathbf{G}_{* i}\right)\right)=(1 \pm 1 / 5)\left\|A_{I_{j} *}\left(I-B B^{\boldsymbol{\top}}\right)\left(I-\widehat{X} \widehat{X}^{\boldsymbol{\top}}\right) \mathbf{G}_{* i}\right\|_{1}
$$

Therefore, with probability $\geq 1-2 \delta / 3$, for all $j \in[b]$,

$$
\begin{aligned}
\operatorname{apx}_{j} & =\sum_{i} \operatorname{median}\left(\operatorname{abs}\left(\left(M^{(j)}\right)_{* i}\right)\right)=\sum_{i=1}^{\top} \operatorname{median}\left(\operatorname{abs}\left(C A_{I_{j} *}\left(I-B B^{\top}\right)\left(I-\widehat{X} \widehat{X}^{\top}\right)\left(\mathbf{G}_{* i} / t\right) \sqrt{\pi / 2}\right)\right) \\
& =(1 \pm 1 / 5) \sum_{i=1}^{\top}\left\|A_{I_{j} *}\left(I-B B^{\top}\right)\left(I-\widehat{X} \widehat{X}^{\top}\right)\left(\mathbf{G}_{* i} / t\right) \sqrt{\pi / 2}\right\|_{1} \\
& =(1 \pm 1 / 5) \sum_{i \in I_{j}}\left\|A_{i *}\left(I-B B^{\top}\right)\left(I-\widehat{X} \widehat{X}^{\top}\right)(\mathbf{G} / t) \sqrt{\pi / 2}\right\|_{1} \\
& =(4 / 5,6 / 5)(4 / 5,6 / 5) \sum_{i \in I_{j}}\left\|A_{i *}\left(I-B B^{\top}\right)\left(I-\widehat{X} \widehat{X}^{\top}\right)\right\|_{2} \\
& =(1 / 2,2) \sum_{i \in I_{j}}\left\|A_{i *}\left(I-B B^{\top}\right)\left(I-\widehat{X} \widehat{X}^{\top}\right)\right\|_{2} .
\end{aligned}
$$

The only term in the running time that involves a factor $n d$ is in computing the matrix $P^{(j)}$ for the chosen j. A total of $\widetilde{O}\left(K \cdot k^{3} / \varepsilon^{2} \cdot \log (1 / \delta)\right)$ such $j \in[b]$ are sampled. Therefore, the total running time for computing the matrices $P^{(j)}$ for j sampled by the algorithm is equal to $(n d / b) \cdot \log (n) \cdot \widetilde{O}\left(K \cdot k^{3} / \varepsilon^{2} \cdot \log (1 / \delta)\right)+d \cdot \operatorname{poly}(k / \varepsilon)$.

```
Algorithm 7 DIMENSIONREDUCTIONDENSE
    Input: \(A \in \mathbb{R}^{n \times d}, k, \varepsilon>0\).
    Output: \(B \in \mathbb{R}^{d \times c}\) with orthonormal columns
    \(t \leftarrow 10 / \varepsilon+1\)
    \(i^{*} \leftarrow\) uniformly random integer from \([10 / \varepsilon+1]\).
    Initialize \(B \leftarrow[]\)
    \(b \leftarrow k^{3.5} / \varepsilon^{3}\)
    \(\delta=\Theta(\varepsilon)\)
    for \(i=1, \ldots, i^{*}\) do
        \(\widehat{X} \leftarrow \operatorname{PolyApproxDense}(A, B, k, \delta, b)\).
        \(U \leftarrow \operatorname{EpsAPproxDense}(A, B, \widehat{X}, k, \widetilde{O}(\sqrt{k}), \Theta(\varepsilon), \delta, b)\).
        \(B \leftarrow[B \mid U]\).
    end for
    Return \(B\).
```


D.3. Overall Algorithm

Lemma D.1. Given matrix $A \in \mathbb{R}^{n \times d}, k \in \mathbb{Z}$ and $\varepsilon>0$, Algorithm 7 returns a matrix B with $\widetilde{O}\left(k^{3.5} / \varepsilon^{3}\right)$ orthonormal columns such that, with probability $\geq 3 / 5$, for all k dimensional spaces W,

$$
\left\|A\left(I-\mathbb{P}_{B}\right)\right\|_{1,2}-\left\|A\left(I-\mathbb{P}_{B \cup W}\right)\right\|_{1,2} \leq \varepsilon \cdot \operatorname{SubApx_{k,1}}(A) .
$$

The Algorithm runs in time $\widetilde{O}(n d+(n+d)$ poly $(k / \varepsilon))$.
Proof. The proof of the lemma is similar to that of Lemma C.1. We now argue that all the pre-computed matrices required across all the iterations of the algorithm can be computed in time $\widetilde{O}(n d)$. The Cauchy matrix \mathbf{C}_{1} used in Algorithm 5 has $O(\log (n))$ rows and the matrix \mathbf{W} has $\widetilde{O}(k)$ rows. Note that we have

$$
\left[\begin{array}{c}
\mathbf{C}_{1} A_{I_{1}} \\
\mathbf{C}_{1} A_{I_{2}} \\
\mathbf{C}_{1} A_{I_{b}} \\
\mathbf{W} A
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{C}_{1} & & & \\
& \mathbf{C}_{1} & & \\
& & & \\
& & \mathbf{W} & \\
& \mathbf{C}_{1}
\end{array}\right] A .
$$

Thus all the matrices required for Algorithm 5 can be computed by multiplying a poly $(k / \varepsilon) \times n$ matrix with A. Similarly, we can compute all the matrices required for Algorithm 6 by computing the product of a poly $(k / \varepsilon) \times n$ matrix with A. Thus, all the matrices required across all iterations of Algorithm 7 can be computed by multiplying a poly $(k / \varepsilon) \times n$ matrix with A, which can be done in time $\widetilde{O}(n d)$ by the algorithm of Coppersmith (1982), assuming $n \gg \operatorname{poly}(k / \varepsilon)$. Now each iteration of the loop in Algorithm 7 takes $\widetilde{O}\left((n d / b) k^{3.5} / \varepsilon^{2}+(n+d)\right.$ poly $\left.(k / \varepsilon)\right)$ time. As there are $O(1 / \varepsilon)$ iterations, the algorithm runs in time $\widetilde{O}\left((n d / b) k^{3.5} / \varepsilon^{3}+(n+d)\right.$ poly $\left.(k / \varepsilon)\right)$. Since the value of b is chosen to be $k^{3.5} / \varepsilon^{3}$, we obtain that the running time of the algorithm is $\widetilde{O}(n d+(n+d)$ poly $(k / \varepsilon))$, including the time to compute the required pre-computed matrices.

E. Coreset Construction using Dimensionality Reduction

Algorithm 8 gives the general algorithm to construct a coreset for any objective involving the sum-of-distances metric. In this section, we discuss the coreset construction for two such problems: the k-median and k-subspace approximation problems.
For $(B, \mathrm{Apx}=[X \quad v])$ returned by Algorithm 4, we have the guarantee that, with probability $\geq 9 / 10$, for any k-dimensional shape S,

$$
\sum_{i} \sqrt{\operatorname{dist}\left(B X_{i *}^{\top}, S\right)^{2}+v_{i}^{2}}=(1 \pm \varepsilon) \sum_{i} \operatorname{dist}\left(A_{i *}, S\right) .
$$

```
Algorithm 8 CORESETCONSTRUCTION
    Input: \(A \in \mathbb{R}^{n \times d}, k, \varepsilon\)
    Output: Coreset
    \((B, \mathrm{Apx}) \leftarrow \operatorname{CompleteDimREdUCE}(A, k, \varepsilon)\)
    Construct a coreset for the instance \(\operatorname{Apx}\left[\begin{array}{cc}B^{\top} & 0 \\ 0 & 1\end{array}\right]\) and return
```

Given a set S, let S_{+1} denote the set $\{(s, 0) \mid s \in S\}$. Let $\operatorname{diag}\left(B^{\top}, 1\right)=\left[\begin{array}{cc}B^{\top} & 0 \\ 0 & 1\end{array}\right]$. Using this notation, we have that

$$
\sum_{i} \operatorname{dist}\left(\operatorname{Apx}_{i *} \cdot \operatorname{diag}\left(B^{\top}, 1\right), S_{+1}\right)=(1 \pm \varepsilon) \sum_{i} \operatorname{dist}\left(A_{i *}, S\right)
$$

Using the above relation, we give a coreset construction for the k-subspace approximation and k-median problems. These constructions are as in (Sohler and Woodruff, 2018). For any matrix M, let M_{+1} denote the matrix M with a new column of 0 s appended at the end and let M_{-1} denote the matrix M with the last column deleted.
Theorem E. 1 (Coreset for Subspace Approximation). There exists a sampling-and-scaling matrix T that samples and scales $\widetilde{O}\left(k^{3} / \varepsilon^{8}\right)$ rows of the matrix Apx such that, with probability $\geq 3 / 5$, for any projection matrix P of rank k that projects onto a subspace S of dimension at most k, we have

$$
\begin{aligned}
\left\|\left(\left(T \cdot A p x \cdot \operatorname{diag}\left(B^{\top}, 1\right)\right)_{-1} P\right)_{+1}-T \cdot \operatorname{Apx} \cdot \operatorname{diag}\left(B^{\top}, 1\right)\right\|_{1,2} & =(1 \pm O(\varepsilon))\left\|\left(\left(\operatorname{Apx} \cdot \operatorname{diag}\left(B^{\top}, 1\right)\right)_{-1} P\right)_{+1}-\operatorname{Apx} \cdot \operatorname{diag}\left(B^{\top}, 1\right)\right\|_{1,2} \\
& =(1 \pm O(\varepsilon)) \sum_{i} \operatorname{dist}\left(A_{i}, S\right)
\end{aligned}
$$

This sampling matrix can be computed in time $O(n \cdot \operatorname{poly}(k / \varepsilon))$.
Proof. We first have $\left\|\left(\left(\operatorname{Apx} \cdot \operatorname{diag}\left(B^{\top}, 1\right)\right)_{-1} P\right)_{+1}-\operatorname{Apx} \cdot \operatorname{diag}\left(B^{\top}, 1\right)\right\|_{1,2}=\sum_{i} \|\left(\left(\operatorname{Apx}{ }_{i *} \cdot \operatorname{diag}\left(B^{\top}, 1\right)_{-1} P\right)_{+1}-\right.$ $\operatorname{Apx}_{i *} \cdot \operatorname{diag}\left(B^{\top}, 1\right) \|_{2}=\sum_{i} \sqrt{\left\|(I-P) B X_{i *}^{\top}\right\|_{2}^{2}+v_{i}^{2}}=\sum_{i} \sqrt{\operatorname{dist}\left(B X_{i *}^{\top}, S\right)^{2}+v_{i}^{2}}=(1 \pm \varepsilon) \sum_{i} \operatorname{dist}\left(A_{i *}, S\right)$.
We now show $\left\|\left(\left(T \cdot \operatorname{Apx} \cdot \operatorname{diag}\left(B^{\top}, 1\right)\right)_{-1} P\right)_{+1}-T \cdot \operatorname{Apx} \cdot \operatorname{diag}\left(B^{\top}, 1\right)\right\|_{1,2}=(1 \pm O(\varepsilon)) \|\left(\left(\operatorname{Apx} \cdot \operatorname{diag}\left(B^{\top}, 1\right)\right)_{-1} P\right)_{+1}-$ $\operatorname{Apx} \cdot \operatorname{diag}\left(B^{\top}, 1\right) \|_{1,2}$ proving the claim. Let G be a Gaussian matrix with $\widetilde{O}\left(d / \varepsilon^{2}\right)$ columns. Then with probability $\geq 9 / 10$, for all $x \in \mathbb{R}^{d+1}$,

$$
\left\|x^{\top} G\right\|_{1}=(1 \pm \varepsilon)\|x\|_{2}
$$

See (Sohler and Woodruff, 2018) for references. Thus we have that with probability $\geq 9 / 10$, for all projection matrices P of rank at most k, we have
$\left\|\left(\left(\operatorname{Apx} \cdot \operatorname{diag}\left(B^{\top}, 1\right)\right)_{-1} P\right)_{+1} G-\operatorname{Apx} \cdot \operatorname{diag}\left(B^{\top}, 1\right) G\right\|_{1,1}=(1 \pm \varepsilon)\left\|\left(\left(\operatorname{Apx} \cdot \operatorname{diag}\left(B^{\top}, 1\right)\right)_{-1} P\right)_{+1}-\operatorname{Apx} \cdot \operatorname{diag}\left(B^{\top}, 1\right)\right\|_{1,2}$.
Note that for any P, the columns of the matrix $\left(\left(\operatorname{Apx} \cdot \operatorname{diag}\left(B^{\top}, 1\right)\right)_{-1} P\right)_{+1} G-\operatorname{Apx} \cdot \operatorname{diag}\left(B^{\top}, 1\right) G$ lie in the column space of the matrix Apx. Let T be a $(1 \pm \varepsilon) \ell_{1}$-subspace embedding constructed for the matrix Apx constructed using (Cohen and Peng, 2015). Therefore
$\left\|T \cdot\left(\left(\operatorname{Apx} \cdot \operatorname{diag}\left(B^{\top}, 1\right)\right)_{-1} P\right)_{+1} G-T \cdot \operatorname{Apx} \cdot \operatorname{diag}\left(B^{\top}, 1\right) G\right\|_{1,1}=(1 \pm \varepsilon)\left\|\left(\left(\operatorname{Apx} \cdot \operatorname{diag}\left(B^{\top}, 1\right)\right)_{-1} P\right)_{+1} G-\operatorname{Apx} \cdot \operatorname{diag}\left(B^{\top}, 1\right) G\right\|_{1,1}$.
Again, using the fact that $\left\|x^{\top} G\right\|_{1}=(1 \pm \varepsilon)\|x\|_{2}$ for all $d+1$ dimensional vectors x, we obtain that

$$
\begin{aligned}
& \left\|T \cdot\left(\left(\operatorname{Apx} \cdot \operatorname{diag}\left(B^{\top}, 1\right)\right)_{-1} P\right)_{+1}-T \cdot \operatorname{Apx} \cdot \operatorname{diag}\left(B^{\top}, 1\right)\right\|_{1,2} \\
& =(1 \pm \varepsilon)\left\|T \cdot\left(\left(\operatorname{Apx} \cdot \operatorname{diag}\left(B^{\top}, 1\right)\right)_{-1} P\right)_{+1} G-T \cdot \operatorname{Apx} \cdot \operatorname{diag}\left(B^{\top}, 1\right) G\right\|_{1,1} \\
& =(1 \pm O(\varepsilon))\left\|\left(\left(\operatorname{Apx} \cdot \operatorname{diag}\left(B^{\top}, 1\right)\right)_{-1} P\right)_{+1} G-\operatorname{Apx} \cdot \operatorname{diag}\left(B^{\top}, 1\right) G\right\|_{1,1} \\
& =(1 \pm O(\varepsilon))\left\|\left(\left(\operatorname{Apx} \cdot \operatorname{diag}\left(B^{\top}, 1\right)\right)_{-1} P\right)_{+1}-\operatorname{Apx} \cdot \operatorname{diag}\left(B^{\top}, 1\right)\right\|_{1,2} \\
& =(1 \pm O(\varepsilon)) \sum_{i} \operatorname{dist}\left(A_{i}, S\right) .
\end{aligned}
$$

Dimensionality Reduction for Sum-of-Distances Metric

The matrix T is computed by Lewis Weight Sampling. As the matrix Apx has dimensions $n \times \widetilde{O}\left(k^{3} / \varepsilon^{6}\right)$, we see from (Cohen and Peng, 2015) that the matrix T can be computed in time $n \cdot \operatorname{poly}(k / \varepsilon)$.

Theorem E. 2 (Coreset for k-median). There exists a subset $T \subseteq[n]$ with $|T|=\widetilde{O}\left(k^{4} / \varepsilon^{8}\right)$ and weights w_{i} for $i \in T$ such that, with probability $\geq 3 / 5$, for any set C of size k,

$$
\sum_{i \in T} w_{i} \operatorname{dist}\left(A p x_{i *} \cdot \operatorname{diag}\left(B^{\top}, 1\right), C_{+1}\right)=(1 \pm \varepsilon) \sum_{i \in[n]} \operatorname{dist}\left(A_{i *}, C\right)
$$

Recall that $C_{+1}=\{(c, 0) \mid c \in C\}$.

Proof. Let S denote the rowspan of the matrix $\operatorname{diag}\left(B^{\top}, 1\right)$. We have $\operatorname{dim}(S)=\widetilde{O}\left(k^{3} / \varepsilon^{6}\right)$. Let \widehat{S} be the subspace S along with an orthogonal dimension. Thus \widehat{S} is an $\widetilde{O}\left(k^{3} / \varepsilon^{6}\right)$ dimensional subspace of \mathbb{R}^{d+1}. Let $C=\left\{c_{1}, \ldots, c_{k}\right\}$ be an arbitrary set of k centers of \mathbb{R}^{d+1}. Now it is easy to see that we can find a set of k points $\widehat{C}=\left\{\widehat{c}_{1}, \ldots, \widehat{c}_{k}\right\} \subseteq \widehat{S}$ such that $\mathbb{P}_{S} c_{i}=\mathbb{P}_{S} \widehat{c}_{i}$ i.e., the projections of c_{i} and \widehat{c}_{i} onto the subspace S are the same, and also that dist $\left(c_{i}, \mathbb{P}_{S}\left(c_{i}\right)\right)=$ $\operatorname{dist}\left(\widehat{c}_{i}, \mathbb{P}_{S}\left(\widehat{c}_{i}\right)\right)$ and therefore, for any point $a \in S, \operatorname{dist}(a, C)=\operatorname{dist}(a, \widehat{C})$.
Now if $T \subseteq[n]$ and the weights w_{i} for $i \in T$ are such that

$$
\sum_{i \in T} w_{i} \operatorname{dist}\left(\operatorname{Apx}_{i *} \cdot \operatorname{diag}\left(B^{\top}, 1\right), \widetilde{C}\right)=(1 \pm \varepsilon) \sum_{i=1}^{n} \operatorname{dist}\left(\operatorname{Apx}_{i *} \cdot \operatorname{diag}\left(B^{\top}, 1\right), \widetilde{C}\right)
$$

for all k-center sets $\widetilde{C} \subseteq \widehat{S}$, then for any k center set $C \subseteq \mathbb{R}^{d+1}$, we have

$$
\begin{aligned}
\sum_{i \in T} w_{i} \operatorname{dist}\left(\operatorname{Apx}_{i *} \cdot \operatorname{diag}\left(B^{\top}, 1\right), C\right) & =\sum_{i \in T} w_{i} \operatorname{dist}\left(\operatorname{Apx}_{i *} \cdot \operatorname{diag}\left(B^{\top}, 1\right), \widehat{C}\right) \\
& =(1 \pm \varepsilon) \sum_{i=1}^{n} \operatorname{dist}\left(\operatorname{Apx}_{i *} \cdot \operatorname{diag}\left(B^{\top}, 1\right), \widehat{C}\right) \\
& =(1 \pm \varepsilon) \sum_{i=1}^{n} \operatorname{dist}\left(\operatorname{Apx}_{i *} \cdot \operatorname{diag}\left(B^{\top}, 1\right), C\right)
\end{aligned}
$$

Thus, preserving the k-median distances with respect to the k center sets that lie in \widehat{S}, preserves the k-median distances to all the center sets in \mathbb{R}^{d+1}. Using the coreset construction of Feldman and Langberg (2011) on the matrix Apx, we can obtain a subset $T \subseteq[n]$ of size $\widetilde{O}\left(k^{4} / \varepsilon^{8}\right)$ along with weights w_{i} such that for any k-center set $C \subseteq \mathbb{R}^{d+1}$, we have

$$
\sum_{i \in T} w_{i} \operatorname{dist}\left(\operatorname{Apx}_{i *} \cdot \operatorname{diag}\left(B^{\top}, 1\right), C\right)=(1 \pm \varepsilon) \sum_{i=1}^{n} \operatorname{dist}\left(\operatorname{Apx}_{i *} \cdot \operatorname{diag}\left(B^{\top}, 1\right), C\right)
$$

As Apx is an $n \times \operatorname{poly}(k / \varepsilon)$-sized matrix, the algorithm of Feldman and Langberg (2011) can be run in time $n \cdot \operatorname{poly}(k / \varepsilon)$. Thus, the above subset T and weights w_{i} for $i \in T$ can be found in time $n \operatorname{poly}(k / \varepsilon)$. Now, for any k-center set $C \subseteq \mathbb{R}^{d}$, we have that

$$
\begin{aligned}
\sum_{i=1}^{n} \operatorname{dist}\left(A_{i *}, C\right) & =(1 \pm \varepsilon) \sum_{i=1}^{n} \sqrt{\operatorname{dist}\left(B X_{i *}^{\top}, C\right)+v_{i}^{2}} \\
& =(1 \pm \varepsilon) \sum_{i=1}^{n} \operatorname{dist}\left(\operatorname{Apx}_{i *} \cdot \operatorname{diag}\left(B^{\top}, 1\right), C_{+1}\right) \\
& =(1 \pm \varepsilon) \sum_{i \in T} w_{i} \operatorname{dist}\left(\operatorname{Apx}_{i *} \cdot \operatorname{diag}\left(B^{\top}, 1\right), C_{+1}\right)
\end{aligned}
$$

Therefore we obtain a coreset of size $\widetilde{O}\left(k^{4} / \varepsilon^{8}\right)$ in overall time $\widetilde{O}\left(\operatorname{nnz}(A) / \varepsilon^{2}+(n+d) \operatorname{poly}(k / \varepsilon)\right)$.

F. Near-Linear Time Coreset for k-Median

Let $A \in \mathbb{R}^{n \times d}$ be the dataset, where each row $A_{i *}$ of A denotes a point in \mathbb{R}^{d}, for $i \in[n]$. We observe that the coreset construction of Huang and Vishnoi (2020) can be implemented in $\widetilde{O}(n n z(A)+(n+d) \operatorname{poly}(k / \varepsilon))$ time. The authors only need to compute a constant factor approximation and assignment of each point to a center, which gives a constant factor approximation to the optimum. We show that we can compute such an assignment in time $O(\mathrm{nnz}(A)+(n+d)$ poly $(k / \varepsilon))$.

The usual k-median objective is the following

$$
\min _{y_{1}, \ldots, y_{k} \in \mathbb{R}^{d}} \sum_{i=1}^{n} \min _{j}\left\|A_{i}^{*}-y_{j}\right\|_{2}
$$

We can restrict y_{j} to be a row of A_{i}^{*} and lose at most a factor of 2 as follows. Suppose $y_{1}^{*}, \ldots, y_{k}^{*}$ is the optimal solution. Let $\mathcal{C}^{*}=\left(\mathcal{C}_{1}^{*}, \mathcal{C}_{2}^{*}, \ldots, \mathcal{C}_{n}^{*}\right)$ be the partition of $[n]$ induced by the optimal solution $y_{1}^{*}, \ldots, y_{k}^{*}$, where \mathcal{C}_{j}^{*} denotes all the indices i such that y_{j}^{*} is the closest center to $A_{i *}$. Therefore, the optimal cost for k-median is

$$
\mathrm{OPT}=\sum_{j=1}^{k} \sum_{i \in \mathcal{C}_{j}^{*}} d\left(A_{i *}, y_{j}^{*}\right)
$$

Let $A_{c(j)}$ be the point closest to y_{j}^{*}, i.e.,

$$
\text { for all } i \in \mathcal{C}_{j}^{*}, d\left(A_{i *}, y_{j}^{*}\right) \geq d\left(A_{c(j) *}, y_{j}^{*}\right)
$$

We claim that the k-median cost of the centers $A_{c(1)}, \ldots, A_{c(k)}$ is at most twice the optimum:

$$
\sum_{j=1}^{k} \sum_{i \in \mathcal{C}_{j}^{*}} d\left(A_{i *}, A_{c(j) *}\right) \leq \sum_{j=1}^{k}\left(\sum_{i \in \mathcal{C}_{j}^{*}} d\left(A_{i *}, y_{j}^{*}\right)+d\left(A_{c(j) *}, y_{j}^{*}\right)\right) \leq \sum_{j=1}^{k} \sum_{i \in \mathcal{C}_{j}^{*}} 2 d\left(A_{i *}, y_{j}^{*}\right) \leq 2 \mathrm{OPT}
$$

Metric k-median In this version of k-median, we restrict to center sets C that are subsets of the data, i.e., we solve the optimization problem

$$
\min _{y_{1}, \ldots, y_{k} \in A} \sum_{i=1}^{n} \min _{j}\left\|A_{i}^{*}-y_{j}\right\|_{2}
$$

Let $\mathrm{OPT}_{\text {metric }}$ denote the optimum objective value for metric k-median. From the above, we obtain that

$$
\mathrm{OPT}_{\text {metric }} \leq 2 \mathrm{OPT}
$$

Therefore, a c-approximate solution for metric k-median is at most a $2 c$-approximate solution for Euclidean k-median. Let Π be a Johnson Lindenstrauss matrix embedding \mathbb{R}^{d} into \mathbb{R}^{m}, where $m=O(\log (n))$, such that

$$
\frac{1}{2} d\left(A_{i *}, A_{i^{\prime} *}\right) \leq d\left(\Pi A_{i *}, \Pi A_{i^{\prime} *}\right) \leq \frac{3}{2} d\left(A_{i *}, A_{i^{\prime} *}\right)
$$

for all $i, i^{\prime} \in[n]$. Now consider the metric k-median problem on the points $\Pi A_{1 *}, \ldots, \Pi A_{n *}$. We can obtain an 11approximate solution to the metric k-median problem in time $\widetilde{O}\left(n k+k^{7}\right)$ (see Theorem 6.2 of (Chen, 2009)). Let $A_{c^{*}(1) *}, \ldots, A_{c^{*}(k) *}$ be the optimal centers for the metric k-median problem on $A_{1 *}, \ldots, A_{n *}$, and $\Pi A_{c^{\prime}(1)}, \ldots, \Pi A_{c^{\prime}(k)}$ be an 11-approximate solution to the metric k-median on $\Pi A_{1 *}, \ldots, \Pi A_{n *}$. Let $\mathcal{C}^{\prime}=\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}^{\prime}\right)$ be the partition of $[n]$ corresponding to this 11 -approximate solution. Then the following shows that $A_{c^{\prime}(1)}, \ldots, A_{c^{\prime}(k)}$ is a good solution for the

Dimensionality Reduction for Sum-of-Distances Metric

metric k-median problem on the original dataset:

$$
\begin{aligned}
\sum_{j=1}^{k} \sum_{i \in \mathcal{C}_{j}^{\prime}} d\left(A_{i *}, A_{c^{\prime}(j) *}\right) & \leq 2 \sum_{j=1}^{k} \sum_{i \in \mathcal{C}_{j}^{\prime}} d\left(\Pi A_{i *}, \Pi A_{c^{\prime}(j) *}\right) \\
& \leq 2 \cdot 11 \sum_{j=1}^{k} \sum_{i \in \mathcal{C}_{j}^{*}} d\left(\Pi A_{i *}, \Pi A_{c^{*}(j) *}\right) \\
& \leq 2 \cdot 11 \cdot \frac{3}{2} \sum_{j=1}^{k} \sum_{i \in \mathcal{C}_{j}^{*}} d\left(A_{i *}, A_{c^{*}(j) *}\right) \\
& \leq 33 \mathrm{OPT}_{\text {metric }} \leq 66 \mathrm{OPT}
\end{aligned}
$$

The time taken to compute $\Pi A_{1 *}, \ldots, \Pi A_{n *}$ is $O(\operatorname{nnz}(A) \log (n))$, and then we can compute the k centers and an assignment of points such that this is a 66 -approximate solution in time $\widetilde{O}\left(n k+k^{7}\right)$. Using this assignment, we can implement the first stage of importance sampling in the algorithm of Huang and Vishnoi (2020) in time $\widetilde{O}(\operatorname{nnz}(A)+n \cdot \operatorname{poly}(k / \varepsilon))$. We note that the first stage of the algorithm of Huang and Vishnoi (2020) only needs a constant factor approximation of the distance of a point to its assigned centers, which can be computed as $d\left(\Pi A_{i *}, \Pi A_{c^{\prime}(j) *}\right)$, in time $\widetilde{O}(\log (n))$, if the point i is assigned to cluster j. The second stage of their algorithm can be implemented in time $d \cdot \operatorname{poly}(k / \varepsilon)$. Thus, we can find a strong coreset for k-median in time

$$
\widetilde{O}(\operatorname{nnz}(A)+(n+d) \cdot \operatorname{poly}(k / \varepsilon)) .
$$

