Dimensionality Reduction for Sum-of-Distances Metric

A. Missing proofs from Section 3

Theorem A.1 (A version of Lemma 14 of (Sohler and Woodruff, 2018)). Let P be an r dimensional subspace of R* such

that
2

3 dist(a;, P) — Y dist(ay, span(P U H)) < %OsubApx,c,1 (A)

for all k-dimensional subspaces H. Let B € RY*" be an orthonormal basis for the subspace P. For each a;, let af eR"
be such that dist(a;, BaP) < (1 + e.)dist(a;, P) and let (1 — e.)dist(a;, P) < apx; < (1 + e.)dist(a;, P) for e, = €2 /6.
Then for any k dimensional shape S,

\/dlst aB,9)? +apx? = (1 £ 5¢) Zdlst a;, S)

7

Proof. We have by the Pythagorean theorem that dist(BaP,a;)? = dist(Ba?,Ppa;)? + dist(a;, P)? < (1 +
3e.)dist(a;, P)? which implies that dist(Ba?, Ppa;)? < (3e.)dist(a;, P)?.

Given a shape S, we partition [n] into two sets small and large. We say i € [n] is small if dist(Ppa;,S) <
dist(Ppa;, Ba?). In that case, dist(BaP,S)? < 4dist(Ppa;, BaP)? < 12e.dist(a;, P)? by the triangle inequal-
ity and \/dist(BaP?,S)2 +apx? < 1+ Ibe.dist(a;, P) < +/1+ 1be./dist(a;, P)% + dist(Ppa;, S)2. Similarly,
V/dist(BaP, S)2 +apx? > apx; > (1 — e.)dist(a;, P) > (1 — 4e.)/dist(Ppa;, S)% + dist(a;, P)? by using the fact
that dist(Ppa;, S)? < 3e.dist(a;, P)2.

We say that any ¢ € [n] that is not small, is large. By the triangle inequality, we obtain that
dist(Ppa;, S) — dist(Ppa;, BaP) < dist(Ba?, S) < dist(Ppa;, S) + dist(Ba?, Ppa;). 2)

As i is large, dist(Ppa;, S) — dist(Ppa;, Ba?) > 0 and therefore by the AM-GM inequality, we obtain that
1
dist(Ba?, 8)? = (1 % ¢)dist(Ppa;, S)* + (1 + 6) dist(Ba?, Ppa;)?.

Thus, dist(Ba?,5)? < (1 + e)dist(Ppa;, S)? + (2/¢)(3e.)dist(a;, P)? and dist(Ba?,5)? > (1 — e)dist(Ppa;, S)? —
(1/¢)(3e.)dist(a;, P)?. Letting e. = £2/6, we finally have
dist(BaP,8)% 4+ apx? < (1 + e)dist(Ppa;, S)? + (1 4 2¢)dist(a;, P)?

and
dist(Ba?, 8)% 4 apx? > (1 — e)dist(Ppa;, S)? + (1 — 3¢)dist(a;, P)>.

Therefore, by combining both small and large indices,

S dist(Ba?, 8)2 + apx2 < /11 O(e Z Vaist(Pray, 5)2 1 dist(as, P)?
1

and

S \Jdist(BaF, S)2 + apx? > Z Vaist(Ppay, 5)2 1 dist(ar, P)2.
The theorem now follows from Theorem 8 of (Sohler and Woodruff, 2018). O

B. Missing Proofs from Section 4
B.1. Lopsided Embeddings and Gaussian Matrices

Recall || -[|5 is defined as || A||, = >_; [[Asj|2- Note that [ A, = | AT||1 2 for all matrices A. The following lemma shows
that lopsided-¢ embeddings for certain matrices w.r.t. the norm || - ||, imply a dimension reduction for || - ||1 2 subspace
approximation.
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Lemma B.1. Given a matrix A € R"*% and a parameter k € Z~, let U, € R"** and V,T € R¥*< be matrices such that

UV, = Allz = min_[JA(T = X)]J1.2.

If S is a lopsided e-embedding for (Vi,, A") with respect to the norm || - ||1,, then

min_[|ASTX — All12 < (1+0(¢)) min [JAT — X)|l1,2-
rank-k X rank-k X

Proof. Note that |V, Ul — AT, = miny ||V YT — AT||,. By definition of a lopsided embedding, we have the following
for any matrix Y:

[YVIST — AST|l10 = [|SVRYT = SAT|, > (1= e)[[ViY T = AT|ly = (1 = )Y V| — Al|12
and also that
|URV,S ST = AST|l1 2 = [|SVRU — SAT|ln < (L+0)[[ViUL — AT|ln = (1 +)[|UxV,| — Al|12.

Using these guarantees we now show that the column span of the matrix AST contains a good solution to the subspace
approximation problem. First consider the minimization problem

min |[YV,] — A
Y

1,2-

)

Clearly, Uy, is the optimal solution to the problem. Now consider the optimal solution Y to the sketched version of the
above problem

Y = argmin |[Y V78T — AST||, .
Y

We can see that Y = (AST)(V,TST)*. Now
1+e¢

= 1 = 1
YV = Al < EHYV;@-TST —AST|12 < ZHUKVJST —AST| < - UV = Al o
Therefore,
. 1+e .
min [ASTX — Afl12 < [AST(VIST)F(VT) — All12 < UV — Allr2 < (1+3¢) min [JA( = X)]12.
rank-k X 1—¢ ’ rank-k X
Thus, if the number of rows of S is less than d, we obtain a dimension reduction for || - ||1 2 subspace approximation. [

Clarkson and Woodruff (2015) give the following sufficient conditions for a distribution of matrices to be an e-lopsided
embedding for (A, B). For the sake of completeness we reproduce their proof here.

Lemma B.2 (Sufficient Conditions). Given matrices (A, B), let S be a matrix drawn from a distribution such that

1. the matrix S is a subspace e-contraction for A with respect to || - ||2, i.e., simultaneously for all vectors x

[SAzl2 = (1 —¢)|| Az
with probability 1 — §/3,

2. forall i € [d'], with probability at least 1 — §¢* /3 the matrix S is a subspace €*-contraction for [A B, with respect

10| - |2, i.e., for all vectors =,
ISAz = SBuillz > (1 - €%)||Az — B2,

and

3. the matrix S is an £2-dilation for B* with respect to || - ||, i.e., ||SB*||n < (1+4€2)|B*||,, with probability > 1—5/3.
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In the Condition 3 above, B* = AX* — B where X* = argminy |AX — Bl||. With failure probability at most J, the
matrix S is an affine 6e-contraction for (A, B) with respect to || - ||, i.e., for all matrices X,

IS(AX = B)[[n = (1 - 6¢)[| AX — B||n
and therefore a lopsided Ge-embedding for (A, B) with respect to || - ||

Importantly, note that Condition 2 in the lemma is about the probability of S being a subspace contraction for [A Bi;]
separately for each ¢ and not the probability of S being simultaneously a subspace contraction for [A B,;] for all i € [d'].

Proof. Condition on the event that 1 and 3 hold. For i € [d'], let Z; be an indicator random variable where Z; = 0 if

the matrix S is a subspace e2-contraction for [A B,;] and Z; = 1 otherwise. From the properties of S, we have that
Pr[Z; = 1] < §¢%/3 for all 4. If Z; = 1, we call i bad and if Z; = 0, we call i good.

Consider an arbitrary matrix X. Say a bad i is large if ||(AX — B).ill2 > (1/2)(|| Bxill2 + [|SBxil|2), otherwise a bad i
is small. We have

Y IAX = B)aill < (1) D IIBuillz + 1SBuill2 < (1/) Y [|Buillz + [SBuillz- 3)

small 4 small 4 bad i

Using condition 2, we obtain that E[>", ., ; || B;]l2] < (0e%/3) >, |BXll2 < (8e%/3)A*. By a Markov bound, we have
that with probability > 1 —6/3, >, .. [|B%; || < 2A*. Assume that this event holds. Similarly,

D ISBLlla = ISB Iw— Y ISBl»

bad i good i
<(A+)A - (1-¢2) Y 1B
good i
< (1+%)A" — (1 - 2)(A* - £2A%)
< 3e2A*.

Thus, we can bound the RHS of (3) and obtain

> IAX = B)uill2 < (1/e)(€° A% + 387 A%) < 4eA*.

small 1

Now we lower bound ), .. [[S(AX — B).2.

D lIS(AX = B)aillz 2 ) IS(AX — Bl

bad large @

> D IIS(AX — AX")uil2 — [SBLill2
large ©

> Y (1= o)(AX = AX")ull2 — [SBL |2
large i

> > (1= (AX = B)aill — (1 = &)[|BZ 2 — IS B2
large i

> Y (1=9)ll(AX = B)uill2 — €] (AX — B).ill2
large ©

> (1-2¢) Y [(AX = B)uillo-

large i
In the above, we repeatedly used the triangle inequality for the || - ||2 norm, and that S is a subspace e-embedding for

matrix A and for large i, we upper bound (1 — €)||BJ;||2 + ||SBZ;||2 by €[|[(AX — B).;|l2. We can finally lower bound



Dimensionality Reduction for Sum-of-Distances Metric

IS(AX — B)|[p-

IS(AX = B)lln = > IS(AX = B)ailla + D IS(AX = B)uilla

good i bad i
>(1—e) Y (AX = B)uslla + (1= 22) Y [[(AX = B)uill2
good 1 large i
> (1—-¢%) Y [(AX = B)uill2 + (1= 2¢) > [[(AX = B)us
good i bad i

—(1=2¢) > [I(AX = B)uillz

small
(1 - 26)|AX — Bl|, — (1 — 2¢)4eA*

>
> (1—6¢)||AX — B||p.

Thus, by a union bound, with failure probability < §, S is an affine 6e-contraction for (A, B) with respectto || - [|[5. O

Lemma B.3 (Gaussian Matrices are Lopsided Embeddings). Given arbitrary matrices A of rank k and B of any rank, a
Gaussian matrix S with O(k/e* + 1/e*62) rows is an e-lopsided embedding for (A, B) with probability > 1 — .

Proof. We now show that a Gaussian matrix, with small dimension equal to 6(k /e +1/%62), satisfies all of the sufficient
conditions of Lemma B.2. Clearly, a Gaussian matrix with O((k +log(1/8))/e?) rows satisfies condition 1 and a Gaussian
matrix with O((k + log(1/8¢))/e*) rows satisfies condition 2 (Woodruff, 2014).

We now show that a Gaussian matrix with at least O(1/¢) rows satisfies
E[(ISyll3 -1 <&

for any given unit vector y. If S is a Gaussian matrix of ¢ rows with each entry drawn i.i.d. from N (0, 1/t), then the entries
of Sy are each drawn i.i.d. from N (0, ||y||3/t) = N(0,1/t). Therefore, ||[Sy|3 = Y? +...+ Y7, where Y; ~ N(0,1/t),
which gives

E[(|Syl2 — 1)?] = E[(Y? +... + Y? - 1)
— {EIY% t E[Y2Y?2 EIY2] — 3 t\ 1 1
=tE[Y;]+1+2 9 [Y1Y5] — 2tE[ 1}—tt*2+1+2 5 7j—272tE

—2/t.

Thus, with t > 1/, we have that E[(||Sy||? — 1)?] < &*. By Lemma 28 of (Clarkson and Woodruff, 2015), we obtain
that E[max(||Sy||3,1)] < (1 +¢2)? < 1 + 3. Now, by Holder’s inequality,

E[max(||Syll2, 1)] < Efmax(||Syl2, 1)"]"/* < (14 3¢%)'/* < 1+ (3/4)¢%.

As (||Syll2 — 1)+ = max(||Syl|2, 1) — 1, we obtain that E[(||Sy||2 — 1)+] < (3/4)e?, which implies by scaling that for an
arbitrary vector y,

E[(ISyll2 = llyll2)+] < (3/4)¢* [yl
which gives
E[(ISB*[ln = IB*[|n)+] < (3/4)*[| B* |-
By Markov’s inequality, with probability > 1 — §/3, (||[SB*||r, — [|B*||n)+ < (9/4)(¢2/5)||B*||; and hence, with proba-

bility > 1 —§/3, |SB*||n < (14 (9/4)(e2/6))||B* |- Thus, a Gaussian matrix with m = O(1/£5?) rows satisfies that
with probability > 1 — §/3 that

ISB*[ln < (1 +&*)I|B*|n- 0
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B.2. Utilizing Sampling based ¢; embeddings

Let A be a matrix that has r columns. Suppose L is a random matrix such that with probability > 9/10, simultaneously
for all vectors ¥,
al| Ayl < [LAyx < B Ayl

Assume the above event holds. Let X be an arbitrary matrix with ¢ columns. We have that for a suitably scaled Gaussian
matrix G with O(t/£2) columns, with probability > 9/10, simultaneously for all vectors = € R, ||2TG|; = (1 +¢)]|z]|2
(Matousek, 2013). Thus there exists a matrix M with O(t/c2) columns such that for all vectors x € R,

lz" My = (1 £ )]l

Therefore,
1 1
—||AX M < ||AX = —||AXM
7 Jr5|| o < [AX]2 = I 1,1

and
1 1
—||LAX M < ||LAX < ——||[LAXM
T JrE|| 1,0 <] e < I 1,1

1,2-

Now we upper bound || LAX

1 1
[LAX (|12 < 17_€||LAXMH1,1 ST1-: Z ILA(XM).;2
J

1+4+¢
1—¢

g g
< S IAK M)l = T2 AX M < ]| AX s
J

We now lower bound ||LAX]|; 2 similarly.
ILAX |1 > —— [LAXM|11 = —— 3" [LA(XM),,|
L2 =9 LT e ; KA

o « 1—c¢
>_— Ny = —— >a—" )
2 i A = o AXM o 2 074X

By picking appropriate €, we conclude that for any matrix X,

(6%
§HAX||1,2 < |[LAX

1,2 < 28||AX |1 2- 4

Lemma B.4. If ST is a random Gaussian matrix with O(k) columns such that with probability > 9/10,

min_[[ASTX — A2 < (3/2) min_||AX — A1 2,
rank-k X rank-k X

and if L is a random matrix drawn from a distribution such that with probability > 9/10 over the draw of matrix L,
a||ASTy[l < |LASTy[ < B[ ASTyly

for all vectors y and
By [|[LM][1 2] = [[M]]1,2

for any matrix M, then with probability > 3/5, all matrices X such that |[LASTX —LA||; > < 10-SubApx,, , (A) satisfy

|ASTX — AJl1 5 < (24 40/a) SubApx, , (A).
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Proof. Let X1 = argming,. x |[4STX — Al12. With probability > 9/10, we have that ||ASTX; — All12
(3/2)SubApx;, ;(A). By a Markov bound, we obtain that with probability > 4/5, [|LASTX; — LAl
10SubApx,, ; (A). Assume this event holds. For any matrix X,

INIA

|LASTX — LA|;2 > |LASTX — LASTX, |12 — |[LASTX; — LA, 5.

We have
ILASTX — LA||12 > |[LASTX — LAS" X1 |12 — 10 - SubApx,, ; (A).

From (4), we have

ILASTX — LA|1 > %HASTX — ASTX 1,2 — 10 - SubApx,,(A)
> SIASTX — Afli2 - S ASTX: - All1 — 10- SubApx, ()
> SIASTX — Al 2 — (30/4 + 10) - SubApx,.; (A).
Thus, for any matrix X of rank r, if || ASTX — Al|; 2 > (2/a)(20 + 3a/4) - SubApx,, ; (A), then [LASTX — LA||; 2 >
10 - SubApx;, ; (A). O
B.3. Main Theorem for constructing an (O(1), O(k))-bicriteria solution

Theorem B.1. Given any matrix A € R™*? and a matrix B € R with orthonormal columns, Algorithm 1 returns a
matrix X with O(k) orthonormal columns that with probability 1 — § satisfies

IA(I = BBT)(I — XXT)|l12 < O(1) - SubApx,, , (A(I — BBT)),
in time O((nnz(A) + dpoly(k/e)) log(1/6)).

Proof. Tt is shown in Lemma B.3 that a Gaussian matrix with O(k) rows is a 1/6-lopsided embedding for (Vj, AT) with
probability > 9/10. Thus by Lemma B.1, we obtain that

min || A(T - BB")STX — A(I — BB")|1,2 < (3/2)SubApx,, , (A(I — BBT))

with probability > 9/10. (Cohen and Peng, 2015) show that a sampling matrix L obtained using Lewis weights has 5(kz)
rows and is a (1/2,3/2) ¢ subspace embedding for the matrix A( — BBT)ST. Thus, the matrices ST and L constructed
in Algorithm 1 satisfy the conditions of Lemma 4.1. Therefore from Lemma B.4, with probability > 3/5, if a matrix X
satisfies |[LA(I — BBT)STX — LA(I — BBT)||1,2 < 10 - SubApx, ; (A(/ — BBT)), then ||A(/ — BBT)STX — A(I —
BBT)||12 <82 SubApx;, | (A(] — BBT)).

Let X = argmin,, 4 x ||[A(I — BBT)STX — A(I — BBT)||1.2. We have ||A(I — BBT)STX — A(I — BBT)||1»
(3/2)SubApx,, ; (A(I—BBT)). By Markov’s bound, with probability > 3/4, [LA(I—-BBT)STX —~LA(I-BB")|1 2
10 - SubApx,, ; (A(I — BBT)). We now have the following:

<
<

ILA(I — BBT)STX(LA(I — BB"))*"LA(I - BB") — LA(I — BB")||1» < 10 - SubApx, ; (A(I — BB")).
Thus | A(I — BBT)STX (LA(I — BBT))*LA(I - BBT) — A(I — BBT)||12 < 82 SubApx,, ;(A(I — BBT)). Finally,

|A(I — BBT)(LA(I — BB"))"(LA(I — BB")) — A(I - BB") |12
< |A(I = BBN)STX(LA(I — BB"))"LA(I — BBT) — A(I — BB")|1.2
< 82 SubApx, ; (A(I — BBT)).

The first inequality follows from the fact that for all  and y, |27 (LA)T(LA) — 272 < |ly"(LA)H(LA) — 27|2.
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By a union bound, with probability > 1/2, the matrix X computed by Algorithm 1, which is an orthonormal basis for the
rowspace of LA(I — BBT), satisfies

|A(I = BBT)(I — XX")|12 < 82- SubApx, , (A(I — BBT)).
Thus the matrix X which has the minimum value over O(log(1/6)) trials satisfies with probability > 1 — § that
| AU = BBT)(I = XXT)|h.2 < O(1) - SubApx,. (A(I — BBT)).

The running time of Lewis weight sampling can be seen to be O((nnz(A) + k%*d(c1 + k)) log(log(n))) from (Cohen and
Peng, 2015). Thus, the total running time is O((nnz(A) + k2d(c; + k)) log(1/9)). O

B.4. Finding Best Solution Among Candidate Solutions

Algorithm 1 finds candidate solutions X, ..., X® for t = O(log(1/4)) and returns the best candidate solution that
minimizes the cost .

IA(T = BBT)(I = XX )| 2. )
The proof of Theorem 4.1 shows that, for all i = 1,.. . , ¢, with probability > 3/5, || A(I — BBT)(I — X (X O)T)||; 5 <
O(1) - SubApx,, ; (A(I — BBT)). Therefore with probability > 1 — §/2

min |[A(I — BBT)(I — XD (XO)T)||; 2 < O(1) - SubApx,, , (A(I — BBT)) 6)

i.e., with probability > 1 — §, there is a solution X@ among the ¢ potential solutions that has a cost at most O(1) -
SubApx,, ; (A(I — BBT)). We first compute

apx; = |A(I — BBT)(I - XD (XNG; 2

where G is a scaled Gaussian matrix with O(log(n/d)) columns. Values of apx; for all j € [t] can be computed in time

O((nnz(A) + (n + d)poly(k/c)) - log(1/6)). We have using the union bound that, with probability > 1 — §/2, for all
j € [n] and ¢ € [¢] that
14;.(I = BBN)(I = X (X NG5 = (1/2,3/2)[|4;. (T = BBT)(I = XO(XD)T)] 5. (7
Therefore with probability > 1 — §/2, for all ¢ € [t],
apx; € (1/2,3/2)||A(I = BBT)(I = XO(XO)T)||, 5. (®)
Leti = arg min, ¢y apx; and 7* = arg min;epy) AL — BBT)(I - X ()?(i))T)HLQ. By a union bound, with probability
>1-9
|AU ~ BBT)(I = XOXO)T)]|1> < 2apx;
< 2apx;.
<4JAU = BET)(I = XX
< O(1) - SubApx,, ; (A(I — BB")).
Thus, Algorithm 1, with probability > 1 — d, returns a subspace that has cost at most O(v/k) - SubApx,, , (A(I — BBT))
and has a running time of O((nnz(A) + (n + d)poly(k/¢)) - log(1/5)).

B.5. Main Theorem for Constructing a (1 + ¢, k3-5 /c2) Bicriteria Solution

Theorem B.2 (Residual Sampling). Given matrix A € R4 matrices B € R¥ and X € R¥*°2 with orthonormal
columns such that | A(I — BBT)(I — XXT)||1,2 < K - SubApx, , (A(I — BBT)), Algorithm 2 returns a matrix U having

c=0(cy+ K - k3/e% -1og(1/6)) orthonormal columns such that with probability > 1 — §
JA(I = BBT)(I = UUT)|l1,2 < (1 + £)SubApx, ;,(A(I — BBT)) 9)

in time O(nnz(A) + d - poly(k/e)). Moreover we also have that UTB = 0, i.e., the column spaces of U and B are
orthogonal to each other.
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Proof. As the matrix G is a Gaussian matrix with ¢ = O(log(n/d)) columns, we have that with probability > 1 — (4/2),
forall i € [n],

|Miulls = s (I = BBT)(I = XXT)Glls = (1 £ 1/10) | A, (I - BBT)(I = XXT)Co.
Therefore, the probabilities p; computed by Algorithm 2 are such that

i = 1Ml (9/10)]|As (I = BBT)(I — XXT)|2 S 9 | Ai(I = BBT)(I = XXT)|
" IMllve T (11/10)|A(I = BBTYI — XXT) |12 11 |A(I = BBT)(I — XXT)|1.

Hence, by applying Lemma 4.2 to the matrix A(I — BBT), we obtain that with probability > 1 — §, the matrix U returned
by Algorithm 2 satisfies

|A(I = BBT)(I = UU")|l12 < (1+ €)SubApx, ,(A(I — BBT)).

The matrix M can be computed in time O(nnz(A) log(n/8) + (c1 + c2)dlog(n/d)). And s = O(K - k3 /&% - log(1/4))
independent samples can be drawn from the distribution p in time O(n + s). Finally, the orthonormal basis U can be
computed in time O(d(c + ¢1)?) = O(dpoly(k/e)). O

C. Missing Proofs from Section 5

Lemma C.1. With probability > 2/3, Algorithm 3 finds an 5(k3/€3)-dimensi0nal subspace S such that for all k-
dimensional subspaces W,

A = Ps)ll1.2 = [A( = Psyw)ll1,2 < 4e - SubApx;, , (A).

Proof. Suppose that the loop in Algorithm 3 is run for all ¢ = 10/ + 1 iterations instead of stopping after ¢* iterations.
Let )?Z-, U;, B; be the values of the matrices in the algorithm at the end of i iterations. Let By = [] be the empty matrix.
Condition on the event that all the calls to Algorithm 1 in the algorithm succeed. By a union bound over the failure event
of each call to Algorithm 1, this event holds with probability > 9/10. Therefore, by Theorem 4.1, we obtain that

AL =Pp, ) = Pg )12

i

< 5(\/%) ' SubApXk,l(A(I - PBi—l))

for all i € [10/e 4 1] and also that X, has O(k) columns. Now we condition on the event that all the calls to Algorithm 2
succeed. By a union bound, this holds with probability > 9/10. Thus we have

AU = Pg,)|l12 = [|[AUI = Pp,_,)({ = Py,)|l1,2
< (1+¢) - SubApx,, ,(A(I —Pp,_,))

for all iterations i € [10/e + 1] and also that U; has O(k3 /£2) columns which implies that B; has O(ik3 /2) columns. In
particular, we have that [[A(] — Pp, )|[1,2 < (1 + €)SubApx,, ; (A). Therefore

(1 +&)SubApx;, , (A) — [[A(] = Pp,)[|1,2

> [|A(I = Pg,)[12 — AL = Pg,)|l1,2
T
=> AU = Pp,_,)lh2 — A - Pg,)

=2

1,2 > 0.

The last inequality follows from the fact that colspace(B;) 2 colspace(B;_1). The summation in the above equation has
10/e non-negative summands that all sum to at most (1 + £)SubApx;, ; (A). Therefore, at least 9/ summands have value
< &(1 + ¢)SubApx;, ; (A). In particular, with probability > 9/10,

AT = Pg,.)

l12— |A(I —Pp,.

%41

M2 <e(l+ E)SubApka(A).
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But we also have that

JA( = Pp,., )2 = AU = Pp. ) (I = Py, )12
< (1+ ¢)SubApx,, , (A(I — Pg,.))
< (1+e)|A(I = Pp. ) —Pw)12
=149 |A(I —Pp,.+w)ll1,2

where W is any rank k matrix. The second inequality follows from the fact that SubApx, ,(A(/ — Pp.)) =
mingnt w ||A( — Pp,. )(I — Pw)||1,2. Therefore, for any rank-k matrix W, we obtain that

A =Pg,. )2 — [[AU = Pp.ow)l1.2

1
<A =Pg,.)|l12 — m\\A(I—PBwHN 1,2
<A = Pg,. )12 — (L =&)AL = Pp,. ., )12

< (1A = Pg, )12 = AU = Pp,. )l 2) + el AU = P, )l 2
< 4e - SubApx; ;(A). O

Theorem C.1. Given a matrix A € R4k € 7 and an accuracy parameter ¢ > 0, Algorithm 4 returns a ma-
trix B with O(k3/e%) orthonormal columns and a matrix Apx = [X v] such that for any k dimensional shape S,

S Vdist(BX], )2 +0? = (1£¢) Y, dist(A;, S). The algorithm runs in time O(nnz(A)/? + (n + d)poly(k/e)).

i)

Proof. From the above lemma, we have that the subspace B satisfies with probability > 9/10, that for any & dimensional
subspace W,

2
&
AU = PB)[l12 — AU = Peow)[l12 < g0 SubAPXK,, 1 (A4). (10)

From Theorem 2.10 of (Woodruff, 2014), we obtain that with probability > 9/10, for all ¢ € [n], the matrix S ; found for
i € [n] is such that S; is a ©(¢?) subspace embedding for the matrix [B A,]. Therefore, z; is such that

1Bz; — ALll2 < (1 +©(*) (I = BBT)AL]|2.

and v; = (14+0(e?))|/(I — BBT)AL||2. Now the proof follows from Theorem 3.1. O

D. Missing Proofs from Section 6
D.1. Obtaining an (O(1), poly(k)) Approximation

Theorem D.1. Given A € R"*% B € R4%c1 L € Z and 6, Algorithm 5 returns X with 5(k3'5) orthonormal columns
that with probability 1 — 0 satisfies

IA(I = BBT)(I = XX")|l1.2 < O(1) - SubApx,, , (A(I — BBT)).

Given that the matrices C1 Ay, for all j € [b] and W A are precomputed for all O(log(1/9)) trials, the algorithm can be
implemented in time O(((nd/b) - k35 + dpoly(k/e))log(1/6)).

Proof. The proof is similar to proof of Theorem 4.1. That proof only makes use of the facts that

1. for any fixed matrix M, E[||LM |

1.2] = E[||M]]1 2],

2. with probability > 9/10, for all vectors z, (1/2)||Az||; < ||[LAz|1 < (3/2)|Ax

1, and

to conclude with the statement in the theorem. We now show that the matrix L. computed by Algorithm 5 satisfies all the
above three properties.
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Algorithm 5 POLYAPPROXDENSE
Input: A € R"*4, B e R k€ Z,6,b
Output: X € R4xc
cols < O(k +1/§2)
ST — N(O, l)dxcols
W ¢, embedding for O(k) dimensions from (Wang and Woodruff, 2019)
[Q, R] < QR decomposition of (WA)(I — BBT)ST
I, ..., Iy «+ Equal size partition of [n] into b parts
C; « Cauchy matrix with O(log(n)) rows
forj=1,...,bdo
MW « (C1A;,)(I — BBT)STR™!
D%, = Pegiccon(ar) median(abs(M 1))
end for
C + Cauchy matrix with O(log(n)) columns
samples < O(k3)
L« ]
for samples iterations do
Sample j € [b] with probability proportional to apx;;
PG — A (I - BBT)STR—IC
Fori € I, p(J ) median(abs(P )

Sample ¢ € I; with probablhty proportlonal to p( 7)
Append ) e] to matrix L

apx 5

) L— .samples
Zlel(])l’ i1y

end for
X < Orthonormal Basis for rowspace(LA(I — BBT))

Repeat the above O(log(1/4)) times and return best X

Note that the random matrix L is constructed by sampling N rows, where each row is independently equal to (1/Np;)e]
with probability p;. Thus

E[|LAM]1 2] Z L M|2] = NE[|L1Mll2) = N Y (1/Npj)ef Mllzp; = Y | Mjullz = IM 2. (1D)
j=1 j=1

We now prove property 2. From Theorem 1.3 of (Wang and Woodruff, 2019), we have that W has O(k log(k)) rows and
that with probability > 99/100, for all vectors x

IA(I = BBT)STz|s < [WA(I -~ BBT)S x|y < O(klog(k))|A(I - BBT)S .

Let 4; = ||Ai.(I — BBT)STR™Y|; for i € [n]. From Theorem 6.1, if the probability that the i row is sampled is
> (1/2)(4;/ Y=, 4ir) for all i € [n], then the matrix L constructed is a (1/2, 3/2) ¢;-subspace embedding with probability
> 99/100. Now consider sampling a row of the matrix L in the algorithm We have that the sampled row is in the direction
of e; with probability (apx;(;)/ > e aPX;) - (p! )/ Do el P ) We use j(i) to denote j € [b] such thati € I;. We
show that this probability is at least (1/2)(¢;/> ., ¢;»). For j € [b]

apx, = 3" median(abs(M2)).

col

From Theorem 1 of (Indyk, 2006), we have with probability > 1 — 1/100b that

median(abs(M7))) = (1+1/6)|| A7, (I — BBT)STRZL ||,
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Thus 3, median(abs(M2))) = (1 %+ 1/6) ¥ |45, (I = BBNSTRLL = (1 + 1/6) T, Al ~
BBT)STR Y|, = (1£1/6) Zz‘el,- £;. Therefore, by a union bound, with probability > 99,/100, for all j € [b]

apx; = (1£1/6) > ;.

i€l
Again, from (Indyk, 2006), we obtain that with probability > 99/100, that for all ¢ € [n]
median(abs(A;, (I — BBT)STR™'C)) = (1 £1/6)||Aw(I — BBT)STR™|; = (1£1/6);.

Thus, with probability > 99/100, for all j and ¢ € I;, we have pg)) = (14 1/6)¢;. By a union bound, with probability
> 98/100, the probability that an arbitrary row 4 is sampled in an iteration of the algorithm is

4

5 Zi’e]_,» Ly 5 l; 1
2 Zi’e[n] Lis

(apx;(;)/ apx.,) - (pg(i)/ pz,(i)) > 2 2
7 (%) Z J Z 722’6[%] El—/ 7Zi/€Ij 61-,

3 €[b] Vel

>

Thus by a union bound, L is a (1/2,3/2) subspace embedding. Now the proof and argument for the running time follow.
O

D.2. Obtaining a (1 + ¢, poly(k/¢)) Solution

Algorithm 6 EPSAPPROXDENSE

Input: A € R"*4 B e Rixe1 X e R¥*2 | € 7, K,e,5,b
Output: U € R¥x¢
t < O(log(n)), G + N(0, 1)dxcols
I, ..., Iy «+ Equal size partition of [n] into b parts
C; < Cauchy matrix with O(log(n)) rows
forj=1,...,bdo o
MU) «+ (C1A;,)I — BBT)(I — XX)(G/t)\/7/2
apxj — chlEcols(M(J)) median(abS(MaEzgl))
end for B
samples < O(K - k3 /% -10g(1/5)), S «+ @
for samples iterations do
Sample j € [b] with probability proportional to apx;;
P9« Ap(I-BB(I-XX")G
Fori € I;,pl?) « |PY||,

K2

Sample ¢ € I; with probability proportional to pgj )
S+ Sui

end for R

U < colspan((I — BBT)[X (4s)T])

Return U

Theorem D.2. Given a matrix A € R™*? orthonormal matrices B € Rt and X € R 2 such that

|A(I — BB™Y(I — XX")||12 < K - SubApx, ;(A(I — BBT)),

and parameters k, ¢, and 8, Algorithm 6 outputs a matrix U with ¢ = ¢; + O(K - k3<% - 1og(1/6)) orthonormal columns
such that with probability > 1 — 6,

|A(I = BBT)(I = UU")||12 < (1+ €)SubApx, ;,(A(I — BBT)).

Given that Cy Ay, is precomputed for all j € [b], the algorithm runs in time O((nd/b)- (K -k3 /&2 1og(1/8)) +dpoly(k/e)).
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Proof. We show that the probability that a row  is sampled in an iteration of the Algorithm is > (1/12)||A;.(I—BB")(I—
p y p g

XX)|2/|AUI = BBT)(I - XXT) [[1,2. Then the proof follows as in the proof of Theorem 4.2. First assume that apx;
for j € [b] computed by the algorithm satisfies

apx; = (1/2,2) 3 |4, (I = BBT)(I = XXT)]l2.
i€l;
Now the probability p; with which a row ¢ is sampled by the algorithm is given by
b N0 A = BBT)U XXGll2
L e Yoep, I4vl(I = BBT)(I - XXT)G|

As G is a Gaussian matrix with ¢ = O(log(n/d)) columns, we have that with probability > 1 — ¢ that for all ¢’ € [n]
| Ais(I — BBTY(I — XX G|l = (1 £1/2)||Ayre(I — BBT)(I — XXT)||2 - v/t. Therefore
b i |As(I — BBT)(I — )?)?T)AGAHQ
Sien % Yper 1A (I - BBT)(I - XXT)Gl2
o 1 Au(I = BBT)(I = XXT)|2
T2 AU = BBT)(I = XXT)|1

We now prove our assumption which concludes the proof.

Let 2 € RY be an arbitrary vector. As G is a Gaussian matrix with t = O(log(n/d)) columns, Lemma 5.3 of (Plan and

Vershynin, 2013) states that
1 2
S ET

Picking an appropriate « = O(1), by a union bound, with probability > 1 — §/3, we obtain
|As. (T = BBT)(I - RXT)(G/0) /72l
= (4/5,6/5)| Ain(I = BB")(I = XXT)|
for all ¢ € [n]. Now, if C is a Cauchy matrix with O(log(n/J)) rows, then with probability 1 — 6/(3nb), we have that
median(abs(Cz)) = (1 £ 1/5)||=]|1.
Therefore, by a union bound, we obtain that, with probability > 1 — §/3, for all j € [b] and i € ¢ that
median(abs(CAr,.(I — BBT)(I — XXT)G.;)) = (1 £ 1/5)|Ar,.(I = BBT)(I = XXT)G.i|1.
Therefore, with probability > 1 — 2§/3, for all j € [b],

Pr > allzllz| < Cexp(—cta?).

apx; = Z median(abs((MY).,)) = imedian(abs(CAlj*(I — BBT)(I — XXT)(G.i/t)\/7/2))
= (1+1/5) Z 1Az(I = BBT)(I = XXT)(G.i/t)y/7 /2]
= (1+1/5) gj 14i (T = BBT)(I = XXT)(G/t)v/7 /2|1
= <4/576/5>(4/157 6/5) 2}) 145(1 = BBT)(I = XXT)|5
= (1/2,2) z; || A (1 —GB]BT)(I — XX,

The only term in the running time that involves a factor nd is in computing the matrix PU) for the chosen j. A total of
O(K - k3 /% -1log(1/6)) such j € [b] are sampled. Therefore, the total running time for computing the matrices P) for j

sampled by the algorithm is equal to (nd/b) - log(n) - O(K - k3 /&2 -log(1/6)) + d - poly(k/<). O
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Algorithm 7 DIMENSIONREDUCTIONDENSE

Input: A € R"*4, k, e > 0.
Output: B € R4*¢ with orthonormal columns
t<+10/e +1
i* < uniformly random integer from [10/¢ + 1].
Initialize B «+ ]
b« k35/e3
6 =0(e)
fori=1,...,7" do
X < POLYAPPROXDENSE(A, Bk, §,b).
U + EPSAPPROXDENSE(4, B, X, k, O(Vk), ©(¢), 8, b).
B« [B|U].
end for
Return B.

D.3. Overall Algorithm

Lemma D.1. Given matrix A € R"*? k € Z and ¢ > 0, Algorithm 7 returns a matrix B with 6(k3'5/53) orthonormal
columns such that, with probability > 3/5, for all k dimensional spaces W,

AL = Pp)ll2 — [AU = Ppuw)l[1.2 < & - SubApx;, 1 (A).

The Algorithm runs in time O(nd + (n + d)poly(k/)).

Proof. The proof of the lemma is similar to that of Lemma C.1. We now argue that all the pre-computed matrices required
across all the iterations of the algorithm can be computed in time O(nd). The Cauchy matrix C; used in Algorithm 5 has
O(log(n)) rows and the matrix W has O(k) rows. Note that we have

CiAr C,
Ci Az, C,

= A.
CiAp, C,
WA A%%

Thus all the matrices required for Algorithm 5 can be computed by multiplying a poly(k/e) x n matrix with A. Similarly,
we can compute all the matrices required for Algorithm 6 by computing the product of a poly(k/e) x n matrix with A.
Thus, all the matrices required across all iterations of Algorithm 7 can be computed by multiplying a poly(k/e) x n matrix
with A, which can be done in time O(nd) by the algorithm of Coppersmith (1982), assuming n > poly(k/c). Now each
iteration of the loop in Algorithm 7 takes O((nd/b)k®® /2 + (n + d)poly(k/c)) time. As there are O(1/¢) iterations, the
algorithm runs in time O((nd/b)k3 /&3 + (n+ d)poly(k/¢)). Since the value of b is chosen to be k35 /3, we obtain that
the running time of the algorithm is O(nd + (n + d)poly(k /<)), including the time to compute the required pre-computed
matrices. O

E. Coreset Construction using Dimensionality Reduction

Algorithm 8 gives the general algorithm to construct a coreset for any objective involving the sum-of-distances metric.
In this section, we discuss the coreset construction for two such problems: the k-median and k-subspace approximation
problems.

For (B, Apx = [X v]) returned by Algorithm 4, we have the guarantee that, with probability > 9/10, for any k-dimensional
shape S,

> \/dist(BXiT*, S)2 40 =(1+¢e)) dist(Ai,S).
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Algorithm 8 CORESETCONSTRUCTION

Input: A € R"*? k. ¢

Output: Coreset

(B, Apx) < COMPLETEDIMREDUCE(A, k, €)
T

0

Construct a coreset for the instance Apx

ﬂ and return

BT

Given a set S, let S 1 denote the set {(s,0)|s € S}. Letdiag(BT,1) = 0 1

. Using this notation, we have that

> dist(Apx,, - diag(BT,1),541) = (1+¢) > _ dist(A;, 5).

Using the above relation, we give a coreset construction for the k-subspace approximation and k-median problems. These
constructions are as in (Sohler and Woodruff, 2018). For any matrix M, let M ; denote the matrix M with a new column
of Os appended at the end and let M_; denote the matrix M with the last column deleted.

Theorem E.1 (Coreset for Subspace Approximation). There exists a sampling-and-scaling matrix T that samples and
scales O(k3/e8) rows of the matrix Apx such that, with probability > 3/5, for any projection matrix P of rank k that
projects onto a subspace S of dimension at most k, we have

I((T - Apx - diag(BT,1)) -1 P) 41 — T - Apx - diag(B" 1) 1,2 = (1 £+ O(e)) || (Apx - diag(BT ;1)) -1 P) 41 — Apx - diag(B",1)|11,5
= (1£0(e)) Y _dist(4;,5).

This sampling matrix can be computed in time O(n - poly(k/¢)).

Proof. We first have ||((Apx - diag(BT,1))_1P)11 — Apx - diag(B",1)[l12 = >, [|((Apx,, - diag(BT,1))_1P)11 —

Apx;, - diag(BT,1)|2 = 32, /(I - P)BX|5 + 07 = 32, Vdist(BX[, §)? + 07 = (1 £¢) 1, dist(Ai, S).

We now show ||((T - Apx -diag(BT,1))_1P)41 —T - Apx-diag(BT,1)||12 = (1£0(¢))||((Apx - diag(BT, 1)) 1 P) 11 —
Apx - diag(BT,1)||1,2 proving the claim. Let G be a Gaussian matrix with O(d/e?) columns. Then with probability
> 9/10, for all x € R+,

27 Gl = (1 £ &) 2]l

See (Sohler and Woodruff, 2018) for references. Thus we have that with probability > 9/10, for all projection matrices P
of rank at most k, we have

| ((Apx-diag(BT,1))_1P)+1G — Apx-diag(B", 1)l 1.1 = (1£)[((Apx-diag(BT, 1))_1 P).41 — Apx-diag(B", 1) 2-

Note that for any P, the columns of the matrix ((Apx - diag(BT,1))_1P)+1G — Apx - diag(B",1)G lie in the column
space of the matrix Apx. Let 7' be a (1 + ¢) ¢;-subspace embedding constructed for the matrix Apx constructed using
(Cohen and Peng, 2015). Therefore

|T-((Apx-diag(BT,1)) 1 P)41G—T-Apx-diag(BT,1)G||1.1 = (14=¢)|((Apx-diag(B",1))_1 P) +1G—Apx-diag(B", 1)G| 1 1.
Again, using the fact that ||#TG||; = (1 % ¢)||z]|2 for all d + 1 dimensional vectors z, we obtain that

[T - ((Apx - diag(BT,1))_1P);41 — T - Apx - diag(B",1)]|1.2

= (1+¢)||T- ((Apx - diag(B",1))_1 P)1G — T - Apx - diag(B",1)G
= (1£0(e))[|((Apx - diag(BT, 1)) -1 P)+1G — Apx - diag(BT,1)G||11
= (
= (

1,1

14 0(e))||((Apx - diag(BT, 1)) 1 P)41 — Apx - diag(BT, 1)
1£0(c) ) dist(A4;,5).

1,2
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The matrix 7" is computed by Lewis Weight Sampling. As the matrix Apx has dimensions n X 5(k:3 /€%), we see from
(Cohen and Peng, 2015) that the matrix 7" can be computed in time n - poly(k/¢). O

Theorem E.2 (Coreset for k-median). There exists a subset T C [n] with |T| = O(k*/<8) and weights w; for i € T such
that, with probability > 3/5, for any set C of size k,

> widist(Apx,, - diag(BT,1),Cy1) = (1 £¢) Y _ dist(Ai, C).
€T i€[n]

Recall that Cy1 = {(c,0)|c € C}.

Proof. Let S denote the rowspan of the matrix dlag(BT 1). We have dim(S) = O(k®/%). Let S be the subspace S
along with an orthogonal dimension. Thus S is an O(lﬂ3 /%) dimensional subspace of R4, Let C = {cy,...,c;} be

an arbitrary set of k centers of R%t!. Now it is easy to see that we can find a set of k points C = {¢1,...,c,} C S
such that Pgc; = Pg¢; i.e., the projections of ¢; and ¢; onto the subspace S are the same, and also that dist(c;, Ps(c;)) =

dist(¢;, Ps(¢;)) and therefore, for any point a € S, dist(a, C) = dist(a, C).
Now if T' C [n] and the weights w; for i € T are such that

> " widist(Apx,, - diag(BT,1),C) = (1£¢) > _ dist(Apx,, - diag(B",1),C)
€T =1

for all k-center sets C C S , then for any k center set C' C R4*1 we have

szdlst (Apx,, - diag(BT,1) szdlst (Apx,, - diag(BT,1 ),6’)
€T €T

=(l1+e¢) Zdist(Apxi* -diag(BT, 1), 5)
i=1

= (1+e) > dist(Apx,, - diag(BT,1),C).

i=1

Thus, preserving the k-median distances with respect to the k& center sets that lie in S, preserves the k-median distances
to all the center sets in R4*1, Using the coreset construction of Feldman and Langberg (2011) on the matrix Apx, we can
obtain a subset 7' C [n] of size O(k*/e%) along with weights w; such that for any k-center set C' C R4*!, we have

n
Z w;dist(Apx,, - diag(BT,1),C) = (1 +¢) Z dist(Apx,, - diag(BT,1),0).
€T i=1

As Apx is an n X poly(k/e)-sized matrix, the algorithm of Feldman and Langberg (2011) can be run in time n - poly(k/¢).
Thus, the above subset 7" and weights w; for ¢ € T can be found in time npoly(k/e). Now, for any k-center set C' C R4,
we have that

7,*7

S dist(Ay, C) = (1 £¢) \/ dist(BXT, C) + 02

=(1+e) Z dist(Apx;, - diag(BT,1),C)
i=1

= (1£¢) ) widist(Apx,, - diag(B",1),Cy1).
€T

Therefore we obtain a coreset of size O(k*/e8) in overall time O(nnz(A) /2 + (n + d)poly(k/e)). O
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F. Near-Linear Time Coreset for £-Median

Let A € R™*4 pe the dataset, where each row A;, of A denotes a point in RY, for i € [n]. We observe that the coreset
construction of Huang and Vishnoi (2020) can be implemented in O(nnz(A) + (n + d)poly(k /<)) time. The authors only
need to compute a constant factor approximation and assignment of each point to a center, which gives a constant factor
approximation to the optimum. We show that we can compute such an assignment in time O(nnz(A) + (n+ d)poly(k/¢)).

The usual k-median objective is the following

min me A7 — yjll2.

Y1,---, YL ER

We can restrict y; to be a row of A; and lose at most a factor of 2 as follows. Suppose 7, ..., yj is the optimal solution.
Let C* = (C7,C3,...,C,) be the partition of [n] induced by the optimal solution yj,...,y;, where C; denotes all the
indices ¢ such that y7 is the closest center to Aj. Therefore, the optimal cost for k-median is

k
OPT =) > " d(A.y)).
j=14i€Cy

Let A.(;) be the point closest to y7, i.e

foralli € C;, d(Aix,y;) > d(Ac(jyer Y5 )-

We claim that the k-median cost of the centers A, (1), ..., A, () is at most twice the optimum:
k
S Ay 3 | X i) ) | <303 2ia) < 200
j= 1z€C* j=1 ZGC* Jj= 11€C*

Metric k-median In this version of k-median, we restrict to center sets C' that are subsets of the data, i.e., we solve the
optimization problem

min Zmln”A —yjll2-

..... YyLEA
Let OPT peric denote the optimum objective value for metric k-median. From the above, we obtain that

OPTenic < 20PT.

Therefore, a c-approximate solution for metric k-median is at most a 2c-approximate solution for Euclidean £-median. Let
II be a Johnson Lindenstrauss matrix embedding R? into R™, where m = O(log(n)), such that

%d(AiwAi’*) < d(TA, A1) < Sd(Aiw, Air)

N w

for all 4,7’ € [n]. Now consider the metric k-median problem on the points 1A, ...,IIA,.. We can obtain an 11-
approximate solution to the metric k-median problem in time 6(nk + k7) (see Theorem 6.2 of (Chen, 2009)). Let
Ace(1)ss - - +» Ace (1)« be the optimal centers for the metric k-median problem on Ay, ..., Ans, and ITA. (1, ... TTA L 1)
be an 11-approximate solution to the metric k-median on ITA,, ..., IIA,,. LetC' = (Ci,...,C},) be the partition of [n]
corresponding to this 11-approximate solution. Then the following shows that A./(1), ..., A (x) is @ good solution for the
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metric k-median problem on the original dataset:

k k
SN d(Ai, Avye) £2D 03 d(TTA, A ).
= j=1

Jj=lieC; 1€C

[N

k
<2-11) > d(ITA;, A ),

j=1i€eC;

3 k
<2115 0D (A, Aee i)

j=1lieC;
< 330PT petric < 660PT.

The time taken to compute ITA;,, ..., IIA,. is O(nnz(A) log(n)), and then we can compute the k centers and an assign-
ment of points such that this is a 66-approximate solution in time 0] (nk + k7). Using this assignment, we can implement
the first stage of importance sampling in the algorithm of Huang and Vishnoi (2020) in time O(nnz(A) + n - poly(k/<)).
We note that the first stage of the algorithm of Huang and Vishnoi (2020) only needs a constant factor approximation of the
distance of a point to its assigned centers, which can be computed as d(ITA;., 1A (;).), in time O(log(n)), if the point 4
is assigned to cluster j. The second stage of their algorithm can be implemented in time d - poly(k/e). Thus, we can find a
strong coreset for k-median in time

O(nnz(A) + (n+d) - poly(k/e)).



