
Dimensionality Reduction for Sum-of-Distances Metric

A. Missing proofs from Section 3
Theorem A.1 (A version of Lemma 14 of (Sohler and Woodruff, 2018)). Let P be an r dimensional subspace of Rd such
that ∑

i

dist(ai, P )−
∑
i

dist(ai, span(P ∪H)) ≤ ε2

80
SubApxk,1(A)

for all k-dimensional subspaces H . Let B ∈ Rd×r be an orthonormal basis for the subspace P . For each ai, let aBi ∈ Rr

be such that dist(ai, BaBi ) ≤ (1 + εc)dist(ai, P ) and let (1− εc)dist(ai, P ) ≤ apxi ≤ (1 + εc)dist(ai, P ) for εc = ε2/6.
Then for any k dimensional shape S,∑

i

√
dist(BaBi , S)2 + apx2

i = (1± 5ε)
∑
i

dist(ai, S)

Proof. We have by the Pythagorean theorem that dist(BaBi , ai)
2 = dist(BaBi ,PPai)

2 + dist(ai, P )2 ≤ (1 +
3εc)dist(ai, P )2 which implies that dist(BaBi ,PPai)

2 ≤ (3εc)dist(ai, P )2.

Given a shape S, we partition [n] into two sets small and large. We say i ∈ [n] is small if dist(PPai, S) ≤
dist(PPai, Ba

B
i ). In that case, dist(BaBi , S)2 ≤ 4dist(PPai, Ba

B
i )2 ≤ 12εcdist(ai, P )2 by the triangle inequal-

ity and
√

dist(BaBi , S)2 + apx2
i ≤

√
1 + 15εcdist(ai, P ) ≤

√
1 + 15εc

√
dist(ai, P )2 + dist(PPai, S)2. Similarly,√

dist(BaBi , S)2 + apx2
i ≥ apxi ≥ (1 − εc)dist(ai, P ) ≥ (1 − 4εc)

√
dist(PPai, S)2 + dist(ai, P )2 by using the fact

that dist(PPai, S)2 ≤ 3εcdist(ai, P )2.

We say that any i ∈ [n] that is not small, is large. By the triangle inequality, we obtain that

dist(PPai, S)− dist(PPai, Ba
B
i ) ≤ dist(BaBi , S) ≤ dist(PPai, S) + dist(BaBi ,PPai). (2)

As i is large, dist(PPai, S)− dist(PPai, Ba
B
i ) > 0 and therefore by the AM-GM inequality, we obtain that

dist(BaBi , S)2 = (1± ε)dist(PPai, S)2 +

(
1± 1

ε

)
dist(BaBi ,PPai)

2.

Thus, dist(BaBi , S)2 ≤ (1 + ε)dist(PPai, S)2 + (2/ε)(3εc)dist(ai, P )2 and dist(BaBi , S)2 ≥ (1 − ε)dist(PPai, S)2 −
(1/ε)(3εc)dist(ai, P )2. Letting εc = ε2/6, we finally have

dist(BaBi , S)2 + apx2
i ≤ (1 + ε)dist(PPai, S)2 + (1 + 2ε)dist(ai, P )2

and
dist(BaBi , S)2 + apx2

i ≥ (1− ε)dist(PPai, S)2 + (1− 3ε)dist(ai, P )2.

Therefore, by combining both small and large indices,∑
i

√
dist(BaBi , S)2 + apx2

i ≤
√

1 +O(ε)
∑
i

√
dist(PPai, S)2 + dist(ai, P )2

and ∑
i

√
dist(BaBi , S)2 + apx2

i ≥
√

1−O(ε)
∑
i

√
dist(PPai, S)2 + dist(ai, P )2.

The theorem now follows from Theorem 8 of (Sohler and Woodruff, 2018).

B. Missing Proofs from Section 4
B.1. Lopsided Embeddings and Gaussian Matrices

Recall ‖·‖h is defined as ‖A‖h =
∑

j ‖A∗j‖2. Note that ‖A‖h = ‖AT‖1,2 for all matricesA. The following lemma shows
that lopsided-ε embeddings for certain matrices w.r.t. the norm ‖ · ‖h imply a dimension reduction for ‖ · ‖1,2 subspace
approximation.
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Lemma B.1. Given a matrix A ∈ Rn×d and a parameter k ∈ Z>0, let Uk ∈ Rn×k and V T
k ∈ Rk×d be matrices such that

‖UkV
T
k −A‖1,2 = min

rank-k X
‖A(I −X)‖1,2.

If S is a lopsided ε-embedding for (Vk, A
T) with respect to the norm ‖ · ‖h, then

min
rank-k X

‖ASTX −A‖1,2 ≤ (1 +O(ε)) min
rank-k X

‖A(I −X)‖1,2.

Proof. Note that ‖VkUT
k −AT‖h = minY ‖VkY T −AT‖h. By definition of a lopsided embedding, we have the following

for any matrix Y :

‖Y V T
k S

T −AST‖1,2 = ‖SVkY T − SAT‖h ≥ (1− ε)‖VkY T −AT‖h = (1− ε)‖Y V T
k −A‖1,2

and also that

‖UkV
T
k S

T −AST‖1,2 = ‖SVkUT
k − SAT‖h ≤ (1 + ε)‖VkUT

k −AT‖h = (1 + ε)‖UkV
T
k −A‖1,2.

Using these guarantees we now show that the column span of the matrix AST contains a good solution to the subspace
approximation problem. First consider the minimization problem

min
Y
‖Y V T

k −A‖1,2.

Clearly, Uk is the optimal solution to the problem. Now consider the optimal solution Ỹ to the sketched version of the
above problem

Ỹ = arg min
Y

‖Y V T
k S

T −AST‖1,2.

We can see that Ỹ = (AST)(V T
k S

T)+. Now

‖Ỹ V T
k −A‖1,2 ≤

1

1− ε
‖Ỹ V T

k S
T −AST‖1,2 ≤

1

1− ε
‖UKV

T
k S

T −AST‖ ≤ 1 + ε

1− ε
‖UkV

T
k −A‖1,2.

Therefore,

min
rank-k X

‖ASTX −A‖1,2 ≤ ‖AST(V T
k S

T)+(V T
k )−A‖1,2 ≤

1 + ε

1− ε
‖UkV

T
k −A‖1,2 ≤ (1 + 3ε) min

rank-k X
‖A(I −X)‖1,2.

Thus, if the number of rows of S is less than d, we obtain a dimension reduction for ‖ · ‖1,2 subspace approximation.

Clarkson and Woodruff (2015) give the following sufficient conditions for a distribution of matrices to be an ε-lopsided
embedding for (A,B). For the sake of completeness we reproduce their proof here.

Lemma B.2 (Sufficient Conditions). Given matrices (A,B), let S be a matrix drawn from a distribution such that

1. the matrix S is a subspace ε-contraction for A with respect to ‖ · ‖2, i.e., simultaneously for all vectors x

‖SAx‖2 ≥ (1− ε)‖Ax‖2

with probability 1− δ/3,

2. for all i ∈ [d′], with probability at least 1− δε2/3 the matrix S is a subspace ε2-contraction for [A B∗i] with respect
to ‖ · ‖2, i.e., for all vectors x,

‖SAx− SB∗i‖2 ≥ (1− ε2)‖Ax−B∗i‖2,

and

3. the matrix S is an ε2-dilation forB∗ with respect to ‖ ·‖h, i.e., ‖SB∗‖h ≤ (1+ε2)‖B∗‖h with probability≥ 1−δ/3.
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In the Condition 3 above, B∗ = AX∗ − B where X∗ = arg minX ‖AX − B‖h. With failure probability at most δ, the
matrix S is an affine 6ε-contraction for (A,B) with respect to ‖ · ‖h, i.e., for all matrices X ,

‖S(AX −B)‖h ≥ (1− 6ε)‖AX −B‖h

and therefore a lopsided 6ε-embedding for (A,B) with respect to ‖ · ‖h.

Importantly, note that Condition 2 in the lemma is about the probability of S being a subspace contraction for [AB∗i]
separately for each i and not the probability of S being simultaneously a subspace contraction for [AB∗i] for all i ∈ [d′].

Proof. Condition on the event that 1 and 3 hold. For i ∈ [d′], let Zi be an indicator random variable where Zi = 0 if
the matrix S is a subspace ε2-contraction for [A B∗i] and Zi = 1 otherwise. From the properties of S, we have that
Pr[Zi = 1] ≤ δε2/3 for all i. If Zi = 1, we call i bad and if Zi = 0, we call i good.

Consider an arbitrary matrix X . Say a bad i is large if ‖(AX − B)∗i‖2 ≥ (1/ε)(‖B∗i‖2 + ‖SB∗i‖2), otherwise a bad i
is small. We have∑

small i

‖(AX −B)∗i‖2 ≤ (1/ε)
∑

small i

‖B∗i‖2 + ‖SB∗i‖2 ≤ (1/ε)
∑
bad i

‖B∗i‖2 + ‖SB∗i‖2. (3)

Using condition 2, we obtain that E[
∑

bad i ‖B∗∗i‖2] ≤ (δε2/3)
∑

i ‖B∗∗i‖2 ≤ (δε2/3)∆∗. By a Markov bound, we have
that with probability ≥ 1− δ/3,

∑
bad i ‖B∗∗i‖ ≤ ε2∆∗. Assume that this event holds. Similarly,∑

bad i

‖SB∗∗i‖2 = ‖SB∗‖h −
∑

good i

‖SB∗∗i‖2

≤ (1 + ε2)∆∗ − (1− ε2)
∑

good i

‖B∗∗i‖2

≤ (1 + ε2)∆∗ − (1− ε2)(∆∗ − ε2∆∗)

≤ 3ε2∆∗.

Thus, we can bound the RHS of (3) and obtain∑
small i

‖(AX −B)∗i‖2 ≤ (1/ε)(ε2∆∗ + 3ε2∆∗) ≤ 4ε∆∗.

Now we lower bound
∑

bad i ‖S(AX −B)∗i‖2.∑
bad i

‖S(AX −B)∗i‖2 ≥
∑

large i

‖S(AX −B)∗i‖2

≥
∑

large i

‖S(AX −AX∗)∗i‖2 − ‖SB∗∗i‖2

≥
∑

large i

(1− ε)‖(AX −AX∗)∗i‖2 − ‖SB∗∗i‖2

≥
∑

large i

(1− ε)‖(AX −B)∗i‖2 − (1− ε)‖B∗∗i‖2 − ‖SB∗∗i‖2

≥
∑

large i

(1− ε)‖(AX −B)∗i‖2 − ε‖(AX −B)∗i‖2

≥ (1− 2ε)
∑

large i

‖(AX −B)∗i‖2.

In the above, we repeatedly used the triangle inequality for the ‖ · ‖2 norm, and that S is a subspace ε-embedding for
matrix A and for large i, we upper bound (1 − ε)‖B∗∗i‖2 + ‖SB∗∗i‖2 by ε‖(AX − B)∗i‖2. We can finally lower bound
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‖S(AX −B)‖h.

‖S(AX −B)‖h =
∑

good i

‖S(AX −B)∗i‖2 +
∑
bad i

‖S(AX −B)∗i‖2

≥ (1− ε2)
∑

good i

‖(AX −B)∗i‖2 + (1− 2ε)
∑

large i

‖(AX −B)∗i‖2

≥ (1− ε2)
∑

good i

‖(AX −B)∗i‖2 + (1− 2ε)
∑
bad i

‖(AX −B)∗i‖2

− (1− 2ε)
∑

small i

‖(AX −B)∗i‖2

≥ (1− 2ε)‖AX −B‖h − (1− 2ε)4ε∆∗

≥ (1− 6ε)‖AX −B‖h.

Thus, by a union bound, with failure probability ≤ δ, S is an affine 6ε-contraction for (A,B) with respect to ‖ · ‖h.

Lemma B.3 (Gaussian Matrices are Lopsided Embeddings). Given arbitrary matrices A of rank k and B of any rank, a
Gaussian matrix S with Õ(k/ε4 + 1/ε4δ2) rows is an ε-lopsided embedding for (A,B) with probability ≥ 1− δ.

Proof. We now show that a Gaussian matrix, with small dimension equal to Õ(k/ε4+1/ε4δ2), satisfies all of the sufficient
conditions of Lemma B.2. Clearly, a Gaussian matrix withO((k+log(1/δ))/ε2) rows satisfies condition 1 and a Gaussian
matrix with O((k + log(1/δε))/ε4) rows satisfies condition 2 (Woodruff, 2014).

We now show that a Gaussian matrix with at least O(1/ε4) rows satisfies

E[(‖Sy‖22 − 1)2] ≤ ε4

for any given unit vector y. If S is a Gaussian matrix of t rows with each entry drawn i.i.d. from N(0, 1/t), then the entries
of Sy are each drawn i.i.d. from N(0, ‖y‖22/t) = N(0, 1/t). Therefore, ‖Sy‖22 = Y2

1 + . . .+Y2
t , where Yi ∼ N(0, 1/t),

which gives

E[(‖Sy‖22 − 1)2] = E[(Y2
1 + . . .+ Y2

t − 1)2]

= tE[Y4
1] + 1 + 2

(
t

2

)
E[Y2

1Y
2
2]− 2tE[Y2

1] = t
3

t2
+ 1 + 2

(
t

2

)
1

t2
− 2t

1

t

= 2/t.

Thus, with t ≥ 1/ε4, we have that E[(‖Sy‖22 − 1)2] ≤ ε4. By Lemma 28 of (Clarkson and Woodruff, 2015), we obtain
that E[max(‖Sy‖42, 1)] ≤ (1 + ε2)2 ≤ 1 + 3ε2. Now, by Holder’s inequality,

E[max(‖Sy‖2, 1)] ≤ E[max(‖Sy‖2, 1)4]1/4 ≤ (1 + 3ε2)1/4 ≤ 1 + (3/4)ε2.

As (‖Sy‖2− 1)+ = max(‖Sy‖2, 1)− 1, we obtain that E[(‖Sy‖2− 1)+] ≤ (3/4)ε2, which implies by scaling that for an
arbitrary vector y,

E[(‖Sy‖2 − ‖y‖2)+] ≤ (3/4)ε2‖y‖2

which gives

E[(‖SB∗‖h − ‖B∗‖h)+] ≤ (3/4)ε2‖B∗‖h.

By Markov’s inequality, with probability ≥ 1− δ/3, (‖SB∗‖h − ‖B∗‖h)+ ≤ (9/4)(ε2/δ)‖B∗‖h and hence, with proba-
bility ≥ 1− δ/3, ‖SB∗‖h ≤ (1 + (9/4)(ε2/δ))‖B∗‖h. Thus, a Gaussian matrix with m = O(1/ε4δ2) rows satisfies that
with probability ≥ 1− δ/3 that

‖SB∗‖h ≤ (1 + ε2)‖B∗‖h.
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B.2. Utilizing Sampling based `1 embeddings

Let A be a matrix that has r columns. Suppose L is a random matrix such that with probability ≥ 9/10, simultaneously
for all vectors y,

α‖Ay‖1 ≤ ‖LAy‖1 ≤ β‖Ay‖1.

Assume the above event holds. Let X be an arbitrary matrix with t columns. We have that for a suitably scaled Gaussian
matrix G with Õ(t/ε2) columns, with probability ≥ 9/10, simultaneously for all vectors x ∈ Rt, ‖xTG‖1 = (1± ε)‖x‖2
(Matoušek, 2013). Thus there exists a matrix M with Õ(t/ε2) columns such that for all vectors x ∈ Rt,

‖xTM‖1 = (1± ε)‖x‖2.

Therefore,
1

1 + ε
‖AXM‖1,1 ≤ ‖AX‖1,2 =

1

1− ε
‖AXM‖1,1

and
1

1 + ε
‖LAXM‖1,1 ≤ ‖LAX‖1,2 ≤

1

1− ε
‖LAXM‖1,1

Now we upper bound ‖LAX‖1,2.

‖LAX‖1,2 ≤
1

1− ε
‖LAXM‖1,1 ≤

1

1− ε
∑
j

‖LA(XM)∗j‖1

≤ β

1− ε
∑
j

‖A(XM)∗j‖1 =
β

1− ε
‖AXM‖1,1 ≤ β

1 + ε

1− ε
‖AX‖1,2.

We now lower bound ‖LAX‖1,2 similarly.

‖LAX‖1,2 ≥
1

1 + ε
‖LAXM‖1,1 =

1

1 + ε

∑
j

‖LA(XM)∗j‖1

≥ α

1 + ε

∑
j

‖A(XM)∗j‖1 =
α

1 + ε
‖AXM‖1,1 ≥ α

1− ε
1 + ε

‖AX‖1,2.

By picking appropriate ε, we conclude that for any matrix X ,

α

2
‖AX‖1,2 ≤ ‖LAX‖1,2 ≤ 2β‖AX‖1,2. (4)

Lemma B.4. If ST is a random Gaussian matrix with O(k) columns such that with probability ≥ 9/10,

min
rank-k X

‖ASTX −A‖1,2 ≤ (3/2) min
rank-k X

‖AX −A‖1,2,

and if L is a random matrix drawn from a distribution such that with probability ≥ 9/10 over the draw of matrix L,

α‖ASTy‖1 ≤ ‖LASTy‖1 ≤ β‖ASTy‖1

for all vectors y and
EL[‖LM‖1,2] = ‖M‖1,2

for any matrix M , then with probability≥ 3/5, all matrices X such that ‖LASTX−LA‖1,2 ≤ 10 ·SubApxk,1(A) satisfy

‖ASTX −A‖1,2 ≤
(
2 + 40/α

)
SubApxk,1(A).
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Proof. Let X1 = arg minrank-k X ‖ASTX − A‖1,2. With probability ≥ 9/10, we have that ‖ASTX1 − A‖1,2 ≤
(3/2)SubApxk,1(A). By a Markov bound, we obtain that with probability ≥ 4/5, ‖LASTX1 − LA‖1,2 ≤
10SubApxk,1(A). Assume this event holds. For any matrix X ,

‖LASTX − LA‖1,2 ≥ ‖LASTX − LASTX1‖1,2 − ‖LASTX1 − LA‖1,2.

We have
‖LASTX − LA‖1,2 ≥ ‖LASTX − LASTX1‖1,2 − 10 · SubApxk,1(A).

From (4), we have

‖LASTX − LA‖1,2 ≥
α

2
‖ASTX −ASTX1‖1,2 − 10 · SubApxk,1(A)

≥ α

2
‖ASTX −A‖1,2 −

α

2
‖ASTX1 −A‖1,2 − 10 · SubApxk,1(A)

≥ α

2
‖ASTX −A‖1,2 − (3α/4 + 10) · SubApxk,1(A).

Thus, for any matrix X of rank r, if ‖ASTX −A‖1,2 > (2/α)(20 + 3α/4) · SubApxk,1(A), then ‖LASTX − LA‖1,2 >
10 · SubApxk,1(A).

B.3. Main Theorem for constructing an (O(1), Õ(k))-bicriteria solution

Theorem B.1. Given any matrix A ∈ Rn×d and a matrix B ∈ Rd×c1 with orthonormal columns, Algorithm 1 returns a
matrix X̂ with Õ(k) orthonormal columns that with probability 1− δ satisfies

‖A(I −BBT)(I − X̂X̂T)‖1,2 ≤ O(1) · SubApxk,1(A(I −BBT)),

in time Õ((nnz(A) + dpoly(k/ε)) log(1/δ)).

Proof. It is shown in Lemma B.3 that a Gaussian matrix with O(k) rows is a 1/6-lopsided embedding for (Vk, A
T) with

probability ≥ 9/10. Thus by Lemma B.1, we obtain that

min
rank-k X

‖A(I −BBT)STX −A(I −BBT)‖1,2 ≤ (3/2)SubApxk,1(A(I −BBT))

with probability ≥ 9/10. (Cohen and Peng, 2015) show that a sampling matrix L obtained using Lewis weights has Õ(k)
rows and is a (1/2, 3/2) `1 subspace embedding for the matrix A(I −BBT)ST. Thus, the matrices ST and L constructed
in Algorithm 1 satisfy the conditions of Lemma 4.1. Therefore from Lemma B.4, with probability ≥ 3/5, if a matrix X
satisfies ‖LA(I −BBT)STX −LA(I −BBT)‖1,2 ≤ 10 · SubApxk,1(A(I −BBT)), then ‖A(I −BBT)STX −A(I −
BBT)‖1,2 ≤ 82 · SubApxk,1(A(I −BBT)).

Let X̃ = arg minrank-k X ‖A(I − BBT)STX − A(I − BBT)‖1,2. We have ‖A(I − BBT)STX̃ − A(I − BBT)‖1,2 ≤
(3/2)SubApxk,1(A(I−BBT)). By Markov’s bound, with probability≥ 3/4, ‖LA(I−BBT)STX̃−LA(I−BBT)‖1,2 ≤
10 · SubApxk,1(A(I −BBT)). We now have the following:

‖LA(I −BBT)STX̃(LA(I −BBT))+LA(I −BBT)− LA(I −BBT)‖1,2 ≤ 10 · SubApxk,1(A(I −BBT)).

Thus ‖A(I −BBT)STX̃(LA(I −BBT))+LA(I −BBT)−A(I −BBT)‖1,2 ≤ 82 · SubApxk,1(A(I −BBT)). Finally,

‖A(I −BBT)(LA(I −BBT))+(LA(I −BBT))−A(I −BBT)‖1,2
≤ ‖A(I −BBT)STX̃(LA(I −BBT))+LA(I −BBT)−A(I −BBT)‖1,2
≤ 82 · SubApxk,1(A(I −BBT)).

The first inequality follows from the fact that for all x and y, ‖xT(LA)+(LA)− xT‖2 ≤ ‖yT(LA)+(LA)− xT‖2.
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By a union bound, with probability ≥ 1/2, the matrix X̂ computed by Algorithm 1, which is an orthonormal basis for the
rowspace of LA(I −BBT), satisfies

‖A(I −BBT)(I − X̂X̂T)‖1,2 ≤ 82 · SubApxk,1(A(I −BBT)).

Thus the matrix X̂ which has the minimum value over Õ(log(1/δ)) trials satisfies with probability ≥ 1− δ that

‖A(I −BBT)(I − X̂X̂T)‖1,2 ≤ O(1) · SubApxk,1(A(I −BBT)).

The running time of Lewis weight sampling can be seen to be O((nnz(A) + k2d(c1 + k)) log(log(n))) from (Cohen and
Peng, 2015). Thus, the total running time is Õ((nnz(A) + k2d(c1 + k)) log(1/δ)).

B.4. Finding Best Solution Among Candidate Solutions

Algorithm 1 finds candidate solutions X̂(1), . . . , X̂(t) for t = O(log(1/δ)) and returns the best candidate solution that
minimizes the cost

‖A(I −BBT)(I − X̂X̂T)‖1,2. (5)

The proof of Theorem 4.1 shows that, for all i = 1, . . . , t, with probability ≥ 3/5, ‖A(I −BBT)(I − X̂(i)(X̂(i))T)‖1,2 ≤
O(1) · SubApxk,1(A(I −BBT)). Therefore with probability ≥ 1− δ/2

min
i
‖A(I −BBT)(I − X̂(i)(X̂(i))T)‖1,2 ≤ O(1) · SubApxk,1(A(I −BBT)) (6)

i.e., with probability ≥ 1 − δ, there is a solution X̂(i) among the t potential solutions that has a cost at most O(1) ·
SubApxk,1(A(I −BBT)). We first compute

apxi = ‖A(I −BBT)(I − X̂(i)(X̂(i))T)G‖1,2
where G is a scaled Gaussian matrix with O(log(n/δ)) columns. Values of apxj for all j ∈ [t] can be computed in time
Õ((nnz(A) + (n + d)poly(k/ε)) · log(1/δ)). We have using the union bound that, with probability ≥ 1 − δ/2, for all
j ∈ [n] and i ∈ [t] that

‖Aj∗(I −BBT)(I − X̂(i)(X̂(i))T)G‖2 = (1/2, 3/2)‖Aj∗(I −BBT)(I − X̂(i)(X̂(i))T)‖2. (7)

Therefore with probability ≥ 1− δ/2, for all i ∈ [t],

apxi ∈ (1/2, 3/2)‖A(I −BBT)(I − X̂(i)(X̂(i))T)‖1,2. (8)

Let ĩ = arg mini∈[t] apxi and i∗ = arg mini∈[t] ‖A(I −BBT)(I − X̂(i)(X̂(i))T)‖1,2. By a union bound, with probability
≥ 1− δ

‖A(I −BBT)(I − X̂ (̃i)(X̂ (̃i))T)‖1,2 ≤ 2apx̃i

≤ 2apxi∗

≤ 4‖A(I −BBT)(I − X̂(i∗)(X̂(i∗))T)‖1,2
≤ O(1) · SubApxk,1(A(I −BBT)).

Thus, Algorithm 1, with probability ≥ 1− δ, returns a subspace that has cost at most O(
√
k) · SubApxk,1(A(I − BBT))

and has a running time of Õ((nnz(A) + (n+ d)poly(k/ε)) · log(1/δ)).

B.5. Main Theorem for Constructing a (1 + ε, k3.5/ε2) Bicriteria Solution

Theorem B.2 (Residual Sampling). Given matrix A ∈ Rn×d, matrices B ∈ Rd×c1 and X̂ ∈ Rd×c2 with orthonormal
columns such that ‖A(I−BBT)(I− X̂X̂T)‖1,2 ≤ K ·SubApx1,k(A(I−BBT)), Algorithm 2 returns a matrix U having
c = Õ(c2 +K · k3/ε2 · log(1/δ)) orthonormal columns such that with probability ≥ 1− δ

‖A(I −BBT)(I − UUT)‖1,2 ≤ (1 + ε)SubApx1,k(A(I −BBT)) (9)

in time Õ(nnz(A) + d · poly(k/ε)). Moreover we also have that UTB = 0, i.e., the column spaces of U and B are
orthogonal to each other.
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Proof. As the matrix G is a Gaussian matrix with t = O(log(n/δ)) columns, we have that with probability ≥ 1 − (δ/2),
for all i ∈ [n],

‖Mi∗‖2 = ‖Ai∗(I −BBT)(I − X̂X̂T)G‖2 = (1± 1/10)‖Ai∗(I −BBT)(I − X̂X̂T)G‖2.

Therefore, the probabilities pi computed by Algorithm 2 are such that

pi =
‖Mi∗‖2
‖M‖1,2

≥ (9/10)‖Ai∗(I −BBT)(I − X̂X̂T)‖2
(11/10)‖A(I −BBT)(I − X̂X̂T)‖1,2

≥ 9

11

‖Ai∗(I −BBT)(I − X̂X̂T)‖2
‖A(I −BBT)(I − X̂X̂T)‖1,2

.

Hence, by applying Lemma 4.2 to the matrix A(I −BBT), we obtain that with probability ≥ 1− δ, the matrix U returned
by Algorithm 2 satisfies

‖A(I −BBT)(I − UUT)‖1,2 ≤ (1 + ε)SubApx1,k(A(I −BBT)).

The matrix M can be computed in time O(nnz(A) log(n/δ) + (c1 + c2)d log(n/δ)). And s = Õ(K · k3/ε2 · log(1/δ))
independent samples can be drawn from the distribution p in time O(n + s). Finally, the orthonormal basis U can be
computed in time O(d(c+ c1)2) = O(dpoly(k/ε)).

C. Missing Proofs from Section 5

Lemma C.1. With probability ≥ 2/3, Algorithm 3 finds an Õ(k3/ε3)-dimensional subspace S such that for all k-
dimensional subspaces W ,

‖A(I − PS)‖1,2 − ‖A(I − PS+W )‖1,2 ≤ 4ε · SubApxk,1(A).

Proof. Suppose that the loop in Algorithm 3 is run for all t = 10/ε + 1 iterations instead of stopping after i∗ iterations.
Let X̂i, Ui, Bi be the values of the matrices in the algorithm at the end of i iterations. Let B0 = [] be the empty matrix.
Condition on the event that all the calls to Algorithm 1 in the algorithm succeed. By a union bound over the failure event
of each call to Algorithm 1, this event holds with probability ≥ 9/10. Therefore, by Theorem 4.1, we obtain that

‖A(I − PBi−1
)(I − PX̂i

)‖1,2
≤ Õ(

√
k) · SubApxk,1(A(I − PBi−1

))

for all i ∈ [10/ε+ 1] and also that X̂i has Õ(k) columns. Now we condition on the event that all the calls to Algorithm 2
succeed. By a union bound, this holds with probability ≥ 9/10. Thus we have

‖A(I − PBi
)‖1,2 = ‖A(I − PBi−1

)(I − PUi
)‖1,2

≤ (1 + ε) · SubApxk,1(A(I − PBi−1
))

for all iterations i ∈ [10/ε+ 1] and also that Ui has Õ(k3/ε2) columns which implies that Bi has Õ(ik3/ε2) columns. In
particular, we have that ‖A(I − PB1

)‖1,2 ≤ (1 + ε)SubApxk,1(A). Therefore

(1 + ε)SubApxk,1(A)− ‖A(I − PBt)‖1,2
≥ ‖A(I − PB1

)‖1,2 − ‖A(I − PBt
)‖1,2

=

T∑
i=2

‖A(I − PBi−1
)‖1,2 − ‖A(I − PBi

)‖1,2 ≥ 0.

The last inequality follows from the fact that colspace(Bi) ⊇ colspace(Bi−1). The summation in the above equation has
10/ε non-negative summands that all sum to at most (1 + ε)SubApxk,1(A). Therefore, at least 9/ε summands have value
≤ ε(1 + ε)SubApxk,1(A). In particular, with probability ≥ 9/10,

‖A(I − PBi∗ )‖1,2 − ‖A(I − PBi∗+1
)‖1,2 ≤ ε(1 + ε)SubApxk,1(A).
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But we also have that

‖A(I − PBi∗+1
)‖1,2 = ‖A(I − PBi∗ )(I − PUi∗ )‖1,2

≤ (1 + ε)SubApxk,1(A(I − PBi∗ ))

≤ (1 + ε)‖A(I − PBi∗ )(I − PW )‖1,2
= (1 + ε)‖A(I − PBi∗+W )‖1,2

where W is any rank k matrix. The second inequality follows from the fact that SubApxk,1(A(I − PBi∗ )) =
minrank-kW ‖A(I − PBi∗ )(I − PW )‖1,2. Therefore, for any rank-k matrix W , we obtain that

‖A(I − PBi∗ )‖1,2 − ‖A(I − PBi∗∪W )‖1,2

≤ ‖A(I − PBi∗ )‖1,2 −
1

1 + ε
‖A(I − PBi∗+1

)‖1,2

≤ ‖A(I − PBi∗ )‖1,2 − (1− ε)‖A(I − PBi∗+1
)‖1,2

≤ (‖A(I − PBi∗ )‖1,2 − ‖A(I − PBi∗+1
)‖1,2) + ε‖A(I − PBi∗+1

)‖1,2
≤ 4ε · SubApxk,1(A).

Theorem C.1. Given a matrix A ∈ Rn×d, k ∈ Z and an accuracy parameter ε > 0, Algorithm 4 returns a ma-
trix B with Õ(k3/ε6) orthonormal columns and a matrix Apx = [X v] such that for any k dimensional shape S,∑

i

√
dist(BXT

i∗, S)2 + v2i = (1± ε)
∑

i dist(Ai, S). The algorithm runs in time O(nnz(A)/ε2 + (n+ d)poly(k/ε)).

Proof. From the above lemma, we have that the subspace B satisfies with probability ≥ 9/10, that for any k dimensional
subspace W ,

‖A(I − PB)‖1,2 − ‖A(I − PB∪W )‖1,2 ≤
ε2

80
SubApxk,1(A). (10)

From Theorem 2.10 of (Woodruff, 2014), we obtain that with probability ≥ 9/10, for all i ∈ [n], the matrix Sj found for
i ∈ [n] is such that Sj is a Θ(ε2) subspace embedding for the matrix [BAT

i∗]. Therefore, xi is such that

‖Bxi −AT
i∗‖2 ≤ (1 + Θ(ε2))‖(I −BBT)AT

i∗‖2.

and vi = (1±Θ(ε2))‖(I −BBT)AT
i∗‖2. Now the proof follows from Theorem 3.1.

D. Missing Proofs from Section 6
D.1. Obtaining an (O(1), poly(k)) Approximation

Theorem D.1. Given A ∈ Rn×d, B ∈ Rd×c1 , k ∈ Z and δ, Algorithm 5 returns X̂ with Õ(k3.5) orthonormal columns
that with probability 1− δ satisfies

‖A(I −BBT)(I − X̂X̂T)‖1,2 ≤ O(1) · SubApxk,1(A(I −BBT)).

Given that the matrices C1AIj for all j ∈ [b] and WA are precomputed for all O(log(1/δ)) trials, the algorithm can be
implemented in time Õ(((nd/b) · k3.5 + dpoly(k/ε)) log(1/δ)).

Proof. The proof is similar to proof of Theorem 4.1. That proof only makes use of the facts that

1. for any fixed matrix M , E[‖LM‖1,2] = E[‖M‖1,2],

2. with probability ≥ 9/10, for all vectors x, (1/2)‖Ax‖1 ≤ ‖LAx‖1 ≤ (3/2)‖Ax‖1, and

to conclude with the statement in the theorem. We now show that the matrix L computed by Algorithm 5 satisfies all the
above three properties.
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Algorithm 5 POLYAPPROXDENSE

Input: A ∈ Rn×d, B ∈ Rd×c1 , k ∈ Z, δ, b
Output: X̂ ∈ Rd×c2

cols← O(k + 1/δ2)
ST ← N (0, 1)d×cols

W← `1 embedding for O(k) dimensions from (Wang and Woodruff, 2019)
[Q,R]← QR decomposition of (WA)(I −BBT)ST

I1, . . . , Ib ← Equal size partition of [n] into b parts
C1 ← Cauchy matrix with O(log(n)) rows
for j = 1, . . . , b do
M (j) ← (C1AIj )(I −BBT)STR−1

apxj ←
∑

col∈cols(M(j)) median(abs(M (j)
∗col))

end for
C← Cauchy matrix with O(log(n)) columns
samples← Õ(k3.5)
L← []
for samples iterations do

Sample j ∈ [b] with probability proportional to apxj
P (j) ← AIj (I −BBT)STR−1C

For i ∈ Ij , p(j)i ← median(abs(P (j)
i∗ ))

Sample i ∈ Ij with probability proportional to p(j)i

Append 1

p
(j)
i∑

i∈I(j) p
(j)
i

apxj∑b
j=1

apxj
·samples

eTi to matrix L

end for
X̂ ← Orthonormal Basis for rowspace(LA(I −BBT))
Repeat the above O(log(1/δ)) times and return best X̂

Note that the random matrix L is constructed by sampling N rows, where each row is independently equal to (1/Npi)e
T
i

with probability pi. Thus

E[‖LM‖1,2] = E[

N∑
i=1

‖Li∗M‖2] = NE[‖L1∗M‖2] = N

n∑
j=1

‖(1/Npj)eTjM‖2pj =

n∑
j=1

‖Mj∗‖2 = ‖M‖1,2. (11)

We now prove property 2. From Theorem 1.3 of (Wang and Woodruff, 2019), we have that W has O(k log(k)) rows and
that with probability ≥ 99/100, for all vectors x

‖A(I −BBT)STx‖1 ≤ ‖WA(I −BBT)STx‖1 ≤ O(k log(k))‖A(I −BBT)STx‖.

Let `i = ‖Ai∗(I − BBT)STR−1‖1 for i ∈ [n]. From Theorem 6.1, if the probability that the ith row is sampled is
≥ (1/2)(`i/

∑
i′ `i′) for all i ∈ [n], then the matrix L constructed is a (1/2, 3/2) `1-subspace embedding with probability

≥ 99/100. Now consider sampling a row of the matrix L in the algorithm. We have that the sampled row is in the direction
of ei with probability (apxj(i)/

∑
j′∈[b] apxj′) · (p

j(i)
i /

∑
i′∈Ij(i) p

j(i)
i′ ). We use j(i) to denote j ∈ [b] such that i ∈ Ij . We

show that this probability is at least (1/2)(`i/
∑

i′ `i′). For j ∈ [b],

apxj =
∑
col

median(abs(M (j)
∗col)).

From Theorem 1 of (Indyk, 2006), we have with probability ≥ 1− 1/100b that

median(abs(M (j)
∗col)) = (1± 1/6)‖AIj (I −BBT)STR−1∗col‖1.
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Thus
∑

col median(abs(M (j)
∗col)) = (1 ± 1/6)

∑
col ‖AIj (I − BBT)STR−1∗col‖1 = (1 ± 1/6)

∑
i∈Ij ‖Ai∗(I −

BBT)STR−1‖1 = (1± 1/6)
∑

i∈Ij `i. Therefore, by a union bound, with probability ≥ 99/100, for all j ∈ [b]

apxj = (1± 1/6)
∑
i∈Ij

`i.

Again, from (Indyk, 2006), we obtain that with probability ≥ 99/100, that for all i ∈ [n]

median(abs(Ai∗(I −BBT)STR−1C)) = (1± 1/6)‖Ai∗(I −BBT)STR−1‖1 = (1± 1/6)`i.

Thus, with probability ≥ 99/100, for all j and i ∈ Ij , we have p(j)(i) = (1 ± 1/6)`i. By a union bound, with probability
≥ 98/100, the probability that an arbitrary row i is sampled in an iteration of the algorithm is

(apxj(i)/
∑
j′∈[b]

apxj′) · (p
j(i)
i /

∑
i′∈Ij(i)

p
j(i)
i′ ) ≥ 5

7

∑
i′∈Ij `i′∑
i′∈[n] `i′

5

7

`i∑
i′∈Ij `i′

≥ 1

2

`i∑
i′∈[n] `i′

.

Thus by a union bound, L is a (1/2, 3/2) subspace embedding. Now the proof and argument for the running time follow.

D.2. Obtaining a (1 + ε, poly(k/ε)) Solution

Algorithm 6 EPSAPPROXDENSE

Input: A ∈ Rn×d, B ∈ Rd×c1 , X̂ ∈ Rd×c2 , k ∈ Z,K, ε, δ, b
Output: U ∈ Rd×c

t← O(log(n)), G← N (0, 1)d×cols

I1, . . . , Ib ← Equal size partition of [n] into b parts
C1 ← Cauchy matrix with O(log(n)) rows
for j = 1, . . . , b do
M (j) ← (C1AIj )(I −BBT)(I − X̂X̂T)(G/t)

√
π/2

apxj ←
∑

col∈cols(M(j)) median(abs(M (j)
∗col))

end for
samples← Õ(K · k3/ε2 · log(1/δ)), S← ∅
for samples iterations do

Sample j ∈ [b] with probability proportional to apxj
P (j) ← AIj (I −BBT)(I − X̂X̂T)G

For i ∈ Ij , p(j)i ← ‖P
(j)
i∗ ‖2

Sample i ∈ Ij with probability proportional to p(j)i

S← S ∪ i
end for
U ← colspan((I −BBT)[X̂ (AS)T])
Return U

Theorem D.2. Given a matrix A ∈ Rn×d, orthonormal matrices B ∈ Rn×c1 and X̂ ∈ Rn×c2 such that

‖A(I −BBT)(I − X̂X̂T)‖1,2 ≤ K · SubApx1,k(A(I −BBT)),

and parameters k, ε, and δ, Algorithm 6 outputs a matrix U with c = c1 + Õ(K · k3/ε2 · log(1/δ)) orthonormal columns
such that with probability ≥ 1− δ,

‖A(I −BBT)(I − UUT)‖1,2 ≤ (1 + ε)SubApx1,k(A(I −BBT)).

Given that C1AIj is precomputed for all j ∈ [b], the algorithm runs in time Õ((nd/b)·(K ·k3/ε2 log(1/δ))+dpoly(k/ε)).
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Proof. We show that the probability that a row i is sampled in an iteration of the Algorithm is≥ (1/12)‖Ai∗(I−BBT)(I−
X̂X̂T)‖2/‖A(I − BBT)(I − X̂X̂T)‖1,2. Then the proof follows as in the proof of Theorem 4.2. First assume that apxj
for j ∈ [b] computed by the algorithm satisfies

apxj = (1/2, 2)
∑
i∈Ij

‖Aj∗(I −BBT)(I − X̂X̂T)‖2.

Now the probability pi with which a row i is sampled by the algorithm is given by

pi =
apxj(i)∑
j∈[b] apxj

· ‖Ai∗(I −BBT)(I − X̂X̂T)G‖2∑
i′∈Ij(i) ‖Ai′∗(I −BBT)(I − X̂X̂T)G‖2

.

As G is a Gaussian matrix with t = O(log(n/δ)) columns, we have that with probability ≥ 1 − δ that for all i′ ∈ [n]

‖Ai′∗(I −BBT)(I − X̂X̂T)G‖2 = (1± 1/2)‖Ai′∗(I −BBT)(I − X̂X̂T)‖2 ·
√
t. Therefore

pi =
apxj(i)∑
j∈[b] apxj

· ‖Ai∗(I −BBT)(I − X̂X̂T)G‖2∑
i′∈Ij(i) ‖Ai′∗(I −BBT)(I − X̂X̂T)G‖2

≥ 1

12

‖Ai∗(I −BBT)(I − X̂X̂T)‖2
‖A(I −BBT)(I − X̂X̂T)‖1,2

.

We now prove our assumption which concludes the proof.

Let x ∈ Rd be an arbitrary vector. As G is a Gaussian matrix with t = O(log(n/δ)) columns, Lemma 5.3 of (Plan and
Vershynin, 2013) states that

Pr

∣∣∣∣∣1t ‖xTG‖1 −
√

2

π
‖x‖2

∣∣∣∣∣ ≥ α‖x‖2
 ≤ C exp(−ctα2).

Picking an appropriate α = O(1), by a union bound, with probability ≥ 1− δ/3, we obtain

‖Ai∗(I −BBT)(I − X̂X̂T)(G/t)
√
π/2‖1

= (4/5, 6/5)‖Ai∗(I −BBT)(I − X̂X̂T)‖2
for all i ∈ [n]. Now, if C is a Cauchy matrix with O(log(n/δ)) rows, then with probability 1− δ/(3nb), we have that

median(abs(Cx)) = (1± 1/5)‖x‖1.

Therefore, by a union bound, we obtain that, with probability ≥ 1− δ/3, for all j ∈ [b] and i ∈ t that

median(abs(CAIj∗(I −BBT)(I − X̂X̂T)G∗i)) = (1± 1/5)‖AIj∗(I −BBT)(I − X̂X̂T)G∗i‖1.

Therefore, with probability ≥ 1− 2δ/3, for all j ∈ [b],

apxj =
∑
i

median(abs((M (j))∗i)) =

T∑
i=1

median(abs(CAIj∗(I −BBT)(I − X̂X̂T)(G∗i/t)
√
π/2))

= (1± 1/5)

T∑
i=1

‖AIj∗(I −BBT)(I − X̂X̂T)(G∗i/t)
√
π/2‖1

= (1± 1/5)
∑
i∈Ij

‖Ai∗(I −BBT)(I − X̂X̂T)(G/t)
√
π/2‖1

= (4/5, 6/5)(4/5, 6/5)
∑
i∈Ij

‖Ai∗(I −BBT)(I − X̂X̂T)‖2

= (1/2, 2)
∑
i∈Ij

‖Ai∗(I −BBT)(I − X̂X̂T)‖2.

The only term in the running time that involves a factor nd is in computing the matrix P (j) for the chosen j. A total of
Õ(K · k3/ε2 · log(1/δ)) such j ∈ [b] are sampled. Therefore, the total running time for computing the matrices P (j) for j
sampled by the algorithm is equal to (nd/b) · log(n) · Õ(K · k3/ε2 · log(1/δ)) + d · poly(k/ε).
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Algorithm 7 DIMENSIONREDUCTIONDENSE

Input: A ∈ Rn×d, k, ε > 0.
Output: B ∈ Rd×c with orthonormal columns
t← 10/ε+ 1
i∗ ← uniformly random integer from [10/ε+ 1].
Initialize B ← []
b← k3.5/ε3

δ = Θ(ε)
for i = 1, . . . , i∗ do
X̂ ← POLYAPPROXDENSE(A,B, k, δ, b).
U ← EPSAPPROXDENSE(A,B, X̂, k, Õ(

√
k),Θ(ε), δ, b).

B ← [B |U ].
end for
Return B.

D.3. Overall Algorithm

Lemma D.1. Given matrix A ∈ Rn×d, k ∈ Z and ε > 0, Algorithm 7 returns a matrix B with Õ(k3.5/ε3) orthonormal
columns such that, with probability ≥ 3/5, for all k dimensional spaces W ,

‖A(I − PB)‖1,2 − ‖A(I − PB∪W )‖1,2 ≤ ε · SubApxk,1(A).

The Algorithm runs in time Õ(nd+ (n+ d)poly(k/ε)).

Proof. The proof of the lemma is similar to that of Lemma C.1. We now argue that all the pre-computed matrices required
across all the iterations of the algorithm can be computed in time Õ(nd). The Cauchy matrix C1 used in Algorithm 5 has
O(log(n)) rows and the matrix W has Õ(k) rows. Note that we have

C1AI1

C1AI2

C1AIb

WA

 =


C1

C1

C1

W

A.

Thus all the matrices required for Algorithm 5 can be computed by multiplying a poly(k/ε)× n matrix with A. Similarly,
we can compute all the matrices required for Algorithm 6 by computing the product of a poly(k/ε) × n matrix with A.
Thus, all the matrices required across all iterations of Algorithm 7 can be computed by multiplying a poly(k/ε)×n matrix
with A, which can be done in time Õ(nd) by the algorithm of Coppersmith (1982), assuming n � poly(k/ε). Now each
iteration of the loop in Algorithm 7 takes Õ((nd/b)k3.5/ε2 + (n+ d)poly(k/ε)) time. As there are O(1/ε) iterations, the
algorithm runs in time Õ((nd/b)k3.5/ε3 + (n+ d)poly(k/ε)). Since the value of b is chosen to be k3.5/ε3, we obtain that
the running time of the algorithm is Õ(nd+ (n+ d)poly(k/ε)), including the time to compute the required pre-computed
matrices.

E. Coreset Construction using Dimensionality Reduction
Algorithm 8 gives the general algorithm to construct a coreset for any objective involving the sum-of-distances metric.
In this section, we discuss the coreset construction for two such problems: the k-median and k-subspace approximation
problems.

For (B,Apx = [X v]) returned by Algorithm 4, we have the guarantee that, with probability≥ 9/10, for any k-dimensional
shape S, ∑

i

√
dist(BXT

i∗, S)2 + v2i = (1± ε)
∑
i

dist(Ai∗, S).
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Algorithm 8 CORESETCONSTRUCTION

Input: A ∈ Rn×d, k, ε
Output: Coreset
(B,Apx)← COMPLETEDIMREDUCE(A, k, ε)

Construct a coreset for the instance Apx

[
BT 0
0 1

]
and return

Given a set S, let S+1 denote the set {(s, 0) | s ∈ S}. Let diag(BT, 1) =

[
BT 0
0 1

]
. Using this notation, we have that

∑
i

dist(Apxi∗ · diag(BT, 1), S+1) = (1± ε)
∑
i

dist(Ai∗, S).

Using the above relation, we give a coreset construction for the k-subspace approximation and k-median problems. These
constructions are as in (Sohler and Woodruff, 2018). For any matrix M , let M+1 denote the matrix M with a new column
of 0s appended at the end and let M−1 denote the matrix M with the last column deleted.

Theorem E.1 (Coreset for Subspace Approximation). There exists a sampling-and-scaling matrix T that samples and
scales Õ(k3/ε8) rows of the matrix Apx such that, with probability ≥ 3/5, for any projection matrix P of rank k that
projects onto a subspace S of dimension at most k, we have

‖((T · Apx · diag(BT, 1))−1P )+1 − T · Apx · diag(BT, 1)‖1,2 = (1±O(ε))‖((Apx · diag(BT, 1))−1P )+1 − Apx · diag(BT, 1)‖1,2
= (1±O(ε))

∑
i

dist(Ai, S).

This sampling matrix can be computed in time O(n · poly(k/ε)).

Proof. We first have ‖((Apx · diag(BT, 1))−1P )+1 − Apx · diag(BT, 1)‖1,2 =
∑

i ‖((Apxi∗ · diag(BT, 1))−1P )+1 −
Apxi∗ · diag(BT, 1)‖2 =

∑
i

√
‖(I − P )BXT

i∗‖22 + v2i =
∑

i

√
dist(BXT

i∗, S)2 + v2i = (1± ε)
∑

i dist(Ai∗, S).

We now show ‖((T ·Apx ·diag(BT, 1))−1P )+1−T ·Apx ·diag(BT, 1)‖1,2 = (1±O(ε))‖((Apx ·diag(BT, 1))−1P )+1−
Apx · diag(BT, 1)‖1,2 proving the claim. Let G be a Gaussian matrix with Õ(d/ε2) columns. Then with probability
≥ 9/10, for all x ∈ Rd+1,

‖xTG‖1 = (1± ε)‖x‖2.

See (Sohler and Woodruff, 2018) for references. Thus we have that with probability ≥ 9/10, for all projection matrices P
of rank at most k, we have

‖((Apx·diag(BT, 1))−1P )+1G−Apx·diag(BT, 1)G‖1,1 = (1±ε)‖((Apx·diag(BT, 1))−1P )+1−Apx·diag(BT, 1)‖1,2.

Note that for any P , the columns of the matrix ((Apx · diag(BT, 1))−1P )+1G − Apx · diag(BT, 1)G lie in the column
space of the matrix Apx. Let T be a (1 ± ε) `1-subspace embedding constructed for the matrix Apx constructed using
(Cohen and Peng, 2015). Therefore

‖T ·((Apx·diag(BT, 1))−1P )+1G−T ·Apx·diag(BT, 1)G‖1,1 = (1±ε)‖((Apx·diag(BT, 1))−1P )+1G−Apx·diag(BT, 1)G‖1,1.

Again, using the fact that ‖xTG‖1 = (1± ε)‖x‖2 for all d+ 1 dimensional vectors x, we obtain that

‖T · ((Apx · diag(BT, 1))−1P )+1 − T · Apx · diag(BT, 1)‖1,2
= (1± ε)‖T · ((Apx · diag(BT, 1))−1P )+1G− T · Apx · diag(BT, 1)G‖1,1
= (1±O(ε))‖((Apx · diag(BT, 1))−1P )+1G− Apx · diag(BT, 1)G‖1,1
= (1±O(ε))‖((Apx · diag(BT, 1))−1P )+1 − Apx · diag(BT, 1)‖1,2
= (1±O(ε))

∑
i

dist(Ai, S).



Dimensionality Reduction for Sum-of-Distances Metric

The matrix T is computed by Lewis Weight Sampling. As the matrix Apx has dimensions n × Õ(k3/ε6), we see from
(Cohen and Peng, 2015) that the matrix T can be computed in time n · poly(k/ε).

Theorem E.2 (Coreset for k-median). There exists a subset T ⊆ [n] with |T | = Õ(k4/ε8) and weights wi for i ∈ T such
that, with probability ≥ 3/5, for any set C of size k,∑

i∈T
widist(Apxi∗ · diag(BT, 1), C+1) = (1± ε)

∑
i∈[n]

dist(Ai∗, C).

Recall that C+1 =
{

(c, 0) | c ∈ C
}

.

Proof. Let S denote the rowspan of the matrix diag(BT, 1). We have dim(S) = Õ(k3/ε6). Let Ŝ be the subspace S
along with an orthogonal dimension. Thus Ŝ is an Õ(k3/ε6) dimensional subspace of Rd+1. Let C = {c1, . . . , ck} be
an arbitrary set of k centers of Rd+1. Now it is easy to see that we can find a set of k points Ĉ = {ĉ1, . . . , ĉk} ⊆ Ŝ
such that PSci = PS ĉi i.e., the projections of ci and ĉi onto the subspace S are the same, and also that dist(ci,PS(ci)) =

dist(ĉi,PS(ĉi)) and therefore, for any point a ∈ S, dist(a,C) = dist(a, Ĉ).

Now if T ⊆ [n] and the weights wi for i ∈ T are such that

∑
i∈T

widist(Apxi∗ · diag(BT, 1), C̃) = (1± ε)
n∑

i=1

dist(Apxi∗ · diag(BT, 1), C̃)

for all k-center sets C̃ ⊆ Ŝ, then for any k center set C ⊆ Rd+1, we have∑
i∈T

widist(Apxi∗ · diag(BT, 1), C) =
∑
i∈T

widist(Apxi∗ · diag(BT, 1), Ĉ)

= (1± ε)
n∑

i=1

dist(Apxi∗ · diag(BT, 1), Ĉ)

= (1± ε)
n∑

i=1

dist(Apxi∗ · diag(BT, 1), C).

Thus, preserving the k-median distances with respect to the k center sets that lie in Ŝ, preserves the k-median distances
to all the center sets in Rd+1. Using the coreset construction of Feldman and Langberg (2011) on the matrix Apx, we can
obtain a subset T ⊆ [n] of size Õ(k4/ε8) along with weights wi such that for any k-center set C ⊆ Rd+1, we have

∑
i∈T

widist(Apxi∗ · diag(BT, 1), C) = (1± ε)
n∑

i=1

dist(Apxi∗ · diag(BT, 1), C).

As Apx is an n× poly(k/ε)-sized matrix, the algorithm of Feldman and Langberg (2011) can be run in time n · poly(k/ε).
Thus, the above subset T and weights wi for i ∈ T can be found in time npoly(k/ε). Now, for any k-center set C ⊆ Rd,
we have that

n∑
i=1

dist(Ai∗, C) = (1± ε)
n∑

i=1

√
dist(BXT

i∗, C) + v2i

= (1± ε)
n∑

i=1

dist(Apxi∗ · diag(BT, 1), C+1)

= (1± ε)
∑
i∈T

widist(Apxi∗ · diag(BT, 1), C+1).

Therefore we obtain a coreset of size Õ(k4/ε8) in overall time Õ(nnz(A)/ε2 + (n+ d)poly(k/ε)).
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F. Near-Linear Time Coreset for k-Median
Let A ∈ Rn×d be the dataset, where each row Ai∗ of A denotes a point in Rd, for i ∈ [n]. We observe that the coreset
construction of Huang and Vishnoi (2020) can be implemented in Õ(nnz(A) + (n+ d)poly(k/ε)) time. The authors only
need to compute a constant factor approximation and assignment of each point to a center, which gives a constant factor
approximation to the optimum. We show that we can compute such an assignment in time O(nnz(A)+ (n+d)poly(k/ε)).

The usual k-median objective is the following

min
y1,...,yk∈Rd

n∑
i=1

min
j
‖A∗i − yj‖2.

We can restrict yj to be a row of A∗i and lose at most a factor of 2 as follows. Suppose y∗1 , . . . , y
∗
k is the optimal solution.

Let C∗ = (C∗1 , C∗2 , . . . , C∗n) be the partition of [n] induced by the optimal solution y∗1 , . . . , y
∗
k, where C∗j denotes all the

indices i such that y∗j is the closest center to Ai∗. Therefore, the optimal cost for k-median is

OPT =
k∑

j=1

∑
i∈C∗j

d(Ai∗, y
∗
j ).

Let Ac(j) be the point closest to y∗j , i.e.,

for all i ∈ C∗j , d(Ai∗, y
∗
j ) ≥ d(Ac(j)∗, y

∗
j ).

We claim that the k-median cost of the centers Ac(1), . . . , Ac(k) is at most twice the optimum:

k∑
j=1

∑
i∈C∗j

d(Ai∗, Ac(j)∗) ≤
k∑

j=1

∑
i∈C∗j

d(Ai∗, y
∗
j ) + d(Ac(j)∗, y

∗
j )

 ≤ k∑
j=1

∑
i∈C∗j

2d(Ai∗, y
∗
j ) ≤ 2OPT.

Metric k-median In this version of k-median, we restrict to center sets C that are subsets of the data, i.e., we solve the
optimization problem

min
y1,...,yk∈A

n∑
i=1

min
j
‖A∗i − yj‖2.

Let OPTmetric denote the optimum objective value for metric k-median. From the above, we obtain that

OPTmetric ≤ 2OPT.

Therefore, a c-approximate solution for metric k-median is at most a 2c-approximate solution for Euclidean k-median. Let
Π be a Johnson Lindenstrauss matrix embedding Rd into Rm, where m = O(log(n)), such that

1

2
d(Ai∗, Ai′∗) ≤ d(ΠAi∗,ΠAi′∗) ≤

3

2
d(Ai∗, Ai′∗)

for all i, i′ ∈ [n]. Now consider the metric k-median problem on the points ΠA1∗, . . . ,ΠAn∗. We can obtain an 11-
approximate solution to the metric k-median problem in time Õ(nk + k7) (see Theorem 6.2 of (Chen, 2009)). Let
Ac∗(1)∗, . . . , Ac∗(k)∗ be the optimal centers for the metric k-median problem on A1∗, . . . , An∗, and ΠAc′(1), . . . ,ΠAc′(k)

be an 11-approximate solution to the metric k-median on ΠA1∗, . . . ,ΠAn∗. Let C′ = (C1, . . . , C′k) be the partition of [n]
corresponding to this 11-approximate solution. Then the following shows that Ac′(1), . . . , Ac′(k) is a good solution for the
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metric k-median problem on the original dataset:

k∑
j=1

∑
i∈C′j

d(Ai∗, Ac′(j)∗) ≤ 2

k∑
j=1

∑
i∈C′j

d(ΠAi∗,ΠAc′(j)∗)

≤ 2 · 11

k∑
j=1

∑
i∈C∗j

d(ΠAi∗,ΠAc∗(j)∗)

≤ 2 · 11 · 3

2

k∑
j=1

∑
i∈C∗j

d(Ai∗, Ac∗(j)∗)

≤ 33OPTmetric ≤ 66OPT.

The time taken to compute ΠA1∗, . . . ,ΠAn∗ is O(nnz(A) log(n)), and then we can compute the k centers and an assign-
ment of points such that this is a 66-approximate solution in time Õ(nk + k7). Using this assignment, we can implement
the first stage of importance sampling in the algorithm of Huang and Vishnoi (2020) in time Õ(nnz(A) + n · poly(k/ε)).
We note that the first stage of the algorithm of Huang and Vishnoi (2020) only needs a constant factor approximation of the
distance of a point to its assigned centers, which can be computed as d(ΠAi∗,ΠAc′(j)∗), in time Õ(log(n)), if the point i
is assigned to cluster j. The second stage of their algorithm can be implemented in time d · poly(k/ε). Thus, we can find a
strong coreset for k-median in time

Õ(nnz(A) + (n+ d) · poly(k/ε)).


