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Algorithm 3 Value Estimators
1: Routine: V π-ESTIMATOR
2: Input: starting state s.
3: Execute π from s; at any step t with (st, at), terminate with probability 1− γ.
4: Return: V̂ π(s) =

∑t
i=0 r(si, ai), where s0 = s.

5: Routine: Qπ-ESTIMATOR
6: Input: starting state-action (s, a).
7: Execute π from (s, a); at any step t with (st, at), terminate with probability 1− γ.
8: Return: Q̂π(s, a) =

∑t
i=0 r(si, ai), where (s0, a0) = (s, a).

Algorithm 4 dπ Sampler
1: Routine: dπν -SAMPLER
2: Input: ν ∈ ∆(S ×A), π.
3: Sample s0, a0 ∼ ν;
4: Execute π from s0, a0; at any step t with (st, at), terminate with probability 1− γ.
5: Return: (st, at).

A. Omitted pseudocodes from main text
We give the pseudocodes for value estimators and visitation distribution sampler in Algorithms 3 and 4 respectively.
Combining them, we are able to generate samples for critic fit.

B. Proof Setup
B.1. Definition and Notation

We denote byM the original MDP and π̃ an arbitrary fixed comparator policy (e.g., an optimal policy). Our target is to
show that after N epochs, ENIAC is able to output a policy whose value is larger than V π̃ minus some problem-dependent
constant. First we describe the construction of some auxiliary MDPs, which is conceptually similar to Agarwal et al. (2020a),
modulo the difference in the bonus functions.

For each epoch n ∈ [N ], we consider three MDPs: the original MDPM, the bonus-added MDPMbn := (S,A, P, r+bn, γ),
and an auxiliary MDPMn. Mn is defined as (S,A ∪ {a†}, Pn, rn, γ), where a† is an extra action which is only available
for s /∈ Kn (recall that s ∈ Kn if and only if bn(s, a) ≡ 0 for all a ∈ A). For all (s, a) ∈ S ×A,

Pn(·|s, a) = P (·|s, a), rn(s, a) = r(s, a) + bn(s, a).

For s /∈ Kn,

Pn(s|s, a†) = 1, rn(s, a†) = 1.

Basically, a† allows the agent to stay in a state s /∈ Kn while accumulating maximum instant rewards.

GivenMn, we further define π̃n such that π̃n(·|s) = π̃(·|s) for s ∈ Kn and π̃n(a†|s) = 1 for s /∈ Kn. We denote by d̃Mn

the state-action distribution induced by π̃n onMn and dπ̃ the state-action distribution induced by π̃ onM.

Additional Notations Given a policy π, we denote by V πbn , Q
π
bn , and Aπbn the state-value, Q-value, and advantage function

of π onMbn and V πMn , QπMn , and AπMn for the counterparts onMn. For the policy πnt , i.e., the policy at the tth iteration
in the nth epoch of ENIAC, we further simplify the notation as V tbn , Q

t
bn , and Atbn and also V tMn , QtMn , and AtMn .

Remark 2. Note that only π̃n can take the action a† for s /∈ Kn. All policies {πnt } is not aware of a† and therefore,
V tbn = V tMn , Qtbn = QtMn , and Atbn = AtMn .

Based on the above definitions, we directly have the following two lemmas.

Lemma B.1. Consider any state s ∈ Kn, we have:

d̃Mn(s, a) ≤ dπ̃(s, a), ∀a ∈ A.
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Proof. The proof follows that of Lemma B.1. in (Agarwal et al., 2020a). We present below for the readers’ convenience.

We prove by induction over the time steps along the horizon. Recall d̃Mn is the state-action distribution of π̃n overMn and
dπ̃ is the state-action distribution of π̃ on bothMbn andM as they share the same dynamics. We use another subscript h to
indicate the step index, e.g., d̃Mn,h is the state-action distribution at the hth step following π̃n onMn.

Starting at h = 0, if s0 ∈ Kn, then π̃n(·|s0) = π̃(·|s0) and we can easily get:

d̃Mn,0(s0, a) = dπ̃0 (s0, a), ∀a ∈ A.
Now we assume that at step h, for all s ∈ Kn, it holds that

d̃Mn,h(s, a) ≤ dπ̃h(s, a), ∀a ∈ A.
Then, for step h+ 1, by definition we have that for s ∈ Kn

d̃Mn,h+1(s) =
∑
s′,a′

d̃Mn,h(s′, a′)PMn(s|s′, a′)

=
∑
s′,a′

1{s′ ∈ Kn}d̃Mn,h(s′, a′)PMn(s|s′, a′)

=
∑
s′,a′

1{s′ ∈ Kn}d̃Mn,h(s′, a′)P (s|s′, a′),

where the second line is due to that if s′ /∈ Kn, π̃ will deterministically pick a† and PMn(s|s′, a†) = 0. On the other hand,
for dπ̃h+1(s, a), it holds that for s ∈ Kn,

dπ̃h+1(s) =
∑
s′,a′

dπ̃h(s′, a′)P (s|s′, a′)

=
∑
s′,a′

1{s′ ∈ Kn}dπ̃h(s′, a′)P (s|s′, a′) +
∑
s′,a′

1{s′ /∈ Kn}dπ̃h(s′, a′)P (s|s′, a′)

≥
∑
s′,a′

1{s′ ∈ Kn}dπ̃h(s′, a′)P (s|s′, a′)

≥
∑
s′,a′

1{s′ ∈ Kn}d̃Mn,h(s′, a′)P (s|s′, a′) = d̃Mn,h+1(s).

Using the fact that π̃n(·|s) = π̃(·|s) for s ∈ Kn, we conclude that the inductive hypothesis holds at h+ 1 as well. Using the
definition of the average state-action distribution, we conclude the proof.

Lemma B.2. For any epoch n ∈ [N ], we have

V π̃
n

Mn ≥ V π̃M.

Proof. The result is straightforward since if following π̃n we run into some s /∈ Kn, then by definition, π̃n is able to collect
maximum instant rewards for all steps later.

B.2. Proof Sketch

We intend to compare the values of the output policy πNave := Unif(π2, π3, . . . , πN+1) and the comparator π̃. To achieve
this, we use two intermediate quantities V π

n+1

bn and V π̃
n

Mn and build the following inequalities as bridges:

V π
N
ave =

1

N

N∑
n=1

V π
n+1

≥ 1

N

N∑
n=1

V π
n+1

bn −A, V π
n+1

bn = V π
n+1

Mn ≥ V π̃
n

Mn −B, V π̃
n

Mn ≥ V π̃,

where A and B are two terms to be specified. If the above relations all hold, the desired result is natually induced. For these
inequalities, we observe that

1. The leftmost inequality is about the value differences of a sequence of policies (π2, π3, . . . , πN+1) on two different
reward functions (with or without the bonus). Thus, it is bounded by the cumulative bonus, or equivalently, the expected
bonus over the state-action measure induced by these policies, which we use the eluder dimension of the approximation
function class to bound. We present this result for SPI-Sample, SPI-Compute, and NPG-Sample in Lemma C.1, C.5,
and D.2, respectively.
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2. The rightmost inequality is proved in Lemma B.2.

3. To show the middle inequality, we analyze the convergence of actor-critic updates, leveraging properties of the
multiplicative weight updates for a regret bound following the analysis of Agarwal et al. (2020c).

In the sequel, we present sample complexity analysis for ENIAC-SPI-SAMPLE, ENIAC-SPI-COMPUTE, and ENIAC-
NPG-SAMPLE. ENIAC-NPG-COMPUTE can be easily adapted with minor changes of the assumptions. In particular, we
provide general results considering model misspecification and the theorems in the main body fall as special cases under
Assumption 4.1 or 4.4.

C. Analysis of ENIAC-SPI
In this section, we provide analysis for ENIAC-SPI-SAMPLE and ENIAC-SPI-COMPUTE. We start with stating the
assumptions which quantifies model misspecification.
Assumption C.1 (Bounded Transfer Error). Given a target function g : S × A → R, we define the critic loss function
L(f ; d, g) with d ∈ ∆(S ×A) as:

L(f ; d, g) := E(s,a)∼d

[(
f(s, a)− g(s, a)

)2]
.

For the fixed comparator policy π̃ (defined at the beginning of Section B.1), we define d̃(s, a) := dπ̃s0(s) ◦ Unif(A). In
ENIAC-SPI (both sample and compute versions), for every epoch n ∈ [N ] and every iteration t inside epoch n, we assume
that

inf
f∈Fnt

L(f ; d̃, Qtbn − bn) ≤ εbias,

where Fnt := argminf∈F L(f ; ρncov, Q
t
bn − bn) and εbias ≥ 0 is some problem-dependent constant.

εbias measures both approximation error and distribution shift error. In later proof, we select a particular function in f̃nt ∈ Fnt
such that

L(f̃nt ; d̃, Qtbn − bn) ≤ 2εbias. (16)
We establish complexity results by comparing the empirical minimizer fnt of (6) with this optimal fitter f̃nt .
Assumption C.2. For the same loss L as defined in Assumption C.1 and the fitter f̃nt , we assume that there exists some
C ≥ 1 and ε0 ≥ 0 such that for any f ∈ F ,

E(s,a)∼ρncov

[(
f(s, a)− f̃nt (s, a)

)2] ≤ C · (L(f ; ρncov, Q
t
bn − bn)− L(f̃nt ; ρncov, Q

t
bn − bn)

)
+ ε0

for n ∈ [N ] and 0 ≤ t ≤ T − 1.
Remark 3. Under Assumption 4.1, Qtbn − bn = Eπnt [r(s, a) + γQtbn(s′, a′)] ∈ F . Thus, εbias can take value 0 and
f̃nt = Qtbn − bn. Further in Assumption C.2, we have

E(s,a)∼ρncov

[(
f(s, a)− f̃nt (s, a)

)2]
= L(f ; ρncov, Q

t
bn − bn).

Thus, C can take value 1 and ε0 = 0. If Qtbn − bn is not realizable in F , εbias and ε0 could be strictly positive. Hence, the
above two assumptions are generalized version of the closedness condition considering model misspecification.

C.1. Sample Complexity of ENIAC-SPI-SAMPLE

We follow the proof steps in Section B.2 and first establish a bonus bound.
Lemma C.1 (SPI-SAMPLE: The Bound of Bonus). With probability at least 1−Nδ, it holds that

N∑
n=1

(
V π

n+1

bn − V π
n+1
)
≤ 2ε2 + 8KW 2 + β2

(1− γ)β2K
· dimE(F , β) +

N

1− γ

√
log(2/δ)

2K
.

Proof.
N∑
n=1

(
V π

n+1

bn − V π
n+1)

≤
N∑
n=1

E(s,a)∼dn+11{(s, a) /∈ Kn}/(1− γ)

=

N∑
n=1

E(s,a)∼dn+11{w(F̃n, s, a) ≥ β}/(1− γ),
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where dn+1 denotes the state-action distribution induced by πn+1 on M. We denote by Dn the sampled dataset
{(si, ai)}Ki=1 ∼ dn at the beginning of epoch n. Then Zn = Zn−1 ∪ Dn. By Hoeffding’s inequality, with probabil-
ity at least 1− δ,

E(s,a)∼dn+11{w(F̃n, s, a) ≥ β} ≤ 1

K

∑
(s,a)∈Dn+1

1{w(F̃n, s, a) ≥ β}+

√
log(2/δ)

2K
.

Taking the union bound, with probability at least 1−Nδ, we have
N∑
n=1

V π
n+1

bn − V π
n+1

≤ 1

K(1− γ)

N∑
n=1

∑
(s,a)∈Dn+1

1{w(F̃n, s, a) ≥ β}+
N

1− γ

√
log(2/δ)

2K
. (17)

Next we bound the first term in Equation (17) following a similar process as in (?)Proposition 3]russo2013eluder. We
simplify w(F̃n, ·, ·) as wn(·, ·) and label all samples in Zn in lexical order, e.g., (sn+1

i , an+1
i ) denotes the ith sample in

Dn+1. For every (sn+1
i , an+1

i ), we define a sequence Sn+1
i−1 which contains all samples generated before (sn+1

i , an+1
i ), i.e.,

Sn+1
i−1 :=

(
(s1

1, a
1
1), . . . , (s1

K , a
1
K), (s2

1, a
2
1), · · · (snK , anK), (sn+1

1 , an+1
1 ), . . . , (sn+1

i−1 , a
n+1
i−1 )

)
(18)

Next we show that,
N∑
n=1

∑
(s,a)∈Dn+1

1{wn(s, a) ≥ β} ≤
(

2ε2/β2 + 8W 2K/β2 + 1
)
· dimE(F , β). (19)

For n ≤ N , if wn(sn+1
i , an+1

i ) > β then (sn+1
i , an+1

i ) is β-dependent with respect to F on fewer than 8(ε)2/β2 +
32W 2K/β2 disjoint subsequences of Sn+1

i−1 . To see this, note that if wn(sn+1
i , an+1

i ) > β, there exists f̄ , f ∈ F
such that f̄ − f ∈ F̃n and f̄(sn+1

i , an+1
i ) − f(sn+1

i , an+1
i ) ≥ β. By definition, if (sn+1

i , an+1
i ) is β-dependent on

a subsequence
(
(st1 , at1), . . . , (stk , atk)

)
of Sn+1

i−1 , then
∑k
j=1(f̄

(
stj , atj ) − f(stj , atj )

)2 ≥ β2. It follows that, if
(sn+1
i , an+1

i ) is β-dependent on L disjoint subsequences of Sn+1
i−1 then ‖f̄ − f‖2

Sn+1
i−1

≥ Lβ2, where we recall our notation

‖f‖S =
√∑

x∈S f(x)2. By the definition of F̃n and Sn+1
i−1 = Zn ∪ {(sn+1

j , an+1
j )}i−1

j=1, we have

‖f̄ − f‖Sn+1
i−1
≤ ‖f̄ − f‖Zn + ‖f̄ − f‖{(sn+1

j ,an+1
j )}i−1

j=1
≤ ε+ 2W

√
i− 1 ≤ ε+ 2W

√
K,

where W is an upper bound of ‖f‖∞. Hence, L < 2ε2/β2 + 8W 2K/β2.

Next, we show that in any state-action sequence ((s1, a1), . . . , (sτ , aτ )), there is some j ≤ τ such that the element (sj , aj)
is β-dependent with respect to F on at least τ/d − 1 disjoint subsequences of the subset ((s1, a1), . . . , (sj−1, aj−1)),
where d := dimE(F , β). Here we assume that τ ≥ d since otherwise the claim is trivially true. To see this, for an
integer L safistying Ld + 1 ≤ τ ≤ (L + 1) · d, we will construct L disjoint subsequences S1, . . . , SL one element at a
time. First, for each i ∈ [L] add (si, ai) to the subsequence Si. Now, if (sL+1, aL+1) is β-dependent on all subsequences
S1, . . . , SL, our claim is established. Otherwise, select a subsequence Si such that (sL+1, aL+1) is β-independent of it and
append (sL+1, aL+1) to Si. Repeat this process for elements with indices j > L+ 1 until (sj , aj) is β-dependent on all
subsequences or j = τ . In the latter scenario, since τ − 1 elements have already been put in subsequences, we have that∑
|Sj | ≥ L · d. However, by the definition of dimE(F , β), since each element of a subsequence Sj is β-independent of its

predecessors, we must have |Sj | ≤ d, ∀j ∈ [L] and therefore,
∑
|Sj | ≤ L · d. In this case, (sτ , aτ ) must be β-dependent on

all subsequences.

Now consider the subsequence Sβ :=
(
(sn1
i1
, an1
i1

), . . . , (snτiτ , a
nτ
iτ

)
)

of SN+1
K which consists of all elements such that

wn
(
(sn+1
i , an+1

i )
)
≥ β. With that being said, Sβ consists of all sample points where large width occurs from epoch 1

to epoch N . The indices in Sβ are in lexical order and (s
nj
ij
, a
nj
ij

) denotes the jth element in Sβ . As we have established,
each (s

nj
ij
, a
nj
ij

) is β-dependent on fewer than 2ε2/β2 + 8W 2K/β2 disjoint subsequences of Snjij−1 (recall the definition in
Equation (18)). It follows that each (s

nj
ij
, a
nj
ij

) is β-dependent on fewer than 2ε2/β2 + 8W 2K/β2 disjoint subsequences
of ((sn1

i1
, an1
i ), . . . , (s

nj−1

ij−1
, a
nj−1

ij−1
)) ⊂ Sβ , i.e., the elements in Sβ before (s

nj
ij
, a
nj
ij

). Combining this with the fact we
have established that there exists some (s

nj
ij
, a
nj
ij

) that is β-dependent on at least τ/d − 1 disjoint subsequences of
((sn1

i1
, an1
i ), . . . , (s

nj−1

ij−1
, a
nj−1

ij−1
)), we have τ/d−1 ≤ 2ε2/β2+8W 2K/β2. It follows that τ ≤

(
2ε2/β2+8W 2K/β2+1

)
·d,

which is Equation (19).

Combining all above results, with probability at least 1−Nδ,
N∑
n=1

(
V π

n+1

bn − V π
n+1
)
≤ 2ε2 + 8KW 2 + β2

(1− γ)β2K
· dimE(F , β) +

N

1− γ

√
log(2/δ)

2K
.
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Next we prove the last step in Section B.2. For notation brevity, we focus on a specific epoch n and drop the dependence on
n in the policy and critic functions. We define

Âtbn(s, a) := ft(s, a) + bn(s, a)− Ea′∼πt(·|s)[ft(s, a
′) + bn(s, a′)], (20)

where ft is the output of the critic fit step at iteration t in epoch n. It can be easily verified that Ea∼πt(·|s)Âtbn(s, a) = 0 and
the SPI-SAMPLE update in Equation (7) is equivalent to

πt+1(·|s) ∝ πt(·|s) exp
(
ηÂtbn(s, ·)1{s ∈ Kn}

)
, ∀s ∈ S. (21)

Âtbn is indeed our approximation to the true advantage function Atbn . In the sequel, we show that the actor-critic convergence
is upper bounded by the approximation error which can further be controlled with sufficient samples under our assumptions.

Lemma C.2 (SPI-SAMPLE: Actor-Critic Convergence). In ENIAC-SPI-SAMPLE, let Âtbn be as defined in Equation (20)

and the stepsize η =
√

log(|A|)
16W 2T . For any epoch n ∈ [N ], SPI-SAMPLE obtains a sequence of policies {πt}T−1

t=0 such that
when comparing to π̃n:

1

T

T−1∑
t=0

(V π̃
n

Mn − V tbn) =
1

T

T−1∑
t=0

(V π̃
n

Mn − V tMn)

≤ 1

1− γ

(
8W

√
log(|A|)

T
+

1

T

T−1∑
t=0

E(s,a)∼d̃Mn

[(
Atbn(s, a)− Âtbn(s, a)

)
1{s ∈ Kn}

] )
.

Proof. The equality is mentioned in Remark 2. We first show that AtMn(s, a†) ≤ 0 for any s /∈ Kn. Since πt uniformly
randomly selects an unfamiliar action with bonus 1/(1− γ) for s /∈ Kn, we have V tMn(s) ≥ 1/(1− γ). Thus,

AtMn(s, a†) = QtMn(s, a†)− V tMn(s) = 1− (1− γ) · V tMn(s) ≤ 0, ∀s /∈ Kn,

where QtMn(s, a†) = 1 + γV tMn(s) (a† leads s to s). Based on the above result, we have

V π̃
n

Mn − V tMn =
1

1− γ
∑
(s,a)

d̃Mn(s, a)AtMn(s, a)

=
1

1− γ
∑
(s,a)

d̃Mn(s, a)AtMn(s, a)1{s ∈ Kn}+
1

1− γ
∑
(s,a)

d̃Mn(s, a)AtMn(s, a)1{s /∈ Kn}

=
1

1− γ
∑
(s,a)

d̃Mn(s, a)AtMn(s, a)1{s ∈ Kn}+
1

1− γ
∑
s

d̃Mn(s)AtMn(s, a†)1{s /∈ Kn}

≤ 1

1− γ
∑
(s,a)

d̃Mn(s, a)AtMn(s, a)1{s ∈ Kn}

=
1

1− γ
∑
(s,a)

d̃Mn(s, a)Atbn(s, a)1{s ∈ Kn}

=
1

1− γ

(
E(s,a)∼d̃Mn

[
Âtbn(s, a)1{s ∈ Kn}

]
+ E(s,a)∼d̃Mn

[
(Atbn(s, a)− Âtbn(s, a))1{s ∈ Kn}

])
(22)

where the first line is by the performance difference lemma in Kakade (2003), the third line is due to that π̃n deterministically
picks a† for s /∈ Kn, and the fifth line follows that πt never picks a† so for any action a ∈ A we have AtMn = Atbn .

Next we establish an upper bound of the first term in Equation (22). Recall that in SPI-SAMPLE the policy update is
equivalent to (21). Thus, for s ∈ Kn, we have

KL
(
π̃n(·|s), πt+1(·|s)

)
−KL

(
π̃n(·|s), πt(·|s)

)
= Ea∼π̃n(·|s)[−ηÂtbn(s, a) + log(zt(s))],

where zt(s) :=
∑
a πt(a|s) exp(ηÂtbn(s, a)). Since |Âtbn(s, a)| ≤ 4W and when T > log(|A|), η < 1/(4W ), we have

ηÂtbn(s, a) ≤ 1. By the inequality that exp(x) ≤ 1 + x+ x2 for x ≤ 1 and log(1 + x) ≤ x for x > −1,

log(zt(s)) ≤ η
∑
a

πt(a|s)Âtbn(s, a) + 16η2W 2 = 16η2W 2.
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Hence, for s ∈ Kn,
KL(π̃n(·|s), πt+1(·|s))−KL(π̃n(·|s), πt(·|s)) ≤ −ηEa∼π̃n(·|s)[Â

t
bn(s, a)] + 16η2W 2.

Adding both sides from t = 0 to T − 1 and taking η =
√

log(|A|)
16W 2T , we get

T−1∑
t=0

E(s,a)∼d̃Mn
[Âtbn(s, a)1{s ∈ Kn}]

=

T−1∑
t=0

1

η
Es∼d̃Mn

[(
KL(π̃n(·|s), π0(·|s))−KL(π̃n(·|s), πT (·|s))

)
1{s ∈ Kn}

]
+ 16ηTW 2

≤ log(|A|)/η + 16ηTW 2 ≤ 8W
√

log(|A|)T ,
where the inequality follows that π0(·|s) = Unif(A). Lastly, combining with Equation (22), the regret onMn satisfies

T−1∑
t=0

(V π̃
n

Mn − V tMn) ≤ 1

1− γ

(
8W
√

log(|A|)T +

T∑
t=1

E(s,a)∼d̃Mn

[(
Atbn(s, a)− Âtbn(s, a)

)
1{s ∈ Kn}

])
.

Next, we analyze the approximation error and build an upper bound on Atbn − Âtbn . Recall that Atbn is the true advantage of
policy πnt in the bonus-added MDP and Âtbn is an approximation to Atbn with the empirical minimizer ft as defined in (20).
We still focus on a specific epoch n and simplify the notation f̃nt as defined in (16) to f∗t .

Lemma C.3 (SPI-SAMPLE: Approximation Bound). At epoch n, assume for all 0 ≤ t ≤ T − 1:
L(ft; ρ

n
cov, Q

t
bn − bn) ≤ L(f∗t ; ρncov, Q

t
bn − bn) + εstat, (23)

where εstat > 0 is to be determined in the next lemma, and let
ε2 = NK

(
C · εstat + ε0 + 16Wε1

)
+ 8W 2 log(N (F , ε1)/δ) ·

√
NK, (24)

where ε is used in bonus function (see Section 3.3) and C, ε0 are defined in Assumption C.2, and ε1 > 0 denotes the function
cover radius which will be determined later. Under Assumption C.1 and C.2, we have that for every 0 ≤ t ≤ T − 1, with
probability at least 1− δ,

E(s,a)∼d̃Mn

(
Atbn(s, a)− Âtbn(s, a)

)
1{s ∈ Kn} ≤ 4

√
|A|εbias + 2β.

Proof. To analyze the difference between Atbn and Âtbn , we introduce an intermediate variable A∗t (s, a) := f∗t + bn −
Ea′∼πt(·|s)[f∗t + bn], i.e., the approximated advantage generated by the selected best on-policy fit. Then

E(s,a)∼d̃Mn
(Atbn − Âtbn)1{s ∈ Kn} = E(s,a)∼d̃Mn

[
(Atbn −A∗t )1{s ∈ Kn}+ (A∗t − Âtbn)1{s ∈ Kn}

]
.

For the first difference, we have

E(s,a)∼d̃Mn

(
Atbn −A∗t

)
1{s ∈ Kn}

= E(s,a)∼d̃Mn

(
Qtbn − f∗t − bn

)
1{s ∈ Kn} − Es∼d̃Mn ,a∼πt(·|s)(Q

t
bn − f∗t − bn)1{s ∈ Kn}

≤
√

E(s,a)∼d̃Mn
(Qtbn − f∗t − bn)21{s ∈ Kn}+

√
Es∼d̃Mn ,a∼πt(·|s)(Q

t
bn − f∗t − bn)21{s ∈ Kn}

≤
√
E(s,a)∼dπ̃ (Qtbn − f∗t − bn)21{s ∈ Kn}+

√
Es∼dπ̃,a∼πt(·|s)(Qtbn − f∗t − bn)21{s ∈ Kn}

=
√
E(s,a)∼d̃ |A|π̃(a|s) · (Qtbn − f∗t − bn)21{s ∈ Kn}+

√
E(s,a)∼d̃ |A|πt(a|s) · (Qtbn − f∗t − bn)21{s ∈ Kn}

< 4
√
|A|εbias,

where the first inequality is by Cauchy-Schwarz, the second inequality is by Lemma B.1, and the last two lines follow
Assumption C.1 and the definition of f∗t .

For the second difference,
E(s,a)∼d̃Mn

(A∗t − Âtbn)1{s ∈ Kn}

=E(s,a)∼d̃Mn
(f∗t − ft)1{s ∈ Kn} − Es∼d̃Mn ,a∼πt(·|s)(f

∗
t − ft)1{s ∈ Kn} (25)
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Next we show that ∆ft := (f∗t − ft) ∈ F̃n. Recall that F̃n := {∆f ∈ ∆F | ‖∆f‖Zn ≤ ε}. We only need to
show that ‖∆ft‖Zn ≤ ε. To achieve this, we plan to utilize the fact that ft is trained with samples generated from
ρncov := Unif(dπ

1

s0 , d
π2

s0 , . . . , d
πn

s0 ) while Zn is sequentially constructed with samples from dπ
i

s0 , i ∈ [n]. However, such a
correlation does not guarantee a trivial concentration bound. We need to deal with the subtle randomness dependency
therein: 1. πi depends on π[i−1] thus the samples in Zn are not independent; 2. Zn determines F̃n, F̃n defines the bonus
bn, and ∆ft is obtained based on bn. So ∆ft and Zn are not independent. Nevertheless, we carefully leverage function
cover on ∆F to establish a martingale convergence on every anchor function in the cover set, then transform to a bound on
the realization ∆ft.

Let C(∆F , 2ε1) be a cover set of ∆F . Then for every ∆f ∈ ∆F , there exists a ∆g ∈ C(∆F , 2ε1) such that ‖∆f−∆g‖∞ ≤
2ε1. We rank the samples in Zn in lexical order, i.e., (sik, a

i
k) is the kth sample generated following dπ

i

s0 at the beginning of
the ith epoch. There are in total nK samples in Zn. For every ∆g ∈ C(∆F , 2ε1), we define nK corresponding random
variables:

X∆g
(i,k) := (∆g(sik, a

i
k))2 − E(s,a)∼dπis0

[(∆g(s, a))2], i ∈ [n], k ∈ [K]

We rank {X∆g
(i,k)} in lexical order and upon which, we define a martingale:

Y ∆g
0,0 = 0, Y ∆g

(i,k) =

(i,k)∑
(i′,k′)=(1,1)

X∆g
(i′,k′), i ∈ [n], k ∈ [K].

Then by single-sided Azuma-Hoeffding’s inequality, with probability at least 1− δ, for all ∆g ∈ C(∆F , 2ε1), it holds that

Y ∆g
(n,K) ≤

√
32W 4 · nK · log

(N (∆F , 2ε1)

δ

)
≤
√

64W 4 · nK · log
(N (F , ε1)

δ

)
, (26)

where the right inequality is by Lemma E.1. Next, we transform to ∆ft. Since there exists a ∆g ∈ C(∆F , 2ε1) such that
‖∆ft −∆g‖∞ ≤ 2ε1, we have that for all i ∈ [n] and k ∈ [K],∣∣(∆ft(sik, aik))2 − (∆g(sik, a

i
k))2

∣∣
= |∆ft(sik, aik)−∆g(sik, a

i
k)| · |∆ft(sik, aik) + ∆g(sik, a

i
k))| ≤ 8Wε1

and ∣∣∣E(s,a)∼dπis0
[(∆ft(s, a))2]− E(s,a)∼dπis0

[(∆g(s, a))2]
∣∣∣

≤ E(s,a)∼dπis0
|∆ft(s, a)−∆g(s, a)| · |∆ft(s, a) + ∆g(s, a)| ≤ 8Wε1

Therefore,

Y ∆ft
(n,K) =

(n,K)∑
(i,k)=(1,1)

(∆ft(s
i
k, a

i
k))2 − E(s,a)∼dπis0

[(∆ft(s, a))2] (27)

≤
(n,K)∑

(i,k)=(1,1)

(∆g(sik, a
i
k))2 − E(s,a)∼dπis0

[(∆g(s, a))2] + nK · 16Wε1

= Y ∆g
(n,K) + nK · 16Wε1.

Note that

Y ∆ft
(n,K) = ‖∆ft‖2Zn −

n∑
i=1

K · Edπis0
[(∆ft)

2] = ‖∆ft‖2Zn − nK · Eρncov
[(∆ft)

2]. (28)

Combining (26), (27), and (28), we have that

‖∆ft‖2Zn ≤ nK · Eρncov
[(∆ft)

2] + nK · 16Wε1 +

√
64W 4 · nK · log

(N (F , ε1)

δ

)
.

By Assumption C.2,
Eρncov

[(∆ft)
2] = E(s,a)∼ρncov

[(f∗t − ft)2] ≤ C · (L(ft; ρ
n
cov, Q

t
bn − bn)− L(f∗t ; ρncov, Q

t
bn − bn)) + ε0

≤ C · εstat + ε0.

By the choice of ε, ‖∆ft‖2Zn ≤ ε2 with probability at least 1 − δ. Thus, ∆ft ∈ F̃n and for all (s, a) ∈ Kn, |f∗t (s, a) −
ft(s, a)| ≤ β. Plugging into (25), we have (25) ≤ 2β. The desired result is obtained.
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Next, we give an explicit form of εstat as defined in Equation (23).

Lemma C.4. Following the same notation as in Lemma C.3, it holds with probability at least 1− δ that

L(ft; ρ
n
cov, Q

t
bn − bn)− L(f∗t ; ρncov, Q

t
bn − bn) ≤

500C ·W 4 · log
(
N (F,ε2)

δ

)
M

+ 13W 2 · ε2 + ε0,

where C, ε0 are defined in Assumption C.2, and ε2 > 0 denotes the function cover radius which will be determined later.

Proof. First note that in the loss function, the expectation has a nested structure: the outer expectation is taken over
(s, a) ∼ ρncov and the inner conditional expectation is Qtbn(s, a) = Eπt [

∑∞
h=0 γ

h
(
r(sh, ah)+bn(sh, ah)

)
|(s0, a0) = (s, a)]

given a sample of (s, a) ∼ ρncov. To simplify the notation, we use x to denote (s, a), y|x for an unbiased sample of
Qtbn(s, a)− bn(s, a), and ν for ρncov, the marginal distribution over x, then the loss function can be recast as

Ex∼ν [(ft(x)− E[y|x])2] := L(ft; ρ
n
cov, Q

t
bn − bn)

Ex∼ν [(f∗t (x)− E[y|x])2] := L(f∗t ; ρncov, Q
t
bn − bn).

In particular, ft can be rewritten as

ft ∈ argmin
f∈F

M∑
i=1

(f(xi)− yi)2,

where (xi, yi) are drawn i.i.d.: xi is generated following the marginal distribution ν and yi is generated conditioned on xi.
For any function f , we have:

Ex,y[(ft(x)− y)2]

= Ex,y[(ft(x)− E[y|x])2] + Ex,y[(E[y|x]− y)2] + 2Ex,y[(ft(x)− E[y|x])(E[y|x]− y)]

= Ex,y[(ft(x)− E[y|x])2] + Ex,y[(E[y|x]− y)2],

where the last step follows from the cross term being zero. Thus we can rewrite the generalization error as
Ex[(ft(x)− E[y|x])2]− Ex[(f∗t (x)− E[y|x])2] (29)

= Ex,y(ft(x)− y)2 − Ex,y(f∗t (x)− y)2.

Next, we establish a concentration bound on ft. Since ft depends on the training set {(xi, yi)}Mi=1, as in Assumption C.3, we
use a function cover on F for a uniform convergence argument. We denote by Fn

t the σ-algebra generated by randomness
before epoch n iteration t. Recall that f∗t ∈ argminf∈F L(f ; ρncov, Q

t
bn − bn). Conditioning on Fn

t , ρncov, Qtbn − bn, and
f∗t are all deterministic. For any f ∈ F , we define

Zi(f) := (f(xi)− yi)2 − (f∗t (xi)− yi)2, i ∈ [M ]

Then Z1(f), . . . , ZM (f) are i.i.d. random variables and
V[Zi(f) |Fn

t ] ≤ E[Zi(f)2 |Fn
t ]

= E
[(

(f(xi)− yi)2 − (f∗t (xi)− yi)2
)2

|Fn
t

]
= E

[(
f(xi)− f∗t (xi)

)2 · (f(xi) + f∗t (xi)− 2yi
)2 |Fn

t

]
≤ 36W 4 · E[

(
f(xi)− f∗t (xi)

)2 |Fn
t ]

≤ 36W 4 · (C · E[Zi(f) |Fn
t ] + ε0),

where the last inequality is by Assumption C.2 and Equation (29). Next, we apply Bernstein’s inequality on the function
cover C(F , ε2) and take the union bound. Specifically, with probability at least 1− δ, for all g ∈ C(F , ε2),

E[Zi(g) |Fn
t ]− 1

M

M∑
i=1

Zi(g)

≤

√
2V[Zi(g) |Fn

t ] · log N (F,ε2)
δ

M
+

12W 4 · log N (F,ε2)
δ

M

≤

√
72W 4(C · E[Zi(g) |Fn

t ] + ε0) · log N (F,ε2)
δ

M
+

12W 4 · log N (F,ε2)
δ

M
.
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For ft, there exists g ∈ C(F , ε2) such that ‖ft − g‖∞ ≤ ε2 and

|Zi(ft)− Zi(g)| =
∣∣(ft(xi)− yi)2 − (g(xi)− yi)2

∣∣
= |ft(xi)− g(xi)| · |ft(xi) + g(xi)− 2yi| ≤ 6W 2ε2.

Therefore, with probability at least 1− δ,

E[Zi(ft) |Fn
t ]− 1

M

M∑
i=1

Zi(ft)

≤E[Zi(g) |Fn
t ]− 1

M

M∑
i=1

Zi(g) + 12W 2ε2

≤

√
72W 4(C · E[Zi(g) |Fn

t ] + ε0) log N (F,ε2)
δ

M
+

12W 4 log N (F,ε2)
δ

M
+ 12W 2ε2

≤

√
72W 4(C · E[Zi(ft) |Fn

t ] + 6CW 2ε2 + ε0) log N (F,ε2)
δ

M
+

12W 4 log N (F,ε2)
δ

M
+ 12W 2ε2.

Since ft is an empirical minimizer, we have 1
M

∑M
i=1 Zi(ft) ≤ 0. Thus,

E[Zi(ft) |Fn
t ] ≤

√
72W 4(C · E[Zi(ft) |Fn

t ] + 6CW 2ε2 + ε0) log N (F,ε2)
δ

M
+

12W 4 log N (F,ε2)
δ

M
+ 12W 2ε2.

Solving the above inequality with quadratic formula and using
√
a+ b ≤

√
a+
√
b,
√
ab ≤ a/2 + b/2 for a > 0, b > 0,

we obtain

E[Zi(ft) |Fn
t ] ≤

500C ·W 4 · log N (F,ε2)
δ

M
+ 13W 2 · ε2 + ε0.

Since the right-hand side is a constant, through taking another expectation, we have

E[Zi(ft)] ≤
500C ·W 4 · log N (F,ε2)

δ

M
+ 13W 2 · ε2 + ε0.

Notice that E[Zi(ft)] = L(ft; ρ
n
cov, Q

t
bn − bn)− L(f∗t ; ρncov, Q

t
bn − bn). The desired result is obtained.

Combining all previous lemmas, we have the following theorem which states the detailed sample complexity of ENIAC-SPI-
SAMPLE (a detailed version of Theorem 4.1)

Theorem C.1 (Main Result: Sample Complexity of ENIAC-SPI-SAMPLE). Let δ ∈ (0, 1) and ε ∈ (0, 1/(1− γ)). With
Assumptions C.1, C.2, 4.2, and 4.3, we set the hyperparameters as:

β =
ε(1− γ)

2
, T =

64W 2 · log |A|
ε2(1− γ)2

, N ≥ 32W 2 · dimE(F , β)

ε3(1− γ)3
, η =

√
log(|A|)
16W 2T

ε1 =
(1− γ)3ε3

128W · dimE(F , β)
, K =

128W 2 · dimE(F , β) ·
(

log( 3NT ·N (F,ε1)
δ )

)2 · log( 6NT
δ )

ε3(1− γ)3
,

ε2 =
(1− γ)3ε3

110C ·W 2 · dimE(F , β)
, M =

4000C2W 4 · dimE(F , β) · log( 3NT ·N (F,ε2)
δ )

ε3(1− γ)3
,

and ε satisfies Equation (24) correspondingly. Then with probability at least 1− δ, for the average policy πNave := πNave :=
Unif(π2, . . . , πN+1), we have

V π
N
ave ≥ V π̃ −

4
√
|A|εbias

1− γ
− ε0 ·

16CdimE(F , β)

ε2(1− γ)3
− 9ε

for any comparator π̃ with total number of samples:

Õ
(C2W 8 ·

(
dimE(F , β)

)2 · ( log(N (F , ε′))
)2

ε8(1− γ)8

)
,

where ε′ = min(ε1, ε2).
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Proof. By Lemma C.1, we have that with probability at least 1−Nδ1,

V π
N
ave ≥ 1

N

N∑
n=1

V π
n+1

bn −2ε2 + 8KW 2 + β2

(1− γ)β2NK
· dimE(F , β) +

1

1− γ

√
log(2/δ1)

2K
. (30)

By Lemma C.2, C.3, and B.2, we have that for every n ∈ [N ], with probability at least 1− 2Tδ1,

V π
n+1

bn ≥ V π̃ − 1

1− γ

(
8W

√
log(|A|)

T
+ 4
√
|A|εbias + 2β

)
. (31)

Combining inequalities (30) and (31), we have with probability at least 1− 3NTδ1,

V π
N
ave ≥ V π̃ − 1

1− γ

(
2ε2 + 8KW 2 + β2

β2NK
· dimE(F , β) +

√
log(2/δ1)

2K

+ 8W

√
log(|A|)

T
+ 4
√
|A|εbias + 2β

)
. (32)

We plug in the value of ε2 in Equation (24) with the bound on εstat in Lemma C.4 and choose hyperparameters such that
every term in (32) (except for the ones with ε0 or εbias) is bounded by ε. Finally, we set δ1 = δ/(3NT ) and ε′ = min(ε1, ε2).
In total, the sample complexity is

N(K + TM) = Õ
(C2W 8 ·

(
dimE(F , β)

)2 · ( log(N (F , ε′))
)2

ε8(1− γ)8

)
.

Corollary 1. If Assumption 4.1 holds, with proper hyperparameters, the average policy πNave := Unif(π2, . . . , πN+1) of
ENIAC-SPI-SAMPLE achieves V π

N
ave ≥ V π̃ − ε with probability at least 1− δ and the sample complexity is

Õ
(W 8 ·

(
dimE(F , β)

)2 · ( log(N (F , ε′))
)2

ε8(1− γ)8

)
.

Proof. The result is straightforward as mentioned in Remark 3 that under Assumption 4.1, εbias = 0, C = 1, and ε0 = 0.

C.2. Sample Complexity of ENIAC-SPI-COMPUTE

In this section, we prove the result for ENIAC-SPI-COMPUTE. SPI-COMPUTE only differs from SPI-SAMPLE at two
places: the value of the bonus and the actor update rule. These differences cause changes in the bonus bound result and
the convergence analysis while Lemma C.3 and C.4 still hold with the same definition of Âtbn as in (20). In the sequel, we
present the bonus bound and the convergence result for SPI-COMPUTE.

Lemma C.5 (SPI-COMPUTE: The Bound of Bonus). With probability at least 1−Nδ,
N∑
n=1

V π
n+1

bn − V π
n+1

≤ |A|
(1− γ)α

· 2ε2 + 8W 2K + β2

β2K
· dimE(F , β) +

N |A|
(1− γ)α

√
log(2/δ)

2K
.

The proof is similar to Lemma C.1. We only need to revise the bonus value from 1
1−γ to |A|

(1−γ)α .

As for the actor-critic convergence, we focus on a specific epoch n and still define

Âtbn(s, a) := ft(s, a) + bn(s, a)− Ea′∼πt(·|s)[ft(s, a
′) + bn(s, a′)]. (33)

It is easy to verify that Ea∼πt(·|s)[Âtbn ] = 0 and for s ∈ Kn, the actor update in SPI-COMPUTE is equivalent to

π′t+1(a|s) ∝ π′t(a|s) exp
(
ηÂtbn(s, a)

)
, πt+1 = (1− α)π′t+1 + αUnif(A)

since bn(s, ·) = 0 for s ∈ Kn. As before, we use Âbn(s, a) to approximate the true advantage of πnt onMbn . Then we
have the following result.

Lemma C.6 (SPI-COMPUTE: Actor-Critic Convergence). In ENIAC-SPI-COMPUTE, let Âtbn be as defined in Equation

(33), η =
√

log(|A|)
16W 2T , and α = 1

1+
√
T

. For any epoch n ∈ [N ], SPI-COMPUTE obtains a sequence of policies {πt}T−1
t=0

such that when comparing to π̃n:
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1

T

T−1∑
t=0

(V π̃
n

Mn − V tbn) =
1

T

T−1∑
t=0

(V π̃
n

Mn − V tMn)

≤ 1

1− γ

(
12W

√
log(|A|)

T
+

1

T

T−1∑
t=0

(
E(s,a)∼d̃Mn

(
Atbn(s, a)− Âtbn(s, a)

)
1{s ∈ Kn}

)
.

Proof of Lemma C.6. Similar to the reasoning in Lemma C.2, we first have that AtMn(s, a†) ≤ 0 for any s /∈ Kn. To see
this, note that for s /∈ Kn, there exists an action with bonus bn = |A|/

(
(1 − γ)α

)
and πt has probability at least α/|A|

selects that action. Therefore, V tMn(s) ≥ 1/(1− γ) and

AtMn(s, a†) = QtMn(s, a†)− V tMn(s) = 1− (1− γ) · V tMn(s) ≤ 0, ∀s /∈ Kn.

Recall that π̃n deterministically picks a† for s /∈ Kn. Based on the above inequality, it holds that

V π̃
n

Mn − V tMn =
1

1− γ
∑
(s,a)

d̃Mn(s, a)AtMn(s, a) ≤ 1

1− γ
∑
(s,a)

d̃Mn(s, a)AtMn(s, a)1{s ∈ Kn}

=
1

1− γ
∑
(s,a)

d̃Mn(s, a)Atbn(s, a)1{s ∈ Kn}. (34)

Next we restrict on s ∈ Kn and establish the consecutive KL difference on {π′t(·|s)}. Specifically, since for s ∈ Kn,
π′t+1(·|s) ∝ π′t(·|s) exp(ηÂtbn(s, a)),

KL(π̃n(·|s), π′t+1(·|s))−KL(π̃n(·|s), π′t(·|s)) = Ea∼π̃n(·|s)[−ηÂtbn(s, a) + log(zt)],

where zt :=
∑
a π
′
t(a|s) exp(ηÂtbn(s, a)). With the assumptions that |Âtbn(s, a)| ≤ 4W and η ≤ 1/(4W ) when T >

log(|A|), we have that ηÂtbn(s, a) ≤ 1. By the inequality that exp(x) ≤ 1 + x+ x2 for x ≤ 1, we have that

log(zt) ≤ log(1 + η
∑
a

π′t(a|s)Âtbn(s, a) + 16η2W 2)

= log

(
1 + η

∑
a

(πt(a|s)
1− α

− α ·Unif(A)

1− α

)
· Âtbn(s, a) + 16η2W 2

)
= log

(
1− ηα

(1− α)|A|
∑
a

Âtbn(s, a) + 16η2W 2

)
≤ log(1 + η

4Wα

1− α
+ 16η2W 2)

≤ 4Wηα

1− α
+ 16η2W 2,

where the second line follows from that π′t = πt
1−α −

αUnif(A)
1−α and the last line follows that log(1 + x) ≤ x for x > 0.

Hence, for s ∈ Kn,

KL(π̃n(·|s), π′t+1(·|s))−KL(π̃n(·|s), π′t(·|s)) ≤ −ηEa∼π̃n(·|s)[Â
t
bn(s, a)] +

4Wηα

1− α
+ 16η2W 2.

Take α = 1
1+
√
T

. Adding both sides from t = 0 to T − 1, we get

T−1∑
t=0

E(s,a)∼d̃Mn
[Âtbn(s, a)1{s ∈ Kn}]

≤1

η
Es∼d̃Mn

[(
KL(π̃n(·|s), π′0(·|s))−KL(π̃n(·|s), π′T (·|s))

)
1{s ∈ Kn}

]
+ 4W

√
T + 16ηTW 2

≤ log(|A|)/η + 4W
√
T + 16ηTW 2 ≤ 12W

√
log(|A|)T .
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Combining with Equation (34), the regret onMn satisfies
T−1∑
t=0

(V π̃
n

Mn − V tMn)

≤ 1

1− γ

( T−1∑
t=0

E(s,a)∼d̃Mn

[
Âtbn(s, a)1{s ∈ Kn}

]
+

T−1∑
t=0

E(s,a)∼d̃Mn

[
Atbn(s, a)− Âtbn(s, a))1{s ∈ Kn}

])

≤ 1

1− γ

(
12W

√
log(|A|)T +

T−1∑
t=0

E(s,a)∼d̃Mn

[(
Atbn(s, a)− Âtbn(s, a)

)
1{s ∈ Kn}

])
.

Since the definition of Âtbn is the same as the one for SPI-SAMPLE, Lemma C.3 and Lemma C.4 are directly applied. In
total, we have the following theorem for the sample complexity of ENIAC-SPI-COMPUTE.

Theorem C.2 (Main Result: Sample Complexity of ENIAC-SPI-COMPUTE). Let δ ∈ (0, 1) and ε ∈ (0, 1/(1− γ)). With
Assumptions C.1, C.2, 4.2, and 4.3, we set the hyperparameters as:

β =
ε(1− γ)

2
, T =

144W 2 · log |A|
ε2(1− γ)2

, N ≥ 384W 3|A| log(|A|) · dimE(F , β)

ε4(1− γ)4
, η =

√
log(|A|)
16W 2T

,

α =
1

1 +
√
T
, ε1 =

(1− γ)4ε4

1536W 2|A| log(|A|) · dimE(F , β)
, ε2 =

(1− γ)4ε4

1248CW 3|A| log(|A|)dimE(F , β)
,

K =
1536W 3|A|2(log(|A|))2 · dimE(F , β) ·

(
log( 3NT ·N (F,ε1)

δ )
)2 · log( 6NT

δ )

ε4(1− γ)4
,

M =
48000C2W 5|A| log(|A|)dimE(F , β) log(3NT ·N (F,ε2)

δ )

ε4(1− γ)4
,

and ε satisfies Equation (24) correspondingly. Then with probability at least 1 − δ, for the average policy πNave :=
Unif(π2, . . . , πN+1), we have

V π
N
ave ≥ V π̃ −

4
√
|A|εbias

1− γ
− ε0 ·

200CW · |A| log(|A|) · dimE(F , β)

ε3(1− γ)4
− 9ε

for any comparator π̃ with total number of samples:

Õ
(C2W 10 · |A|2 ·

(
dimE(F , β)

)2 · ( log(N (F , ε′))
)2

ε10(1− γ)10

)
,

where ε′ = min(ε1, ε2).

Corollary 2. If Assumption 4.1 holds, with proper hyperparameters, the average policy πNave := Unif(π2, . . . , πN+1) of
ENIAC-SPI-COMPUTE achieves V π

N
ave ≥ V π̃ − ε with probability at least 1− δ and total number of samples:

Õ
(W 10 · |A|2 ·

(
dimE(F , β)

)2 · ( log(N (F , ε′))
)2

ε10(1− γ)10

)
.

D. Analysis of ENIAC-NPG
In this section, we provide the sample complexity of ENIAC-NPG-SAMPLE. For ENIAC-NPG-COMPUTE, it can be
adapted from ENIAC-SPI-COMPUTE and ENIAC-NPG-SAMPLE.

The analysis of ENIAC-NPG-SAMPLE is in parallel to that of ENIAC-SPI-SAMPLE. As before, we provide a general
result which considers model misspecification and Theorem 4.2 falls as a special case under the closedness Assumption 4.4.

We simplify the notation as πθ for πfθ (a|s) := exp(fθ(s,a))∑
a′ exp(fθ(s,a′)) . Then for epoch n iteration t in ENIAC-NPG-SAMPLE,

πnt (·|s) =

{
πθnt (·|s), s ∈ Kn

Unif({a ∈ A : (s, a) /∈ Kn}), o.w.

We state the following assumptions to quantify the misspecification error.
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Assumption D.1 (Bounded Transfer Error). Given a target function g : S × A → R, we define the critic loss function
L(u; d, g, πθ) with d ∈ ∆(S ×A) as:

L(u; d, g, πθ) := E(s,a)∼d
[
(u>∇θ log πθ − g)2

]
.

For the fixed comparator policy π̃ as mentioned in Section B.1, we define a state-action distribution d̃(s, a) := dπ̃s0(s) ◦
Unif(A). In ENIAC-NPG-SAMPLE, for every epoch n ∈ [N ] and every iteration t inside epoch n, we assume that

inf
u∈Unt

L(u; d̃, Atbn − b̄nt , πθnt ) ≤ εbias,

where Unt := argminu∈U L(u; ρncov, A
t
bn − b̄nt , πθnt ) and εbias ≥ 0 is a problem-dependent constant.

Recall that
(
Atbn − b̄nt

)
(s, a) = Qtbn(s, a) − bn(s, a) − Ea∼πnt (·|s)[Q

t
bn(s, a) − bn(s, a)]. As before, we denote by ũnt a

particular vector in Unt such that L(ũnt ; d̃, Atbn − b̄nt , πθnt ) ≤ 2εbias. Note that we use ∇θ log πθnt as the linear features for
critic fit at iteration t epoch n, even though πnt is not the same as πθnt . Nevertheless, we show later that this choice of
features is sufficient for good critic fitting on the known states, where we measure our critic error.

Remark 4. Under the closedness condition Assumption 4.4,
Atbn(s, a)− b̄n(s, a) = Qtbn(s, a)− bn(s, a)− Ea′∼πnt (Qtbn − bn(s, a′))

= Eπ
n
t [r(s, a) + γQtbn(s′, a′)]− Ea′∼πnt [Eπ

n
t [r(s, a′) + γQtbn(s′′, a′′)]]

∈ Gfθnt ,
where the last step follows, since πnt can be described as πθnt ,Kn under the notation of Assumption 4.4, whence the
containment of Gfθnt follows. Thus, there exists a vector u ∈ U such that u>∇ log πfθnt

= Atbn − b̄n everywhere. We can
then take εbias as 0 and ũnt = u. Assumption D.1 therefore is a generalized version of the closedness condition.

For NPG, the loss function L is convex in the parameters u since the features are fixed for every individual iteration. As a
result, we naturally have an inequality as in Assumption C.2 for SPI. We present it in the lemma below, which essentially
follows a similar result for the linear case in Agarwal et al. (2020a).

Lemma D.1. For the same loss function L as defined in Assumption D.1, it holds that

E(s,a)∼ρncov

[(
(unt − ũnt )>∇θ log πθnt

)2]
≤L(unt ; ρncov, A

t
bn − b̄nt , πθnt )− L(ũnt ; ρncov, A

t
bn − b̄nt , πθnt ).

Proof. For the left-hand side, we have that

E(s,a)∼ρncov

[(
(unt )>∇θ log πθnt − (ũnt )>∇θ log πθnt

)2]
=E(s,a)∼ρncov

[(
(unt )>∇θ log πθnt + b̄nt −Atbn

)2
]
− E(s,a)∼ρncov

[(
(ũnt )>∇θ log πθnt + b̄nt −Atbn

)2
]

− 2E(s,a)∼ρncov

[(
(unt )>∇θ log πθnt − (ũnt )>∇θ log πθnt

)
·
(

(ũnt )>∇θ log πθnt + b̄nt −Atbn
)]

Since ũnt is a minimizer. By first-order optimality condition, the cross term is greater or equal to 0. The desired result is
obtained.

D.1. Sample Complexity of ENIAC-NPG-SAMPLE

We follow the same steps as listed in B.2 and start with the bonus bound.

Lemma D.2 (NPG-SAMPLE: The Bound of Bonus). With probability at least 1−Nδ,
N∑
n=1

V π
n+1

bn − V π
n+1

≤ 2ε2 + 32G2B2K + β2

(1− γ)β2K
· dimE(GF , β) +

N

1− γ

√
log(2/δ)

2K
.

The proof is similar to Lemma C.1. The only thing changed is the function approximation space. Thus we have dimE(GF , β)
instead of dimE(F , β) and ‖guθ ‖∞ ≤ 2GB, ∀guθ ∈ GF .

Next, we establish the convergence result of NPG update. We focus on a specific episode n and for each iteration t, we
define

Âtbn(s, a) := u>t ∇fθt(s, a) + bn − Ea′∼πθt (·|s)[u
>
t ∇fθt(s, a′) + bn(s, a′)]. (35)
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Since πt(·|s) = πθt(·|s) for s ∈ Kn, Ea′∼πt(·|s)[Âtbn(s, a′)] = 0 for s ∈ Kn.

From the algorithm we can see that Âtbn is indeed our approximation to the real advantages Atbn . In contrary to ENIAC-SPI,
the actor update in ENIAC-NPG does not use Âtbn directly but by modifying the parameter θ. In the next lemma, we show
how to link the NPG update to a formula of Âtbn and eventually are able to bound the policy sub-optimality with function
approximation error.

Lemma D.3 (NPG-SAMPLE: Convergence). In ENIAC-NPG-SAMPLE, let Âtbn be as defined in Equation (35) and

η =
√

log(|A|)
(16D2+ΛB2)T . For any epoch n ∈ [N ], NPG-SAMPLE obtains a sequence of policies {πt}T−1

t=0 such that when
comparing to π̃:

1

T

T−1∑
t=0

(V π̃
n

Mn − V tbn) =
1

T

T−1∑
t=0

(V π̃
n

Mn − V tMn)

≤ 1

1− γ

(
2

√
log(|A|)(16D2 + ΛB2)

T
+

1

T

T−1∑
t=0

E(s,a)∼d̃Mn

[(
Atbn(s, a)− Âtbn(s, a)

)
1{s ∈ Kn}

])
.

Proof. For the same reason as in Lemma C.2, we have

V π̃
n

Mn − V tMn ≤
1

1− γ
∑
(s,a)

d̃Mn(s, a)Atbn(s, a)1{s ∈ Kn}. (36)

We focus on on s ∈ Kn. Then πt(·|s) ∝ exp(fθt(s, ·)) and b(s, ·) = 0. It holds that

KL(π̃n(·|s), πt+1(·|s))−KL(π̃n(·|s), πt(·|s))

= −Ea∼π̃n(·|s)
[
fθt+1(s, a)− fθt(s, a)

]
+ log

∑
a exp(fθt+1

(s, a))∑
a exp(fθt(s, a))

≤ −Ea∼π̃n(·|s)[η · u>t ∇θfθt − η2 ΛB2

2
] + log

∑
a exp(fθt(s, a) + η · u>t ∇θfθt + η2ΛB2/2)∑

a exp(fθt(s, a))

= −η · Ea∼π̃n(·|s)[Â
t
bn(s, a)]− η · Ea′∼πt(·|s)u

>
t ∇θfθt(s, a′)

+ log
(∑

a

πt(s, a) exp
(
η · Âtbn(s, a) + η · Ea′∼πt(·|s)u

>
t ∇θfθt

))
+ η2ΛB2

= −Ea∼π̃n(·|s)[ηÂ
t
bn(s, a)] + log

(∑
a

πt(a|s) exp
(
ηÂtbn(s, a)

))
+ η2ΛB2.

where the inequality is by Taylor expansion and the regularity assumption 4.5:

fθt + (θt+1 − θt)>∇θfθt −
Λ

2
‖θt+1 − θt‖22 ≤ fθt+1 ≤ fθt + (θt+1 − θt)>∇θfθt +

Λ

2
‖θt+1 − θt‖22.

Since |Âtbn(s, a)| ≤ 4D and η ≤ 1/(4D) when T > log(|A|), ηÂtbn(s, a) ≤ 1. By the inequality that exp(x) ≤ 1 +x+x2

for x ≤ 1, we have that

log
(∑

a

πt(a|s) exp
(
ηÂtbn(s, a)

))
≤ log

(
1 + Ea∼πt(·|s)[ηÂ

t
bn(s, a)] + 16η2D2

)
≤ 16η2D2.

Hence, for s ∈ Kn,

KL(π̃n(·|s), πt+1(·|s))−KL(π̃n(·|s), πt(·|s)) ≤ −ηEa∼π̃n(·|s)[Â
t
bn(s, a)] + η2(16D2 + ΛB2).

Adding both sides from t = 0 to T − 1 and taking η =
√

log(|A|)
(16D2+ΛB2)T , we get

T−1∑
t=0

E(s,a)∼d̃Mn

[
Âtbn(s, a)1{s ∈ Kn}

]
≤1

η
Es∼d̃Mn

[(
KL(π̃n(·|s), π0(·|s))−KL(π̃n(·|s), πT (·|s))

)
1{s ∈ Kn}

]
+ ηT (16D2 + ΛB2)

≤ log(|A|)/η + ηT (16D2 + ΛB2) ≤ 2
√

log(|A|) · (16D2 + ΛB2) · T .
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Combining with Equation (36), the regret onMn satisfies
T−1∑
t=0

(V π̃
n

Mn − V tMn)

≤ 1

1− γ

T−1∑
t=0

E(s,a)∼d̃Mn

[
Âtbn(s, a)1{s ∈ Kn}

]
+

1

1− γ

T−1∑
t=0

E(s,a)∼d̃Mn

[
Atbn(s, a)− Âtbn(s, a))1{s ∈ Kn

]
≤ 1

1− γ

(
2
√

log(|A|)(16D2 + ΛB2)T +

T−1∑
t=0

E(s,a)∼d̃Mn

[(
Atbn(s, a)− Âtbn(s, a)

)
1{s ∈ Kn}

])
.

Next, we establish two lemmas to bound the difference between the true advantage Atbn(s, a) and the approximation
Âtbn(s, a) .

Lemma D.4 (Approximation Bound). At epoch n, assume for all 0 ≤ t ≤ T − 1,

L(unt ; ρncov, A
t
bn − b̄nt , πθnt ) ≤ L(ũnt ; ρncov, A

t
bn − b̄nt , πθnt ) + εstat,

where εstat > 0 is to be determined later, and

ε2 = NK
(
εstat + 16Dε1

)
+ 8D2 log(N (GF , ε1)/δ) ·

√
NK, (37)

where ε is used in bonus function design (see Section 3.3) and ε1 is to be determined. Under Assumption D.1 and 4.5, we
have that for every 0 ≤ t ≤ T − 1, with probability at least 1− (n+ 1)δ,

E(s,a)∼d̃Mn

(
Atbn(s, a)− Âtbn(s, a)

)
≤ 4
√
|A|εbias + 2β.

Lemma D.5. Following the same notation as in Lemma D.4, it holds with probability at least 1− δ that

L(unt ; ρncov, A
t
bn − b̄nt , πθnt )− L(ũnt ; ρncov, A

t
bn − b̄nt , πθnt ) ≤

500D4 · d log
(

6D
ε2δ

)
M

+ 13D2 · ε2,

where d is the linear dimension of u.

The proofs of the above lemmas can be easily adapted from Lemma C.3 or Lemma C.4 by replacing ft with u>t ∇fθt , f̃nt
with (ũnt )>∇fθt , and F with GF . In particular, for Lemma D.5, since the linear feature is fixed for critic fit at iteration t
epoch n, the function cover is defined on the space Gfθnt . By Lemma E.2, the covering number is therefore represented with
the linear dimension of u, d.

In the following, we present the detailed form of the sample complexity of NPG-SAMPLE.

Theorem D.1 (Main Result: Sample Complexity of ENIAC-NPG-SAMPLE). Let δ ∈ (0, 1) and ε ∈ (0, 1/(1− γ)). With
Assumptions D.1 and 4.5, we set the hyperparameters as:

β =
ε(1− γ)

2
, T =

64(D2 + ΛB2) · log |A|
ε2(1− γ)2

, N ≥ 128B2G2 · dimE(GF , β)

ε3(1− γ)3
, η =

√
log(|A|)

(16D2 + ΛB2)T

ε1 =
(1− γ)3ε3

128D · dimE(GF , β)
, K =

32D2 · dimE(GF , β) ·
(

log( 3NT ·N (GF ,ε1)
δ )

)2 · log( 6NT
δ )

ε3(1− γ)3
,

ε2 =
(1− γ)3ε3

110D2 · dimE(GF , β)
, M =

4000D4 · dimE(GF , β) · d log( 18DNT
ε2δ

)

ε3(1− γ)3
,

and ε satisfies Equation (37) correspondingly. Then with probability at least 1 − δ, for the average policy πNave :=
Unif(π2, . . . , πN+1), we have

V π
N
ave ≥ V π̃ −

4
√
|A|εbias

1− γ
− 9ε

for any comparator π̃ with total number of samples:

Õ
(D6(D2 + ΛB2) ·

(
dimE(GF , β)

)2 · ( log(N (GF , ε′))
)2

ε8(1− γ)8

)
,

where ε′ = min(ε1, ε2) such that log(N (GF , ε′)) = Ω(d).
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The proof is similar to that of Theorem C.1. We also have the following result when the closedness assumption is satisfied.

Corollary 3. If Assumption 4.4 holds, with proper hyperparameters, the average policy πNave := Unif(π2, . . . , πN+1) of
ENIAC-NPG-SAMPLE achieves V π

N
ave ≥ V π̃ − ε with probability at least 1− δ and total number of samples:

Õ
(D6(D2 + ΛB2) ·

(
dimE(GF , β)

)2 · ( log(N (GF , ε′))
)2

ε8(1− γ)8

)
Note that under Assumption 4.4, as mentioned in Remark 4, εbias = 0.

E. Auxiliary Lemmas
Lemma E.1. Given a function class F , for its covering number, we have N (∆F , ε) ≤ N (F , ε/2)2.

Proof. Let ∆C(F , ε/2) := {f − f ′|f, f ′ ∈ C(F , ε/2)}. Then ∆C(F , ε/2) is an ε-cover for ∆F and |∆C(F , ε/2)| ≤
|C(F , ε/2)|2 ≤ N (F , ε/2)2.

Lemma E.2. Given f ∈ F , under the regularity Assumption 4.5, we have that the covering number of the linear class
Gf := {u>∇θ log πf , u ∈ U ⊂ Rd, f ∈ F} achieves N (Gf , ε) ≤

(
3D
ε

)d
.

Proof. In order to construct a cover set of Gf with radius ε2, we need that for any u ∈ U ⊂ Rd, there exist a ũ, such that

‖u>∇θ log πf (s, a)− ũ>∇θ log πf (s, a)‖∞ ≤ ε2.
where the infinity norm is taken over all (s, a) ∈ S ×A. By Cauchy-Schwarz inequality, we have

‖u>∇θ log πf − ũ>∇θ log πf‖∞ = ‖(u− ũ)>∇θ log πf‖∞ ≤ 2G‖u− ũ‖2.

Thus, it is enough to have ‖u− ũ‖2 ≤ ε2/(2G), which is equivalent to cover a ball in Rd with radiusB (recall that ‖u‖ ≤ B)

with small balls of radius ε2/(2G). The latter has a covering number bounded by
(

6BG
ε2

)d
≤
(

6D
ε2

)d
7.

F. Algorithm Hyperparameters
In this section, we present more details about the implementation in our experiments. All algorithms were based on the PPO
implementation of (Shangtong, 2018). The network structure is described in the main body and the last layer outputs the
parameters of a 1D Gaussian for action selection.

The width training process is presented in Algorithm 5. Recall that our training loss is∑
(s,a)∈ZnQ

λ
(
f(s, a)− f ′(s, a)

)2
|ZnQ|

−
∑

(s′,a′)∈Zn

(
f(s′, a′)− f ′(s′, a′)

)2
|Zn|

−
∑

(s,a)∈ZnQ

λ1

(
f(s, a)− f ′(s, a)

)
|ZnQ|

. (38)

To stabilize training, for each iteration we sample a minibatch DQ from the query batch, then run several steps of stochastic
gradient descent with changing minibatches on Zn while fixing DQ. The hyperparameters for width training are listed in
Table 1.

For PC-PG, we follow the same implementation as mentioned in (Agarwal et al., 2020a); for PPO-RND, the RND network
has the same architecture as the policy network, except that the last linear layer mapping hidden units to actions is
removed. We found that tuning the intrinsic reward coefficient was important for getting good performance for RND. The
hyperparameters for optimization are listed in Table 2 and 3.

7The covering number of Euclidean balls can be easily found in literature.
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Algorithm 5 Width Training in ENIAC
1: Input: Replay buffer Zn, query batch ZnQ.
2: Initialize f with the same network structure as the critic.
3: Copy f ′ as f and fix f ′ during training.
4: for i = 1 to I do
5: Sample a minibatch DQ from ZnQ
6: for j = 1 to J do
7: Sample a minibatch Dj from Zn
8: Do one step of gradient descent on f with loss in Equation (38) and DQ and Dj .
9: end for

10: end for
11: Output: wn := |f − f ′|

Table 1. ENIAC Width Training Hyperparameters

Hyperparameter 2-layer 4-layer 6-layer

λ 0.1 0.1 0.1
λ1 0.01 0.01 0.01
|ZQ| 20000 20000 20000

Learning Rate 0.001 0.001 0.0015
|Dj | 160 160 160
|DQ| 20 20 10

Gradient Clippling 5.0 5.0 5.0
I 1000 1000 1000
J 10 10 10

Table 2. ENIAC/PC-PG Optimization Hyperparameters

Hyperparameter Values Considered 2-layer 4-layer 6-layer

Learning Rate e−3, 5e−4, e−4 5e−4 5e−4 5e−4

τGAE 0.95 0.95 0.95 0.95
Gradient Clippling 0.5, 1, 2, 5 5.0 5.0 5.0

Entropy Bonus 0.01 0.01 0.01 0.01
PPO Ratio Clip 0.2 0.2 0.2 0.2
PPO Minibatch 160 160 160 160

PPO Optimization Epochs 5 5 5 5
ε-greedy sampling 0, 0.01, 0.05 0.05 0.05 0.05

Table 3. PPO-RND Hyperparameters

Hyperparameter Values Considered 2-layer 4-layer 6-layer

Learning Rate e−3, 5e−4, e−4 e−4 e−4 e−4

τGAE 0.95 0.95 0.95 0.95
Gradient Clippling 5.0 5.0 5.0 5.0

Entropy Bonus 0.01 0.01 0.01 0.01
PPO Ratio Clip 0.2 0.2 0.2 0.2
PPO Minibatch 160 160 160 160

PPO Optimization Epochs 5 5 5 5
Intrinsic Reward Normalization true, false false false false

Intrinsic Reward Coefficient 0.5, 1, e, e2, e3, 5e3, e4 5e3 e3 e3


