
GNNAutoScale: Scalable and Expressive Graph Neural Networks
via Historical Embeddings

1. Proofs
Lemma 1. Let MESSAGE

(`)
θ and UPDATE

(`)
θ be Lipschitz continuous functions with Lipschitz constants k1 and k2, respec-

tively. If, for all v ∈ V , the inputs are close to the exact input, i.e. ‖h̃(`−1)
v −h(`−1)

v ‖ ≤ δ, and the historical embeddings do
not run too stale, i.e. ‖h̄(`−1)

v − h̃(`−1)
v ‖ ≤ ε, then the output error is bounded by

‖h̃(`)
v − h(`)

v ‖ ≤ δ k2 + (δ + ε) k1 k2 |N (v)|.

Proof. By triangular inequality, it holds that ‖h̄(`−1)
v − h(`−1)

v ‖ ≤ δ + ε. Since both MESSAGE
(`)
θ and UPDATE

(`)
θ denote

Lipschitz continuous functions with Lipschitz constants k1 and k2, respectively, it further holds that for any x,y:

‖MESSAGE
(`)
θ (x)−MESSAGE

(`)
θ (y)‖ ≤ k1‖x− y‖

‖UPDATE
(`)
θ (x)− UPDATE

(`)
θ (y)‖ ≤ k2‖x− y‖

Furthermore, the Lipschitz constants for the aggregations
∑
x∈X x, 1

|X |
∑
x∈X x and maxx∈X x are given as |X |, 1 and 1,

respectively. Then,

‖UPDATE
(`)
θ (h̃(`−1)

v ,
⊕

w∈N (v)

MESSAGE
(`)
θ (h̄(`−1)

w))− UPDATE
(`)
θ (h(`−1)

v ,
⊕

w∈N (v)

MESSAGE
(`)
θ (h(`−1)

w))‖

≤ k2 (δ + |N (v)| (k1 (δ + ε))) = δ k2 + (δ + ε) k1 k2 |N (v)|.

Theorem 2. Let f (L)
θ be a L-layered GNN, containing only Lipschitz continuous MESSAGE

(`)
θ and UPDATE

(`)
θ functions

with Lipschitz constants k1 and k2, respectively. If, for all v ∈ V and all ` ∈ {1, . . . , L− 1}, the historical embeddings do
not run too stale, i.e. ‖h̄(`)

v − h̃(`)
v ‖ ≤ ε(`), then the final output error is bounded by

‖h̃(L)
v,j − h

(L)
v,j ‖ ≤

L−1∑
`=1

ε(`) kL−`1 kL−`2 |N (v)|L−`.

Proof. For layer ` = 1, the inputs do not need to be estimated, i.e. δ(0) = ‖h̃(0)
v − h(0)

v ‖ = 0, and, as a result, the output is
exact, i.e. δ(1) = ‖h̃(1)

v − h(1)
v ‖ = 0. With ‖h̄(1)

v − h̃(1)
v ‖ ≤ ε(1), it directly follows via Lemma 1 that the approximation

error of layer ` = 2 is bounded by ‖h̃(2)
v − h(2)

v ‖ ≤ ε(1) k1 k2 |N (v)| = δ(2). Recursively replacing

δ(`) = δ(`−1) k2 + (δ(`−1) + ε(`−1)) k1 k2 |N (v)|

in ‖h̃(L)
v − h(L)

v ‖ ≤ δ(L−1) k2 + (δ(L−1) + ε(L−1)) k1 k2 |N (v)| (cf. Lemma 1) yields

‖h̃(L)
v − h(L)

v ‖ ≤
L−1∑
`=1

ε(`) kL−`1 kL−`2 |N (v)|L−`.

GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings

Proposition 3. Let f (L)
θ : V → Rd be a L-layered GNN as ex-

pressive as the WL test in distinguishing the L-hop neighbor-
hood around each node v ∈ V . Then, there exists a graph
A ∈ {0, 1}|V|×|V| for which f (L)

θ operating on a sampled variant

Ã, ãv,w =

{ |N (v)|
|Ñ (v)| , if w ∈ Ñ (v)

0, otherwise
, produces a non-equivalent

coloring, i.e. h̃(L)
v 6= h̃

(L)
w while c(L)v = c

(L)
w for nodes v, w ∈ V .

Proof. Consider the colored graphA and its sampled variant Ã
as shown on the right. Here, it holds that h(1)

v1 = h
(1)
v4 while

h̃
(1)
v1 6= h̃

(1)
v4 .

v1

v2

v3

v4

v5A

1

1

1

1

1

1

v1

v2

v3

v4

v5Ã

2

1
2

1
2

1

Lemma 4. Let {{h(`−1)
v : v ∈ V}} be a countable multiset such that ‖h(`−1)

v −
h
(`−1)
w ‖ > 2(δ+ ε) for all v, w ∈ V , h(`−1)

v 6= h
(`−1)
w . If the inputs are close

to the exact input, i.e. ‖h̃(`−1)
v − h(`−1)

v ‖ ≤ δ, and the historical embeddings
do not run too stale, i.e. ‖h̄(`−1)

v − h̃(`−1)
v ‖ ≤ ε, then there exist MESSAGE

(`)
θ

and UPDATE
(`)
θ functions, such that

‖f (`)
θ (h̃(`−1)

v)− f (`)
θ (h(`−1)

v)‖ ≤ δ + ε

and
‖f (`)
θ (h(`−1)

v)− f (`)
θ (h(`−1)

w)‖ > 2(δ + ε+ λ)

for all v, w ∈ V , h(`−1)
v 6= h

(`−1)
w and all λ > 0.

Proof. Define φ : Rd → Rd as the Voronoi tessellation induced by exact
inputs {h(`−1)

v : v ∈ V}:

φ(x) = h(`−1)
v if ‖x− h(`−1)

v ‖ ≤ ‖x− h(`−1)
w ‖ for all v 6= w ∈ V

(1)
Furthermore, we know that there exists Message(`)θ and UPDATE

(`)
θ func-

tions so that f (`)
θ is injective for all countable multisets (Zaheer et al.,

2017; Xu et al., 2019; Morris et al., 2019; Maron et al., 2019). There-
fore, it holds that ‖f (`)

θ

(
φ
(
h̃
(`−1)
v

))
− f (`)

θ

(
φ
(
h
(`−1)
v

))
‖ = 0 ≤ δ. Since

{{h(`−1)
v : v ∈ V}} is countable and f (`)

θ is injective, there exists a κ > 0

such that ‖f (`)
θ

(
φ
(
h
(`−1)
v

))
− f (`)

θ

(
φ
(
h
(`−1)
w

))
‖ > κ for all v, w ∈ V ,

h
(`−1)
v 6= h

(`−1)
w . Due to the homogeneity of ‖ · ‖, it directly follows that

there must exists α > 0 so that

‖αf (`)
θ

(
φ
(
h(`−1)
v

))
− αf (`)

θ

(
φ
(
h(`−1)
w

))
‖ > ακ ≥ 2(δ + ε+ λ)

for all v, w ∈ V , h(`−1)
v 6= h

(`−1)
w and all λ > 0.

Layer `− 1

h3
δε

h1
δε

h2
δεh̃1

h̄1

Layer `

h1

δ + ε

h2

δ + ε

h̃1

h̄1

Theorem 5. Let f (L)
θ be a L-layered GNN in which all MESSAGE

(`)
θ and UPDATE

(`)
θ functions fulfill the conditions of

Lemma 4. Then, there exists a map φ : Rd → Σ so that φ(h̃
(L)
v) = c

(L)
v for all v ∈ V .

Proof. Define φ : Rd → Σ as the Voronoi tessellation induced by exact outputs {h(L)
v : v ∈ V}:

φ(x) = c(L)v if ‖x− h(L)
v ‖ ≤ ‖x− h(L)

w ‖ for all v 6= w ∈ V

Since each GNN layer f (`)
θ is injective for exact inputs, we know that such a function needs to exist (Xu et al., 2019;

Morris et al., 2019). Therefore, it is sufficient to show that there exists a δ(L) > 0 so that ‖h̃(L)
v − h(L)

v ‖ ≤ δ(L) and
‖h(L)

v − h(L)
w ‖ > 2δ(L) for all v, w ∈ V , h(L)

v 6= h
(L)
w . Following upon Theorem 2, we know that ‖h̃(1)

v − h(1)
v ‖ = 0. Due

GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings

to Lemma 4, it holds that ‖h̃(2)
v −h(2)

v ‖ ≤ ε(1). The next layer introduces an increased error, i.e. ‖h̄(2)
v −h(2)

v ‖ ≤ ε(1) + ε(2),
and to compensate, we set λ(2) = ε(2) so that ‖h(2)

v − h(2)
w ‖ > 2 (ε(1) + ε(2)) for all v, w ∈ V , h(L)

v 6= h
(L)
w . By

recursively applying Lemma 4 with λ(`) = ε(`), it immediately follows that ‖h̃(L)
v − h(L)

v ‖ ≤
∑L−1
`=1 ε

(`) = δ(L), and
‖h̃(L)

v − h(L)
w ‖ >

∑L−1
`=1 2 ε(`) for all v, w ∈ V , h(L)

v 6= h
(L)
w .

2. Algorithm
Our GAS mini-batch training algorithm is given in Algorithm 1:

Algorithm 1 GAS Mini-batch Execution

Input: Graph G = (V, E), input node featuresH(0), number of batches B, number of layers L

{B1, . . . ,BB} ← SPLIT(G, B)

Vb ←
⋃
v∈Bb

N (v) ∪ {v} ∀b ∈ {1, . . . , B}

Gb ← G[Vb] ∀b ∈ {1, . . . , B}

for Bb ∈ {B1, . . . ,BB} do

for ` ∈ {1, . . . , L− 1} do

h
(`)
v ← f

(`)
θ (h

(`−1)
v , {{h(`−1)

w : w ∈ N (v)}}) ∀v ∈ Bb
PUSH(`)(h

(`)
v) ∀v ∈ Bb

h
(`)
w ← PULL(`)(w) ∀w ∈ Vb \ Bb

end for

h
(L)
v ← f

(L)
θ (h

(L−1)
v , {{h(L−1)

w : w ∈ N (v)}}) ∀v ∈ Bb
end for

3. GNN Operators
We briefly recap the details of all graph convolutional layers used in our experiments. We omit final non-linearities and edge
features due to simplicity.

Graph Convolutional Networks (GCN) use a symmetrically normalized mean aggregation followed by linear transfor-
mation (Kipf & Welling, 2017)

h(`)
v =

∑
w∈N (v)∪{v}

1

cw,v
Wh(`−1)

w ,

where cw,v =
√

deg(w) + 1
√

deg(v) + 1.

Graph Attention Networks (GAT) perform an anisotropic aggregation (Veličković et al., 2018)

h(`)
v =

∑
w∈N (v)∪{v}

αw,vWh(`−1)
w ,

where normalization is achieved via learnable attention coefficients

αw,v =
exp

(
LeakyReLU

(
a>
[
Wh

(`−1)
v ,Wh

(`−1)
w

]))
∑
k∈N (v)∪{v} exp

(
LeakyReLU

(
a>
[
Wh

(`−1)
v ,Wh

(`−1)
k

])) .

GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings

Approximate Personalized Propagation of Neural Predictions (APPNP) networks first perform a graph-agnostic
prediction of node labels, i.e. h(0)

v = MLP(xv), and smooth initial label predictions via propagation afterwards (Klicpera
et al., 2019)

h(`) = αh(0) + (1− α)
∑

w∈N∪{v}

1

cw,v
h(`−1)
w ,

where α ∈ [0, 1] denotes the teleport probability and cw,v is defined as in GCN. Notably, the final propagation layers are
non-trainable, and predictions are solely conditioned on node features (while gradients of model parameters are not).

Simple and Deep Graph Convolutional Networks (GCNII) extend the idea of APPNP to a trainable propgation
scheme which leverages initial residual connections (Chen et al., 2020)

h(`)
v = αWh(0)

v + (1− α)
∑

w∈N (v)∪{v}

1

cw,v
Wh(`−1)

w ,

andW makes use of identity maps, i.e.W ← (1− β)I + βW for β ∈ [0, 1].

Graph Isomorphism Networks (GIN) make use of sum aggregation and MLPs to obtain a maximally powerful GNN
operator (Xu et al., 2019)

h(`)
v = MLPθ

(1 + ε)h(`−1)
v +

∑
w∈N (v)

h(`−1)
w

 ,

where ε ∈ R is a trainable parameter in order to distinguish neighbors from central nodes.

Principal Neighborhood Aggregation (PNA) networks leverage mulitple aggregators combined with degree-scalers to
capture graph structural properties (Corso et al., 2020)

h(`)
v = W2

h(`−1)
v ,

⊕
w∈N (v)

W1

[
h(`−1)
v ,h(`−1)

w

] ,
where ⊕

=

 1
s(deg(v), 1)
s(deg(v),−1)

︸ ︷︷ ︸

Scalers

⊗

mean
min
max

︸ ︷︷ ︸
Aggregators

,

with ⊗ being the tensor product and

s(d, α) =

(
log(d+ 1)

1
|V|
∑
v∈V log(deg(v) + 1)

)α
denoting degree-scalers.

4. PyGAS Programming Interface
To highlight the ease-of-use of our framework, we showcase the necessary changes to convert a common GCN architecture
(Kipf & Welling, 2017) implemented in PYTORCH GEOMETRIC (Fey & Lenssen, 2019) (cf. Listing 1) to its corresponding
scalable version (cf. Listing 2). In particular, our model now inherits from ScalableGNN, which takes care of creating
all history embeddings (accessible via self.histories) and provides an efficient concurrent history access pattern
via push and pull(). Notably, the forward() execution method of our model now takes in the additional n id
parameter, which holds the global node index for each node in the current mini-batch. This assignment vector is necessary
to push and pull the intermediate mini-batch embeddings to and from the global history embeddings.

GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings

Table 1. Inter-/intra-connectivity ratio for real-world datasets with different mini-batch sampling strategies. Utilizing METIS

heavily minimizes inter-connectivity between mini-batches, which reduces history accesses and tightens approximation errors in return.

Sampling CORA CITESEER PUBMED
COAUTHOR- AMAZON- WIKI-CSScheme CS PHYSICS COMPUTER PHOTO

Random 1.33 1.24 3.17 6.81 9.94 9.05 5.61 5.85
METIS 0.14 0.02 0.52 2.77 2.26 2.27 1.03 1.12

CLUSTER PATTERN REDDIT PPI FLICKR YELP
ogbn- ogbn-
arxiv products

Random 36.64 51.02 6.58 6.79 1.82 6.74 3.02 26.18
METIS 1.57 1.61 2.80 1.27 1.07 2.52 0.48 1.94

from torch_geometric.nn import GCNConv

class GNN(Module):
def __init__(self, in_channels, hidden_channels, out_channels, num_layers):

super(GNN, self).__init__()

self.convs = ModuleList()
self.convs.append(GCNConv(in_channels, hidden_channels))
for _ in range(num_layers - 2):

self.convs.append(GCNConv(hidden_channels, hidden_channels))
self.convs.append(GCNConv(hidden_channels, out_channels))

def forward(self, x, adj_t):
for conv in self.convs[:-1]:

x = conv(x, adj_t).relu()
return self.convs[-1](x, adj_t)

Listing 1. Full-batch GCN (Kipf & Welling, 2017) model within PYTORCH GEOMETRIC (Fey & Lenssen, 2019).

from torch_geometric.nn import GCNConv

from torch_geometric_autoscale import ScalableGNN

w

class GNN(ScalableGNN):
def __init__(self, num_nodes, in_channels, hidden_channels, out_channels, num_layers):

super(GNN, self).__init__(num_nodes, hidden_channels, num_layers)

self.convs = ModuleList()
self.convs.append(GCNConv(in_channels, hidden_channels))
for _ in range(num_layers - 2):

self.convs.append(GCNConv(hidden_channels, hidden_channels))
self.convs.append(GCNConv(hidden_channels, out_channels))

w

def forward(self, x, adj_t, n_id):
for conv, history in zip(self.convs[:-1], self.histories):

x = conv(x, adj_t).relu()

x = self.push_and_pull(history, x, n_id)

return self.convs[-1](x, adj_t)

Listing 2. Mini-batch GCN (Kipf & Welling, 2017) model within PYTORCH GEOMETRIC (Fey & Lenssen, 2019) and our proposed
PyGAS framework. � denotes lines that require changes, while � refers to newly added lines. Only minimal changes are required to
auto-scale GCN (or any other model) to large graphs.

5. Addtional Ablation Studies
We report additional ablation studies to further strengthen the motivation of our GAS framework:

GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings

Table 2. Ablation study for a 4-layer GIN (Xu et al., 2019) model on the CLUSTER dataset (Dwivedi et al., 2020). Combining both
GAS techniques help in resembling full-batch performance for expressive models with highly non-linear message passing phases.

Accuracy
Training Validation Test

Full-batch Baseline 60.49 58.17 58.49

Minimizing Enforcing
Inter-Connectivity Lipschitz Continuity

G
A

S % % 55.66 54.86 55.15
" % 58.97 57.79 57.82
" " 60.67 58.21 58.51

Table 3. Dataset statistics.
Dataset Task Nodes Edges Features Classes Label Rate

Sm
al

l-
sc

al
e

CORA multi-class 2,708 5,278 1,433 7 5.17%
CITESEER multi-class 3,327 4,552 3,703 6 3.61%
PUBMED multi-class 19,717 44,324 500 3 0.30%
COAUTHOR-CS multi-class 18,333 81,894 6,805 15 1.64%
COAUTHOR-PHYSICS multi-class 34,493 247,962 8,415 5 0.29%
AMAZON-COMPUTER multi-class 13,752 245,861 767 10 1.45%
AMAZON-PHOTO multi-class 7,650 119,081 745 8 2.09%
WIKI-CS multi-class 11,701 215,863 300 10 4.96%

L
ar

ge
-s

ca
le

CLUSTER multi-class 1,406,436 25,810,340 6 6 83.35%
REDDIT multi-class 232,965 11,606,919 602 41 65.86%
PPI multi-label 56,944 793,632 50 121 78.86%
FLICKR multi-class 89,250 449,878 500 7 50.00%
YELP multi-label 716,847 6,977,409 300 100 75.00%
ogbn-arxiv multi-class 169,343 1,157,799 128 40 53.70%
ogbn-products multi-class 2,449,029 61,859,076 100 47 8.03%

Minimizing Inter-Connectivity Between Batches. We make use of graph clustering methods (Karypis & Kumar, 1998;
Dhillon et al., 2007) in order to minimize the inter-connectivity between batches, which minimizes history accesses and
therefore increases closeness and reduces staleness in return. To evaluate this impact in practice, Tabel 1 lists the inter-/intra-
connectivity ratio of all real-world datasets used in our experiments, both for randomly sampled mini-batches as well as for
utilizing METIS partitions as mini-batches. Notably, applying METIS beforehand reduces the overall inter-/intra-connectivity
ratio by a factor of 4 on average, which results in only a fraction of history accesses. Furthermore, most real-world datasets
come with inter-/intra-connectivity ratios between 0.1 and 2.5, leading to only marginal runtime overheads when leveraging
historical information, as confirmed by our runtime analysis.

Analysis of Gains for Obtaining Expressive Node Representations. Next, we highlight the impacts of minimizing
the inter-connectivity between mini-batches and enforcing Lipschitz continuity of the learned function in order to derive
expressive node representations. Here, we benchmark a 4-layer GIN model (Xu et al., 2019) on the CLUSTER dataset
(Dwivedi et al., 2020), cf. Table 2. Notably, both solutions achieve significant gains in training, validation and test
performance, and together, they are able to closely resemble the performance of full-batch training. However, we found that
Lipschitz continuity regularization only helps in non-linear message passing phases, while it does not provide any additional
gains for linear operators such as GCN (Kipf & Welling, 2017).

6. Datasets
We give detailed statistics for all datasets used in our experiments, cf. Table 3, which include the following tasks:

1. classifying academic papers in citation networks (CORA, CITESEER, PUBMED) (Sen et al., 2008; Yang et al., 2016)

GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings

2. categorizing computer science articles in Wikipedia graphs (WIKI-CS) (Mernyei & Cangea, 2020)
3. predicting active research fields of authors in co-authorshop graphs (COAUTHOR-CS, COAUTHOR-PHYSICS) (Shchur

et al., 2018)
4. predicting product categories in co-purchase graphs (AMAZON-COMPUTER, AMAZON-PHOTO) (Shchur et al., 2018)
5. identifying community clusters in Stochastic Block Models (CLUSTER, PATTERN) (Dwivedi et al., 2020)
6. predicting communities of online posts based on user comments (REDDIT) (Hamilton et al., 2017)
7. classifying protein functions based on the interactions of human tissue proteins (PPI) (Hamilton et al., 2017)
8. categorizing types of images based on their descriptions and properties (FLICKR) (Zeng et al., 2020)
9. classifying business types based on customers and friendship relations (YELP) (Zeng et al., 2020)

10. predicting subject areas of ARXIV Computer Science papers (ogbn-arxiv) (Hu et al., 2020)
11. predicting product categories in an AMAZON product co-purchasing network (ogbn-products) (Hu et al., 2020)

References
Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Simple and deep graph convolutional networks. In ICML, 2020.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković, P. Principal neighbourhood aggregation for graph nets. In
NeurIPS, 2020.

Dhillon, I. S., Guan, Y., and Kulis, B. Weighted graph cuts without eigenvectors: A multilevel approach. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 29(11):1944–1957, 2007.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and Bresson, X. Benchmarking graph neural networks. CoRR,
abs/2003.00982, 2020.

Fey, M. and Lenssen, J. E. Fast graph representation learning with PyTorch Geometric. In ICLR-W, 2019.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive representation learning on large graphs. In NIPS, 2017.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M., and Leskovec, J. Open Graph Benchmark: Datasets for
machine learning on graphs. In NeurIPS, 2020.

Karypis, G. and Kumar, V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on
Scientific Computing, 20(1):359—-392, 1998.

Kipf, T. N. and Welling, M. Semi-supervised classification with graph convolutional networks. In ICLR, 2017.

Klicpera, J., Bojchevski, A., and Günnemann, S. Predict then propagate: Graph neural networks meet personalized
PageRank. In ICLR, 2019.

Maron, H., Ben-Hamu, H., Serviansky, H., and Lipman, Y. Provably powerful graph networks. In NeurIPS, 2019.

Mernyei, P. and Cangea, C. Wiki-CS: A wikipedia-based benchmark for graph neural networks. In ICML-W, 2020.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., and Grohe, M. Weisfeiler and Leman go neural:
Higher-order graph neural networks. In AAAI, 2019.

Sen, G., Namata, G., Bilgic, M., and Getoor, L. Collective classification in network data. AI Magazine, 29, 2008.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann, S. Pitfalls of graph neural network evaluation. In NeurIPS-W,
2018.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. Graph attention networks. In ICLR, 2018.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful are graph neural networks? In ICLR, 2019.

Yang, Z., Cohen, W., and Salakhutdinov, R. Revisiting semi-supervised learning with graph embeddings. In ICML, 2016.

Zaheer, M., Kottur, S., Ravanbhakhsh, S., Póczos, B., Salakhutdinov, R., and Smola, A. J. Deep sets. In NIPS, 2017.

Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and Prasanna, V. GraphSAINT: Graph sampling based inductive learning
method. In ICLR, 2020.

