
Supplemental Material for
Scalable Certified Segmentation via Randomized Smoothing

A. Experimental Details
A.1. Experimental Details for §6.2

We use a HrNetV2 (Sun et al., 2019; Wang et al., 2019) with
the HRNetV2-W48 backbone from their official PyTorch
1.1 (Paszke et al., 2019) implementation1. For Cityscapes
we follow the outlined training procedure, only adding the
σ = 0.25 Gaussian noise. For Pascal Context we doubled
the number of training epochs (and learning rate schedule)
and added the σ = 0.25 Gaussian noise. During inference
we use different batch sizes for different scales. These are
summarized in Table 3. All timing timing results are given
for a single Nvidia GeForce RTX 2080 Ti and using 12
cores of a Intel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz.
When training on an machine with 8 Nvidia GeForce RTX
2080 Ti one training epoch takes around 4 minutes for both
of the data sets.

We evaluate on 100 images each, that is for Cityscapes we
use every 5th image in the test set and for Pascal every 51st.

We consider two metrics:

• (certified) per-pixel accuracy: the rate of pixels cor-
rectly classified (over all images)

• (certified) mean intersection over union (mIoU): For
each image i and each class c (ignoring the � “class”)
we calculate the ratio IoU ic =

|P i
c∩G

i
c|

|P i
c∪Gi

c|
where P ic de-

notes the pixel locations predicted as class c for input
i and Gic denotes the pixel locations for class c in the
ground truth of input i. We then average IoU ic over all
inputs and classes.

A.2. Experimental Details for §6.3

Using the PointNetV2 architecture (Qi et al., 2017a;b; Yan
et al., 2020) implemented in PyTorch 2 (Paszke et al., 2019).
Again we keep the training parameters unchanged other than
the addition of noise during training. One training epoch
on a single Nvidia GeForce RTX 2080 Ti takes 6 minutes.

1https://github.com/HRNet/
HRNet-Semantic-Segmentation

2https://github.com/yanx27/Pointnet_
Pointnet2_pytorch

Table 3. Batch sizes used in segmentation inference.

scale Cityscapes Pascal Context

0.25 24 80
0.50 12 64
0.75 4 32
1.00 4 20
multi 4 10

In inference we use a batch size of 50. All timing results
are given for a single Nvidia GeForce RTX 2080 Ti and
using 12 cores of a Intel(R) Xeon(R) Silver 4214R CPU @
2.40GHz.

Again, we evaluate on 100 inputs. This corresponds to every
28th input in the test set. As a metric we consider the (certi-
fied) per-component accuracy: the rate of parts/components
correctly classified (over all inputs).

B. Additional Results
B.1. Additional Results for §6.1

In Figs. 2b and 2c we show smoothed plots as JOINTCLASS
and INDIVCLASS are either correct on all components or
non at all. Here, we provide the unsmoothed results in Fig. 5.
In order to obtain the plots in Fig. 2 we apply a Savgol filter
(Savitzky & Golay, 1964) of degree 1 over the 11 closest
neighbours (using the SciPy implementation) and use a step
size of 0.001 for γ.

B.2. k-FWER and error budget

Here we discuss the gains from allowing a small budget
of errors and applying k-FWER control as outlined in
§5.2. Control for k-FWER at level α means that P (≥
k type I errors) ≤ α. Which for k = 1 recovers standard
FWER control. Thus, if we allow a budget of b type I er-
rors at level α we need to perform k-FWER control with
k = b+ 1. In the following we will refer only to the budget
b, to avoid confusion between the k in k-FWER and the k
noisy components in the setting of §6.1.

Fig. 6 shows an empirical evaluation of this approach for
different b for γ = 0.05, one noisy components and different

https://github.com/HRNet/HRNet-Semantic-Segmentation
https://github.com/HRNet/HRNet-Semantic-Segmentation
https://github.com/yanx27/Pointnet_Pointnet2_pytorch
https://github.com/yanx27/Pointnet_Pointnet2_pytorch


Scalable Certified Segmentation via Randomized Smoothing

0.000 0.025 0.050 0.075 0.100

γ0.0

0.2

0.4

0.6

0.8

1.0

% certified

JointClass

IndivClass

SegCertifyHolm

SegCertifyBon

(a) Unsmoothed version of Fig. 2b. On N = 100 components,
with a classifier that has error rate 5γ on one component and
γ on all others.

0.000 0.025 0.050 0.075 0.100

γ0.0

0.2

0.4

0.6

0.8

1.0

% certified

(b) Unsmoothed version of Fig. 2c. SEGCERTIFY with differ-
ent testing corrections for various numbers of components N
with error rate γ = 0.05.

Figure 5. Unsmoothed versions of Fig. 2. We empirically investigate the power (ability to avoid type II errors – false abstention) of
multiple algorithms on synthetic data. The y-axis shows the rate of certified (rather than abstained) components. An optimal algorithm
would achieve 1.0 or 0.99 in all plots.

102 103 104 105 106
N0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

% certified

SegCertifyHolm (b = 0)

b = 1

b = 2

b = 4

b = 0.01N

b = 0.001N

(a) α = 0.1.

102 103 104 105 106
N0.4

0.5

0.6

0.7

0.8

0.9

1.0

% certified

SegCertifyHolm (b = 0)

b = 1

b = 2

b = 4

b = 0.01N

b = 0.001N

(b) α = 0.001.

Figure 6. Evaluation where an error budget of up top b type I errors is allowed. Potentially allowing a small amount of errors greatly
increases the power of the test. N varies along the x-axis, γ = 0.05 and k components with error rate 5γ.

levels of N . Fig. 6a uses α = 0.1 and Fig. 6b α = 0.001.
We see that allowing a single error leads to a huge gain
in power for the N = 106 setting. Similarly, allowing 1
percent or 1 permille errors greatly strengthen the method.

False Discovery Rate Similarly, SEGCERTIFY can em-
ploy false discovery rate (FDR) control rather than (k-
)FWER control. FDR control limits the expected number
of type I errors. Since this is a much weaker statement than
FWER it allows for less type II errors. However, while
useful this kind of control leaves the area of (statistical)
certified robustness for a more relaxed probabilistic setting
which we do not investigate here further.

B.3. Additional Results for §6.2

Table 8 shows an extended version of Table 1. Both of these
tables use Holm correction. Table 4 shows the difference to
Table 8 if instead Bonferroni correction was used. Generally
this difference is very small in this setting as it appears the
true pA are far from τ . However in some settings (such as
multi resolution) the effect of Holm correction can be up
to 2%. Since for a particular base classifier or τ this gain
can quickly go from neglectable to significant and since the
additional evaluation time (< 0.1s) is neglectable compared
to the time for sampling we believe Holm correction to be
preferable in most cases.



Scalable Certified Segmentation via Randomized Smoothing

Table 4. Difference when Bonferroni correction rather than Holm correction is used in Table 8. Only differences ≥ 10−4 are shown. We
observed no such differences on the Pascal Context dataset.

Cityscapes

scale σ R acc. mIoU %�

0.5
SEGCERTIFY
n = 100, τ = 0.75

0.25 0.17 -0.0008 -0.0005 0.0019
0.33 0.22 -0.0014 -0.0010 0.0024
0.50 0.34 -0.0021 -0.0019 0.0031

0.5
SEGCERTIFY
n = 100, τ = 0.75

0.25 0.17 -0.0009 -0.0014 0.0014
0.33 0.22 -0.0012 -0.0020 0.0016
0.50 0.34 -0.0005 -0.0004 0.0006

1.0
SEGCERTIFY
n = 100, τ = 0.75

0.25 0.17 -0.0012 -0.0032 0.0016
0.33 0.22 -0.0020 -0.0018 0.0024
0.50 0.34 -0.0000 -0.0000 0.0001

SEGCERTIFY
n = 300, τ = 0.90 0.25 0.17 0.0001 0.0002 -0.0002

multi
SEGCERTIFY
n = 100, τ = 0.75 0.25 0.17 -0.0125 -0.0185 0.0173

Consistency Training Here we investigate a naive instan-
tiation of training approach from Jeong & Shin (2020).

Jeong & Shin (2020) improve the training for classification
models used as base models in randomized smoothing by
adding a consistency regularization term in training. We use
this same term, but compute it for every pixel and average
the results. To obtain the results in Table 5 we used m = 2,
λ = 1, η = 0.5 and σ = 0.25. Depending on the scale
we see either slightly better or slightly worse results than
with standard Gaussian data augmentation in training. This
shows the promise of the method but also highlights the
need for potential further specialization to the segmentation
setting, particularly by considering the effect of scaling.

B.4. Additional Results for §6.3

Table 6 shows the change when executing the experiments
in Table 2 with Bonferroni correction instead of Holm cor-
rection.

B.5. Certification beyond `p

As outlined in §5.2, SEGCERTIFY can be easily adapted to
non-`2-settings. Here we show that we can certify against
and adversary rotating 3d point clouds. A 3d rotation is
parameterized by 3 angles which we will denote ε ∈ R3 and
define ψε(x) : RN×3 → RN×3 as

(ψε(x))i = Rεxi, (2)

where Rε denotes the 3d rotation matrix specified by ε. The
randomized smoothing approach of Fischer et al. (2020)

allows to certify robustness in this case: f(x) = f(ψδ(x))
for δ with ‖δ‖2 ≤ R, by sampling rotations ψε(x) with ε ∼
N (0, σ2). The parameter robustness radius R is computed
the same as throughout the paper. When applied to points
with a normal vector, Eq. (2) can be extended to apply Rε
to the point coordinates as well as the normal vector.

Using one of the model from §6.3, fnσ=0.5 , we perform this
version of randomized smoothing.

The results are shown in Table 7. Since the models was
not specifically trained to be robust under rotations, the per-
formance quickly deteriorates. Nevertheless we can certify
robustness to rotations with a parameter radius R of 0.17
and 0.085 for σ of 0.25 and 0.125 respectively.

The same approach can be applied to models that are empir-
ically invariant to most rotations while not formally rotation
invariant. In these cases we need to certify a radius of
R =

√
3π (when measuring angles in radians). When using

a fixed τ , an appropriate σ can be chosen as σ =
√

3π
Φ−1(τ) .

While this is relativity large σ, this does not pose an obstacle
for a mostly robust base model.

Table 7. Results for point cloud part segmentation under 3d rota-
tion. The baseline and base model is fnσ=0.5. SEGCERTIFY uses
τ = 0.75, n0 = 100, n = 1000 and α = 0.0001.

model / σ acc %� t

baseline 0.77 0.00 0.72
0.125 0.69 0.16 74.13

0.25 0.61 0.26 74.51



Scalable Certified Segmentation via Randomized Smoothing

Table 5. Same setting as Table 8 but using a model trained with consitency regularization.

Cityscapes

scale σ R acc. mIoU %�

0.25 base model - - 0.87 0.40 0.00

SEGCERTIFY
n = 100, τ = 0.75

0.25 0.17 0.83 0.42 0.07
0.33 0.22 0.84 0.42 0.09
0.50 0.34 0.82 0.43 0.14

0.50 base model - - 0.91 0.53 0.00

SEGCERTIFY
n = 100, τ = 0.75

0.25 0.17 0.89 0.57 0.06
0.33 0.22 0.89 0.57 0.07
0.50 0.34 0.86 0.57 0.11

1.00 base model - - 0.92 0.62 0.00

SEGCERTIFY
n = 100, τ = 0.75

0.25 0.17 0.88 0.63 0.12
0.33 0.22 0.79 0.46 0.20
0.50 0.34 0.39 0.06 0.32

Table 6. Difference when Bonferroni correction rather than Holm correction is used in Table 2.

n τ σ acc %�
fσ=0.25

1000 0.75 0.250 -0.0012 0.0019
1000 0.85 0.250 -0.0023 0.0029

10000 0.95 0.250 -0.0013 0.0009
10000 0.99 0.250 -0.0008 0.0009

fnσ=0.25

1000 0.75 0.250 -0.0020 0.0026
1000 0.85 0.250 -0.0026 0.0032

10000 0.95 0.250 -0.0011 0.0010
10000 0.99 0.250 -0.0013 0.0011

fσ=0.5

1000 0.75 0.250 -0.0007 0.0010
1000 0.75 0.500 -0.0002 0.0010
1000 0.85 0.500 -0.0017 0.0028

10000 0.95 0.500 -0.0007 0.0010
10000 0.99 0.500 -0.0003 0.0003

fnσ=0.5

1000 0.75 0.250 -0.0009 0.0017
1000 0.75 0.500 -0.0015 0.0024
1000 0.85 0.500 -0.0019 0.0028

10000 0.95 0.500 -0.0043 0.0013
10000 0.99 0.500 -0.0008 0.0007



Scalable Certified Segmentation via Randomized Smoothing

Table 8. Extended version of Table 1. Segmentation results for 100 images. acc. shows the mean per-pixel accuracy, mIoU the mean
intersection over union, %� abstentions and t runtime in seconds. All SEGCERTIFY (n0 = 10, α = 0.001) results are certifiably robust
at radius R w.h.p. multiscale uses 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 as well as their flipped variants for Cityscapes and additionally 2.0 for
Pascal. All numbers are obtained via Holm correction.

Cityscapes Pascal Context

scale σ R acc. mIoU %� t acc. mIoU %� t

0.25 non-robust model - - 0.93 0.60 0.00 0.38 0.59 0.24 0.00 0.12
base model - - 0.87 0.42 0.00 0.37 0.33 0.08 0.00 0.13

SEGCERTIFY
n = 100, τ = 0.75

0.25 0.17 0.84 0.43 0.07 70.00 0.33 0.08 0.13 14.16
0.33 0.22 0.84 0.44 0.09 70.21 0.34 0.09 0.17 14.20
0.50 0.34 0.82 0.43 0.13 71.45 0.23 0.05 0.27 14.23

SEGCERTIFY
n = 300, τ = 0.90

0.25 0.32 0.83 0.43 0.10 143.37 0.32 0.08 0.23 24.33
0.33 0.42 0.82 0.43 0.12 143.30 0.32 0.09 0.29 24.42
0.50 0.64 0.79 0.40 0.18 143.54 0.20 0.04 0.43 24.13

SEGCERTIFY
n = 500, τ = 0.95

0.25 0.41 0.83 0.42 0.11 229.37 0.29 0.01 0.30 33.64
0.33 0.52 0.83 0.42 0.12 230.69 0.26 0.01 0.39 33.79
0.50 0.82 0.77 0.38 0.20 230.09 0.10 0.00 0.61 33.44

SEGCERTIFY
n = 10000, τ = 0.99

0.25 0.58 - - - - 0.25 0.07 0.48 557.29
0.33 0.77 - - - - 0.24 0.07 0.58 557.34
0.50 1.17 - - - - 0.11 0.03 0.77 557.32

0.5 non-robust model - - 0.96 0.76 0.00 0.39 0.74 0.38 0.00 0.16
base model - - 0.89 0.51 0.00 0.39 0.47 0.13 0.00 0.14

SEGCERTIFY
n = 100, τ = 0.75

0.25 0.17 0.88 0.54 0.06 75.59 0.48 0.16 0.09 16.29
0.33 0.22 0.87 0.54 0.08 75.99 0.50 0.17 0.11 16.08
0.50 0.34 0.86 0.54 0.10 75.72 0.36 0.10 0.21 16.14

SEGCERTIFY
n = 300, τ = 0.90

0.25 0.32 0.87 0.53 0.08 143.40 0.46 0.15 0.17 27.17
0.33 0.42 0.86 0.52 0.10 145.90 0.47 0.16 0.21 27.17
0.50 0.64 0.83 0.50 0.15 144.61 0.31 0.10 0.38 27.32

SEGCERTIFY
n = 500, τ = 0.95

0.25 0.41 0.86 0.52 0.09 228.63 0.45 0.19 0.21 38.27
0.33 0.52 0.85 0.51 0.11 228.38 0.46 0.16 0.26 38.43
0.50 0.82 0.82 0.49 0.16 228.73 0.30 0.09 0.44 38.37

0.75 non-robust model - - 0.97 0.80 0.00 0.46 0.76 0.41 0.00 0.15
base model - - 0.90 0.59 0.00 0.47 0.55 0.18 0.00 0.15

SEGCERTIFY
n = 100, τ = 0.75

0.25 0.17 0.88 0.57 0.09 82.69 0.53 0.19 0.15 16.78
0.33 0.22 0.86 0.56 0.12 82.87 0.54 0.20 0.20 16.83
0.50 0.34 0.64 0.27 0.31 82.19 0.29 0.07 0.33 16.83

SEGCERTIFY
n = 300, τ = 0.90

0.25 0.32 0.84 0.54 0.13 177.44 0.51 0.19 0.22 29.48
0.33 0.42 0.84 0.52 0.15 177.22 0.51 0.20 0.28 29.58
0.50 0.64 0.60 0.24 0.37 177.67 0.25 0.06 0.45 29.53

1.0 non-robust model - - 0.97 0.81 0.00 0.52 0.77 0.42 0.00 0.18
base model - - 0.91 0.57 0.00 0.52 0.53 0.18 0.00 0.18

SEGCERTIFY
n = 100, τ = 0.75

0.25 0.17 0.88 0.59 0.11 92.75 0.55 0.22 0.22 18.53
0.33 0.22 0.78 0.43 0.20 92.85 0.46 0.18 0.34 18.57
0.50 0.34 0.34 0.06 0.40 92.48 0.17 0.03 0.41 18.46

SEGCERTIFY
n = 300, τ = 0.90

0.25 0.32 0.86 0.56 0.14 204.82 0.53 0.21 0.29 33.83
0.33 0.42 0.75 0.40 0.24 204.58 0.42 0.17 0.44 33.78
0.50 0.64 0.31 0.05 0.47 204.57 0.15 0.03 0.52 33.43

multi non-robust model - - 0.97 0.82 0.00 8.98 0.78 0.45 0.00 4.21
base model - - 0.92 0.60 0.00 9.04 0.56 0.19 0.00 4.22
SEGCERTIFY
n = 100, τ = 0.75

0.25 0.17 0.88 0.57 0.09 1040.55 0.52 0.21 0.29 355.00



Scalable Certified Segmentation via Randomized Smoothing

C. Details on Attacks & Fig. 1
To produce the visualization in Fig. 1 we used a custom
PGD attack described below and produced an `2 adversarial
example within a range of 0.16. We performed certification
with n = 100, α = 0.001, σ = 0.25 and τ = 0.75, which
certifies robustness at an radius of R = σΦ−1(τ) = 0.1686.
We perform this certification on the clean input and thus
show robustness to the attack. As the non-robust model for
Fig. 1c we used a pretrained HrNet from the same repository
as outlined in App. A.1.

We use k = 100 steps for the attack and step size s = 10∗R
k .

While scaling can be simply incorporated into the attack, we
use scale 1.0 for both the attacked an the certified classifier.

We used an Nvidia Titan RTX to perform these attacks as
the memory requirement exceeds that of a single Nvidia
GeForce RTX 2080 Ti.

Here, in Figs. 7 and 8 we provide further visualizations
like Fig. 1. The visualization in Fig. 7 is hand-picked (like
Fig. 1), while the ones in Fig. 8 are chosen randomly from
the evaluated images.

C.1. PGD for Segmentation

Following the work of Madry et al. (2018), Arnab et al.
(2018) and Xie et al. (2017) we use a slightly generalized
form of the untargeted `2 projected gradient decent (PGD)
attack. This version is the same as untargeted PGD (Madry
et al., 2018) in the classification setting, but we adapt the
loss to be the average of all pixel losses as in Xie et al.
(2017). Formally, for an input x ∈ XN = [0, 1]N×3 with
ground truth segmentation y ∈ YN and model f a radius R

and stepsize s ∈ R we produce an adversarial example x′k
after k steps.

x′0 = x + ε, ε ∼ [0, 1] with ‖ε‖2 ≤ R
x′i+1 = cR,x(x′i + s∇x′i

L(x,y))

with clamping function

cR : RN×3 → [0, 1]N×3

cR,x(x′) =

[
x +R

x′ − x

‖x′ − x‖2

]
,

where [·] denotes component-wise clamping to [0, 1], and
loss

L(x,y) =
1

N

N∑
i=1

H(fi(x),yi), (3)

whereH denotes the cross entropy function.



Scalable Certified Segmentation via Randomized Smoothing

(a) Attacked image (b) Ground truth seg. (c) Attacked segmentation (d) Certified segmentation

Figure 7. Another hand-picked example like Fig. 1.

(a) Attacked image (b) Ground truth seg. (c) Attacked segmentation (d) Certified segmentation

Figure 8. Randomly chosen examples like Fig. 1.


