
Online Learning with Optimism and Delay

A. Extended Literature Review
We review here additional prior work not detailed in the main paper.

A.1. General online learning

We recommend the monographs of Shalev-Shwartz (2012); Orabona (2019) and the textbook of Cesa-Bianchi & Lugosi
(2006) for surveys of the field of online learning and Joulani et al. (2017); McMahan (2017) for widely applicable and
modular analyses of online learning algorithms.

A.2. Online learning with optimism but without delay

Syrgkanis et al. (2015) analyzed optimistic FTRL and two-step variant of optimistic MD without delay. The work focuses
on a particular form of optimism (using the last observed subgradient as a hint) and shows improved rates of convergence to
correlated equilibria in multiplayer games. In the absence of delay, Steinhardt & Liang (2014) combined optimism and
adaptivity to obtain improvements over standard optimistic regret bounds.

A.3. Online learning with delay but without optimism

Overview Joulani et al. (2013; 2016); McMahan & Streeter (2014) provide broad reviews of progress on delayed online
learning.

Delayed stochastic optimization Recht et al. (2011); Agarwal & Duchi (2011); Nesterov (2012); Liu et al. (2014); Liu &
Wright (2015); Sra et al. (2016) studied the effects of delay on stochastic optimization but do not treat the adversarial setting
studied here.

FTRL-Prox vs. FTRL Joulani et al. (2016) analyzed the delayed feedback regret of the FTRL-Prox algorithm, which
regularizes toward the last played iterate as in online mirror descent, but did not study the standard FTRL algorithms
(sometimes called FTRL-Centered) analyzed in this work.

A.4. Self-tuned online learning without delay or optimism

In the absence of optimism and delay, de Rooij et al. (2014); Orabona & Pál (2015); Koolen et al. (2014) developed
alternative variants of FTRL algorithms that self-tune their learning rates.

A.5. Online learning without delay for climate forecasting

Monteleoni et al. (2011) applied the Learn-↵ online learning algorithm of Monteleoni & Jaakkola (2004) to the task of
ensembling climate models. The authors considered historical temperature data from 20 climate models and tracked the
changing sequence of which model predicts best at any given time. In this context, the algorithm used was based on a
set of generalized Hidden Markov Models, in which the identity of the current best model is the hidden variable and the
updates are derived as Bayesian updates. This work was extended to take into account the influence of regional neighboring
locations when performing updates (McQuade & Monteleoni, 2012). These initial results demonstrated the promise of
applying online learning to climate model ensembling, but both methods rely on receiving feedback without delay.

B. Proof of Thm. 3: OFTRL regret
We will prove the following more general result for optimistic adaptive FTRL (OAFTRL)

wt+1 = argminw2W hg1:t + g̃t+1,wi + �t+1 (w), (OAFTRL)

from which Thm. 3 will follow with the choice �t = � for all t � 1.
Theorem 14 (OAFTRL regret). If  is nonnegative and (�t)t�1 is non-decreasing, then, 8u 2 W, the OAFTRL iterates

wt satisfy,

RegretT (u)  �T (u) +
PT

t=1 �t

 �T (u) +
PT

t=1 min
�

1
�t

huber(kgt � g̃tk⇤, kgtk⇤), diam(W)min(kgt � g̃tk⇤, kgtk⇤)
�
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for

�t , min(Ft+1(wt,�t) � Ft+1(w̄t,�t), hgt,wt � w̄ti,

Ft+1(ŵt,�t) � Ft+1(w̄t,�t) + hgt,wt � ŵti)+ with

w̄t , argminw2W Ft+1(w,�t), Ft+1(w,�t) , �t (w) + hg1:t,wi, and

ŵt , argminw2W �t (w) + hg1:t +min( kgtk⇤
kg̃t�gtk⇤

, 1)(g̃t � gt),wi.

Proof. Consider a sequence of arbitrary auxiliary subgradient hints g̃⇤
1, . . . , g̃

⇤
T 2 Rd and the auxiliary OAFTRL sequence

w⇤
t+1 = argminw⇤2W hg1:t + g̃⇤

t+1,w
⇤
i + �t+1 (w⇤) for 0  t  T with g̃⇤

T+1 , 0 and �T+1 = �T . (3)

Generalizing the forward regret decomposition of Joulani et al. (2017) and the prediction drift decomposition of Joulani et al.
(2016), we will decompose the regret of our original (wt)Tt=1 sequence into the regret of the auxiliary sequence (w⇤

t )
T
t=1

and the drift between (wt)Tt=1 and (w⇤
t )

T
t=1.

For each time t, define the auxiliary optimistic objective function F̃
⇤
t (w) = Ft(w) + hg̃⇤

t ,wi. Fixing any u 2 W, we have
the regret bound

RegretT (u) =
PT

t=1 `t(wt) � `t(u) 
PT

t=1hgt,wt � ui (since each `t is convex with gt 2 @`t(wt))

=
PT

t=1hgt,wt � w⇤
t i| {z }

drift

+
PT

t=1hgt,w⇤
t � ui

| {z }
auxiliary regret

.

To control the drift term we employ the following lemma, proved in App. B.1, which bounds the difference between two
OAFTRL optimizers with different losses but common regularizers.

Lemma 15 (OAFTRL difference bound). The OAFTRL and auxiliary OAFTRL iterates (3), wt and w⇤
t , satisfy

kwt � w⇤
t k  min( 1

�t
kg̃t � g̃⇤

t k⇤, diam(W)).

Letting a = diam(W) 2 R [ {1}, we now bound each drift term summand using the Fenchel-Young inequality for dual
norms and Lem. 15:

hgt,wt � w⇤
t i  kgtk⇤kwt � w⇤

t k  min
�

1
�t

kgtk⇤kg̃t � g̃⇤
t k⇤, akgtk⇤

�
.

To control the auxiliary regret, we begin by invoking the OAFTRL regret bound of Orabona (2019, proof of Thm. 7.28), the
nonnegativity of  , and the assumption that (�t)t�1 is non-decreasing:

PT
t=1hgt,w⇤

t � ui  �T+1 (u) � �1 (w⇤
1) +

PT
t=1 Ft+1(w⇤

t ,�t) � Ft+1(w̄t,�t) + (�t � �t+1) (w⇤
t+1)

 �T+1 (u) � �1 (w⇤
1) +

PT
t=1 Ft+1(w⇤

t ,�t) � Ft+1(w̄t,�t).

We next bound the summands in this expression in two ways. Since w⇤
t is the minimizer of F̃

⇤
t , we may apply the

Fenchel-Young inequality for dual norms to conclude that

Ft+1(w⇤
t ,�t) � Ft+1(w̄t,�t) = F̃

⇤
t (w

⇤
t ) + hw⇤

t ,gt � g̃⇤
t i � (F̃ ⇤

t (w̄t) + hw̄t,gt � g̃⇤
t i)

 hw⇤
t � w̄t,gt � g̃⇤

t i  kw⇤
t � w̄tkkgt � g̃⇤

t k⇤  akgt � g̃⇤
t k⇤.

Moreover, by Orabona (2019, proof of Thm. 7.28) and the fact that w̄t minimizes Ft+1(·,�t) over W,

Ft+1(w⇤
t ,�t) � Ft+1(w̄t,�t) 

kgt�g̃⇤
t k

2
⇤

2�t
.

Our collective bounds establish that

�t(g̃⇤
t ) , Ft+1(w⇤

t ,�t) � Ft+1(w̄t,�t) + hgt,wt � w⇤
t i

 min( 1
2�t

kgt � g̃⇤
t k

2
⇤, akgt � g̃⇤

t k⇤) + min( 1
�t

kgtk⇤kg̃t � g̃⇤
t k⇤, akgtk⇤)


1

2�t
kgt � g̃⇤

t k
2
⇤ +

1
�t

kgtk⇤kg̃t � g̃⇤
t k⇤.
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To obtain an interpretable bound on regret, we will minimize the final expression over all convex combinations g̃⇤
t of gt and

g̃t. The optimal choice is given by

ĝt = gt + c⇤(g̃t � gt) for

c⇤ , min( kgtk⇤
kg̃t�gtk⇤

, 1) = argmin
c1,g̃⇤

t=gt+c(g̃t�gt)

1
2�t

kgt � g̃⇤
t k

2
⇤ +

1
�t

kgtk⇤kg̃t � g̃⇤
t k⇤

= argminc1
c2

2�t
kgt � g̃tk

2
⇤ +

1�c
�t

kgtk⇤kg̃t � gtk⇤.

For this choice, we obtain the bound

(�t(ĝt))+ 
1

2�t
kgt � ĝtk

2
⇤ +

1
�t

kgtk⇤kĝt � g̃tk⇤

= c2⇤
2�t

kgt � g̃tk
2
⇤ +

1�c⇤
�t

kgtk⇤kgt � g̃tk⇤

= 1
2�t

min(kgt � g̃tk⇤, kgtk⇤)2 +
1
�t

kgtk⇤(kgt � g̃tk⇤ � kgtk⇤)+

= 1
2�t

(kgt � g̃tk
2
⇤ � (kgt � g̃tk⇤ � kgtk⇤)2+)

= 1
�t

huber(kgt � g̃tk⇤, kgtk⇤)

and therefore

�t = min(�t(g̃t), �t(gt), �t(ĝt))+  min( 1
�t

huber(kgt � g̃tk⇤, kgtk⇤), amin(kgt � g̃tk⇤, kgtk⇤)). (4)

Since g̃⇤
t is arbitrary, the advertised regret bounds follow as

RegretT (u)  inf g̃⇤
1 ,...,g̃

⇤
T2Rd �T+1 (u) +

PT
t=1 �t(g̃

⇤
t )

= �T+1 (u) +
PT

t=1 inf g̃⇤
t2Rd �t(g̃⇤

t )

 �T+1 (u) +
PT

t=1 min(�t(g̃t), �t(gt), �t(ĝt))+.

B.1. Proof of Lem. 15: OAFTRL difference bound

Fix any time t, and define the optimistic objective function F̃t(w) = �t (w) +
Pt�1

i=1hgi,wi + hg̃t,wi and the auxiliary
optimistic objective function F̃

⇤
t (w) = �t (w) +

Pt�1
i=1hgi,wi + hg̃⇤

t ,wi so that wt 2 argminw2W F̃t(w) and w⇤
t 2

argminw2W F̃
⇤
t (w). We have

F̃
⇤
t (wt) � F̃

⇤
t (w

⇤
t ) �

�t
2 kwt � w⇤

t k
2 by the strong convexity of F̃

⇤
t and

F̃t(w⇤
t ) � F̃t(wt) �

�t
2 kwt � w⇤

t k
2 by the strong convexity of F̃t.

Summing the above inequalities and applying the Fenchel-Young inequality for dual norms, we obtain

�tkwt � w⇤
t k

2
 hg̃⇤

t � g̃t,wt � w⇤
t i  kg̃t � g̃⇤

t k⇤kwt � w⇤
t k,

which yields the first half of our target bound after rearrangement. The second half follows from the definition of diameter,
as kwt � w⇤

t k  diam(W).

C. Proof of Thm. 4: SOOMD regret
We will prove the following more general result for adaptive SOOMD (ASOOMD)

wt+1 = argmin
w2W

hgt + g̃t+1 � g̃t,wi + �t+1B (w,wt) with arbitrary w0 and g0 = g̃0 = 0 (ASOOMD)

from which Thm. 4 will follow with the choice �t = � for all t � 1.
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Theorem 16 (ASOOMD regret). Fix any �T+1 � 0. If each (�t+1 � �t) is proper and differentiable, �0 , 0, and

g̃T+1 , 0, then, for all u 2 W, the ASOOMD iterates wt satisfy

RegretT (u) 
PT

t=0(�t+1 � �t)B (u,wt)+
PT

t=1 min
�
diam(W)kgt � g̃tk⇤,

1
�t+1

huber(kgt � g̃tk⇤, kgt + g̃t+1 � g̃tk⇤)
�
.

Proof. Fix any u 2 W, instantiate the notation of Joulani et al. (2017, Sec. 7.2), and consider the choices

• r1 = �2 , rt = (�t+1 � �t) for t � 2, so that r1:t = �t+1 for t � 1,

• qt = q̃t + hg̃t+1 � g̃t, ·i for t � 0,

• q̃0(w) = �1B (w,w0) and q̃t ⌘ 0 for all t � 1,

• p1 , r1 � q0 = r1 � q̃0 � hg̃1 � g̃0, ·i = �2 � �1B (·,w0) � hg̃1 � g̃0, ·i,

• pt , rt � qt�1 = rt � q̃t�1 � hg̃t � g̃t�1, ·i = (�t+1 � �t) � hg̃t � g̃t�1, ·i for all t � 2.

Since, for each t, �t = 0 and `t is convex, the ADA-MD regret inequality of Joulani et al. (2017, Eq. (24)) and the choice
g̃T+1 = 0 imply that

RegretT (u) =
TX

t=1

`t(wt) �

TX

t=1

`t(u)

 �

TX

t=1

B`t(u,wt) +
TX

t=0

qt(u) � qt(wt+1) +
TX

t=1

Bpt(u,wt)

�

TX

t=1

Br1:t(wt+1,wt) +
TX

t=1

hgt,wt � wt+1i +
TX

t=1

�t

 �1(B (u,w0) � B (w1,w0)) +
TX

t=0

hg̃t+1 � g̃t,u � wt+1i

+
TX

t=1

(�t+1 � �t)B (u,wt) +
TX

t=1

hgt,wt � wt+1i � �t+1B (wt+1,wt)

=
TX

t=0

(�t+1 � �t)B (u,wt) +
TX

t=0

hgt � g̃t,wt � wt+1i � �t+1B (wt+1,wt). (5)

To obtain our advertised bound, we begin with the expression (5) and invoke the 1-strong convexity of  and the nonnegativity
of B� (w1,w0) to find

RegretT (u) 
PT

t=0(�t+1 � �t)B (u,wt) +
PT

t=0hgt � g̃t,wt � wt+1i � �t+1B (wt+1,wt)


PT

t=0(�t+1 � �t)B (u,wt) +
PT

t=1hgt � g̃t,wt � wt+1i �
�t+1

2 kwt � wt+1k
2
. (6)

We will bound the final sum in this expression using two lemmas. The first is a bound on the difference between subsequent
ASOOMD iterates distilled from Joulani et al. (2016, proof of Prop. 2).

Lemma 17 (ASOOMD iterate bound (Joulani et al., 2016, proof of Prop. 2)). If  is differentiable and 1-strongly convex

with respect to k·k, then the ASOOMD iterates satisfy

kwt � wt+1k 
1

�t+1
kgt + g̃t+1 � g̃tk⇤.

The second, proved in App. C.1, is a general bound on hg,vi �
�
2 kvk

2 under a norm constraint on v.
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Lemma 18 (Norm-constrained conjugate). For any g 2 Rd
and �, c, b > 0,

sup
v2Rd:kvkmin( c

� ,b)
hg,vi �

�
2 kvk

2 = 1
� min(kgk⇤, c, b�)(kgk⇤ �

1
2 min(kgk⇤, c, b�))

 min(bkgk⇤,
1
� min(kgk⇤, c)(kgk⇤ �

1
2 min(kgk⇤, c)))

= min(bkgk⇤,
1
2� (kgk

2
⇤ � (kgk⇤ � min(kgk⇤, c))2))

= min(bkgk⇤,
1
2� (kgk

2
⇤ � (kgk⇤ � c)2+))

 min( 1
2�kgk

2
⇤,

1
�ckgk⇤, bkgk⇤).

By Lems. 17 and 18 and the definition of a , diam(W), each summand in our regret bound (6) satisfies

hgt � g̃t,wt � wt+1i �
�t+1

2 kwt � wt+1k
2

 sup
v2Rd:kvkmin( 1

�t+1
kgt+g̃t+1�g̃tk⇤,a)

hgt � g̃t,vi �
�t+1

2 kvk
2

= min
�
akgt � g̃tk⇤,

1
2�t+1

(kgt � g̃tk
2
⇤ � (kgt � g̃tk⇤ � kgt + g̃t+1 � g̃tk⇤)2+)

�

yielding the advertised result.

C.1. Proof of Lem. 18: Norm-constrained conjugate

By the definition of the dual norm,

sup
v2Rd:kvkmin( c

� ,b)
hg,vi �

�
2 kvk

2 = sup
amin( c

� ,b)
sup

v2Rd:kvka
hg,vi �

�
2a

2 = sup
amin( c

� ,b)
akgk⇤ �

�
2a

2

= 1
� min(kgk⇤, c, b�)(kgk⇤ �

1
2 min(kgk⇤, c, b�))  min( 1�ckgk⇤, bkgk⇤).

We compare to the values of less constrained optimization problems to obtain the final inequalities:

sup
amin( c

� ,b)
akgk⇤ �

�
2a

2
 sup

a c
�

akgk⇤ �
�
2a

2 = 1
� min(kgk⇤, c)(kgk⇤ �

1
2 min(kgk⇤, c))

 sup
a>0

akgk⇤ �
�
2a

2 = 1
�

1
2kgk

2
⇤.

D. Proof of Lem. 8: DORM is ODAFTRL and DORM + is DOOMD
Our derivations will make use of several facts about `p norms, summarized in the next lemma.
Lemma 19 (`p norm facts). For p 2 (1, 1),  (w) = 1

2kwk
2
p, and any vectors w,v 2 Rd

and w̃0 2 Rd
+,

r (w) = r
1
2kwk

2
p = sign(w)|w|

p�1
/kwk

p�2
p (7)

hw, r (w)i = kwk
2
p = 2 (w)

 
⇤(v) = sup

w2Rd

hw,vi �  (w) = 1
2kvk

2
q for 1/q = 1 � 1/p (8)

r 
⇤(v) = sign(v)|v|

q�1
/kvk

q�2
q

 
⇤
+(v) = sup

w2Rd
+

hw,vi �  (w) = sup
w2Rd

hw, (v)+i �  (w) = 1
2k(v)+k

2
q

r 
⇤
+(v) = argmax

w2Rd
+

hw,vi �  (w) = argmin
w2Rd

+

 (w) � hw,vi = (v)q�1
+ /k(v)+k

q�2
q (9)

min
w̃2Rd

+

B� (w̃, w̃0) � hv, w̃i = �(hw̃0, r (w̃0)i �  (w̃0) � sup
w̃2Rd

+

hw̃, r (w̃0) + v/�i �  (w̃))

= �(hw̃0, r (w̃0)i �  (w̃0) �  
⇤
+(r (w̃0) + v/�))

= �( (w̃0) �  
⇤
+(r (w̃0) + v/�))

= �( (w̃0) �
1
2k(r (w̃0) + v/�)+k

2
q)

= �( 12kw̃0k
2
p �

1
2k(w̃p�1

0 /kw̃0k
p�2
p + v/�)+k

2
q).
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Proof. The fact (7) follows from the chain rule as

rj
1
2kwk

2
p = 1

2rj(kwk
p
p)

2/p = 1
p (kwk

p
p)

(2/p)�1
rjkwk

p
p = 1

pkwk
2�p
p rj

Pd
j0=1 |wj0 |

p

= 1
pkwk

2�p
p p sign(wj)|wj |

p�1 = sign(wj)|wj |
p�1

/kwk
p�2
p .

The fact (8) follows from Lem. 18 as k·kq is the dual norm of k·kp.

We now prove each claim in turn.

D.1. DORM is ODAFTRL

Fix p 2 (1, 2], � > 0, and t � 0. The ODAFTRL iterate with hint �ht+1, W , Rd
+,  (w̃) = 1

2kw̃k
2
p, loss subgradients

gODAFTRL
1:t�D = �r1:t�D, and regularization parameter � takes the form

argmin
w̃2Rd

+

� (w̃) � hw̃,ht+1 + r1:t�Di

= argmin
w̃2Rd

+

 (w̃) � hw̃, (ht+1 + r1:t�D)/�i

= ((r1:t�D + ht+1)/�)
q�1
+ /k((r1:t�D + ht+1)/�)+k

q�2
q by (9)

= ((r1:t�D + ht+1)/�)
q�1
+ k((r1:t�D + ht+1)/�)

q�1
+ k

p�2
p since (p � 1)(q � 1) = 1

= w̃t+1kw̃t+1k
p�2
p

proving the claim.

D.2. DORM+ is DOOMD

Fix p 2 (1, 2] and � > 0, and let (w̃t)t�0 denote the unnormalized iterates generated by DORM+ with hints ht, instantaneous
regrets rt, regularization parameter �, and hyperparameter q. For p = q/(q � 1), let (w̄t)t�0 denote the sequence generated
by DOOMD with w̄0 = 0, hints �ht, W , Rd

+,  (w̃) = 1
2kw̃k

2
p, loss subgradients gDOOMD

t = �rt, and regularization
parameter �. We proceed by induction to show that, for each t, w̄t = w̃tkw̃tk

p�2
p .

Base case By assumption, w̄0 = 0 = w̃0kw̃0k
p�2
p , confirming the base case.

Inductive step Fix any t � 0 and assume that for each s  t, w̄s = w̃skw̃sk
p�2
p . Then, by the definition of DOOMD

and our `p norm facts,

w̄t+1 = argmin
w̄2Rd

+

h�ht+1 + ht � rt�D, w̄i + B� (w̄, w̄t)

= argmin
w̄2Rd

+

�( (w̄) �  (w̄t) � hw̄ � w̄t, r (w̄t)i) + h�ht+1 + ht � rt�D, w̄i

= argmin
w̄2Rd

+

 (w̄) � hw̄, r (w̄t) + (rt�D � ht + ht+1)/�i

= argmin
w̄2Rd

+

 (w̄) � hw̄, w̄p�1
t /kw̄tk

p�2
p + (rt�D � ht + ht+1)/�i by (7)

= argmin
w̄2Rd

+

 (w̄) � hw̄, w̃p�1
t + (rt�D � ht + ht+1)/�i by the inductive hypothesis

= (w̃p�1
t + (rt�D � ht + ht+1)/�)

q�1
+ /k(w̃p�1

t + (rt�D � ht + ht+1)/�)+k
q�2
q by (9)

= (w̃p�1
t + (rt�D � ht + ht+1)/�)

q�1
+ k(w̃p�1

t + (rt�D � ht + ht+1)/�)
q�1
+ k

p�2
p since (p � 1)(q � 1) = 1

= w̃t+1kw̃t+1k
p�2
p ,

completing the inductive step.
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E. Proof of Lem. 7: DORM and DORM+ are independent of �

We will prove the following more general result, from which the stated result follows immediately.

Lemma 20 (DORM and DORM+ are independent of �). Consider either DORM or DORM+ plays w̃t as a function of

� > 0, and suppose that for all time points t, the observed subgradient gt and chosen hint ht+1 only depend on � through

(ws,�
q�1w̃s,gs�1,hs)st and (ws,�

q�1w̃s,gs,hs)st respectively. Then if �
q�1w̃0 is independent of the choice of

� > 0, then so is �
q�1w̃t for all time points t. As a result, wt / �

q�1w̃t is also independent of the choice of � > 0 at all

time points.

Proof. We prove each result by induction on t.

E.1. Scaled DORM iterates �q�1w̃t are independent of �

Base case By assumption, h1 is independent of the choice of � > 0. Hence �q�1w̃1 = (h1)
q�1
+ is independent of � > 0,

confirming the base case.

Inductive step Fix any t � 0, suppose �q�1w̃s is independent of the choice of � > 0 for all s  t, and consider

�
q�1w̃t+1 = (r1:t�D + ht+1)

q�1
+ .

Since r1:t�D depends on � only through ws and gs for s  t � D, our � dependence assumptions for (gs,hs+1)st; the
fact that, for each s, ws / �

q�1w̃s; and our inductive hypothesis together imply that �q�1w̃t+1 is independent of � > 0.

E.2. Scaled DORM+ iterates �q�1w̃t are independent of �

Base case By assumption, �q�1w̃0 is independent of the choice of � > 0, confirming the base case.

Inductive step Fix any t � 0 and suppose �q�1w̃s is independent of the choice of � > 0 for all s  t. Since
(p � 1)(q � 1) = 1,

�
q�1w̃t+1 = (�w̃p�1

t + rt�D � ht + ht+1)
q�1
+ = ((�q�1w̃t)

p�1 + rt�D � ht + ht+1)
q�1
+ .

Since rt�D depends on � only through wt�D and gt�D, our � dependence assumptions for (gs,hs+1)st; the fact that, for
each s  t, ws / �

q�1w̃s; and our inductive hypothesis together imply that �q�1w̃t+1 is independent of � > 0.

F. Proof of Cor. 9: DORM and DORM+ regret
Fix any � > 0 and u 2 4d�1, consider the unnormalized DORM or DORM+ iterates w̃t, and define w̄t = w̃tkw̃tk

p�2
p for

each t. For either algorithm, we will bound our regret in terms of the surrogate losses

ˆ̀
t(w̃) , �hrt, w̃i = hgt, w̃i � hw̃,1ihgt,wti

defined for w̃ 2 Rd
+. Since ˆ̀

t(u) = hgt,u � wti, ˆ̀t(w̄t) = 0, and each `t is convex, we have

RegretT (u) =
PT

t=1 `t(wt) � `t(u) 
PT

t=1hgt,wt � ui =
PT

t=1
ˆ̀
t(w̄t) � ˆ̀

t(u).

For DORM, Lem. 8 implies that (w̄t)t�1 are ODFTRL iterates, so the ODFTRL regret bound (Thm. 5) and the fact that  is
1-strongly convex with respect to k·k =

p
p � 1k·kp (see Shalev-Shwartz, 2007, Lemma 17) with k·k⇤ = 1p

p�1
k·kq imply

RegretT (u) 
�
2 kuk

2
p +

1
�(p�1)

PT
t=1 bt,q.

Similarly, for DORM+, Lem. 8 implies that (w̄t)t�0 are DOOMD iterates with w̄0 = 0, so the DOOMD regret bound
(Thm. 6) and the strong convexity of  yield

RegretT (u)  B�
2 k·k2

p
(u,0) + 1

�(p�1)

PT
t=1 bt,q = �

2 kuk
2
p +

1
�(p�1)

PT
t=1 bt,q.
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Since, by Lem. 7, the choice of � does not impact the iterate sequences played by DORM and DORM+, we may take the
infimum over � > 0 in these regret bounds. The second advertised inequality comes from the identity 1

p�1 = q � 1 and the
norm equivalence relations kvkq  d

1/q
kvk1 and kvkp  kvk1 = 1 for v 2 Rd, as shown in Lem. 21 below. The final

claim follows as

infq0�2 d
2/q0(q0 � 1) = infq0�2 22 log2(d)/q

0
(q0 � 1)  22 log2(d)/(2 log2(d))(2 log2(d) � 1) = 2(2 log2(d) � 1)

since d > 1.
Lemma 21 (Equivalence of p-norms). If x 2 Rn

and q > q
0
� 1, then kxkq  kxkq0  n

(1/q0�1/q)
kxkq .

Proof. To show kxkq  kxkq0 for q > q
0

� 1, suppose without loss of generality that kxkq0 = 1. Then, kxk
q
q =

Pn
i=1 |xi|

q


Pn
i=1 |xi|

q0 = kxk
q0

q0 = 1. Hence kxkq  1 = kxkq0 .

For the inequality kxkq0  n
1/q0�1/q

kxkq , applying Hölder’s inequality yields

kxk
q0

q0 =
Pn

i=1 1 · |xi|
q0

 (
Pn

i=1 1)
1� q0

q (
Pn

i=1 |xi|
q)

q0
q = n

1� q0
q kxk

q0
q ,

so kxkq0  n
1/q0�1/q

kxkq .

G. Proof of Thm. 10: ODAFTRL regret
Since ODAFTRL is an instance of OAFTRL with g̃t+1 = ht+1 �

Pt
s=t�D+1 gs, the ODAFTRL result follows immediately

from the OAFTRL regret bound, Thm. 14.

H. Proof of Thm. 11: DUB Regret
Fix any u 2 W. By Thm. 10, ODAFTRL admits the regret bound

RegretT (u)  �T (u) +
PT

t=1 min( 1
�t
bt,F ,at,F ).

To control the second term in this bound, we apply the following lemma proved in App. H.1.
Lemma 22 (DUB-style tuning bound). Fix any ↵ > 0 and any non-negative sequences (at)Tt=1, (bt)Tt=1. If

�⇤
t+1 , 2maxjt�D�1 aj�D+1:j +

qPt�D
i=1 a

2
i + 2↵bi  ↵�t+1 for each t

then

PT
t=1 min(b2t/�t, at)  �⇤

T+D+1  ↵�T+D+1.

Since �T  �T+D+1, the result now follows by setting at = at,F and bt = bt,F , so that

RegretT (u)  �T (u) + ↵�T+D+1  ( (u) + ↵)�T+D+1.

H.1. Proof of Lem. 22: DUB-style tuning bound

We prove the claim

�t ,
Pt

i=1 min(bi/�i, ai)  �⇤
t+D+1  ↵�t+D+1

by induction on t.

Base case For t 2 [D + 1],

Pt
i=1 min(bi/�i, ai)  a1:t�1 + at  2maxjt�1 aj�D+1:j +

qPt
i=1 a

2
i + 2↵bi = �⇤

t+D+1  ↵�t+D+1

confirming the base case.
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Inductive step Now fix any t + 1 � D + 2 and suppose that

�i  �⇤
i+D+1  ↵�i+D+1

for all 1  i  t. We apply this inductive hypothesis to deduce that, for each 0  i  t,

�2
i+1 � �2

i = (�i +min(bi+1/�i+1, ai+1))
2

� �2
i = 2�i min(bi+1/�i+1, ai+1) + min(bi+1/�i+1, ai+1)

2

= 2�i�D min(bi+1/�i+1, ai+1) + 2(�i � �i�D)min(bi+1/�i+1, ai+1) + min(bi+1/�i+1, ai+1)
2

= 2�i�D min(bi+1/�i+1, ai+1) + 2
iX

j=i�D+1

min(bj/�j , aj)min(bi+1/�i+1, ai+1) + min(bi+1/�i+1, ai+1)
2

 2↵�i+1 min(bi+1/�i+1, ai+1) + 2ai�D+1:i min(bi+1/�i+1, ai+1) + a
2
i+1

 2↵bi+1 + a
2
i+1 + 2ai�D+1:i min(bi+1/�i+1, ai+1).

Now, we sum this inequality over i = 0, . . . , t, to obtain

�2
t+1 

Pt
i=0(2↵bi+1 + a

2
i+1) + 2

Pt
i=0 ai�D+1:i min(bi+1/�i+1, ai+1)

=
Pt+1

i=1(2↵bi + a
2
i ) + 2

Pt+1
i=1 ai�D:i�1 min(bi/�i, ai)


Pt+1

i=1(a
2
i + 2↵bi) + 2maxjt aj�D+1:j

Pt+1
i=1 min(bi/�i, ai)

=
Pt+1

i=1(a
2
i + 2↵bi) + 2�t+1 maxjt aj�D+1:j .

Solving this quadratic inequality and applying the triangle inequality, we have

�t+1  maxjt aj�D+1:j +
1
2

q
(2maxjt aj�D+1:j)2 + 4

Pt+1
i=1 a

2
i + 2↵bi

 2maxjt aj�D+1:j +
qPt+1

i=1 a
2
i + 2↵bi = �⇤

t+D+2  ↵�t+D+2.

I. Proof of Thm. 12: AdaHedgeD Regret
Fix any u 2 W. Since the AdaHedgeD regularization sequence (�t)t�1 is non-decreasing, Thm. 14 gives the regret bound

RegretT (u)  �T (u) +
PT

t=1 �t = �T (u) + ↵�T+D+1  ( (u) + ↵)�T+D+1,

and the proof of Thm. 14 gives the upper estimate (4):

�t  min
⇣

bt,F

�t
,at,F

⌘
for all t 2 [T ]. (10)

Hence, it remains to bound �T+D+1. Since �1 = · · · = �D+1 = 0 and ↵(�t+1 � �t) = �t�D for t � D + 1,

↵�
2
T+D+1 =

PT+D
t=1 ↵(�2t+1 � �

2
t ) =

PT+D
t=D+1

�
↵(�t+1 � �t)2 + 2↵(�t+1 � �t)�t

�

=
PT

t=1

�
�
2
t /↵+ 2�t�t+D

�
by the definition of �t+1

=
PT

t=1

�
�
2
t /↵+ 2�t�t + 2�t(�t+D � �t)

�


PT

t=1

�
�
2
t /↵+ 2�t�t + 2�t maxt2[T ](�t+D � �t)

�

=
PT

t=1

�
�
2
t /↵+ 2�t�t

�
+ 2�T+D+1 maxt2[T ] �t�D:t�1


PT

t=1

�
a2t,F /↵+ 2bt,F

�
+ 2�T+D+1 maxt2[T ] at�D:t�1,F by (10).

Solving the above quadratic inequality for �T+D+1 and applying the triangle inequality, we find

↵�T+D+1  maxt2[T ] at�D:t�1,F + 1
2

q
4(maxt2[T ] at�D:t�1,F )2 + 4

PT
t=1 a

2
t,F + 2↵bt,F

 2maxt2[T ] at�D:t�1,F +
qPT

t=1 a
2
t,F + 2↵bt,F .
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J. Proof of Thm. 13: Learning to hint regret
We begin by bounding the hinting problem regret. Since DORM+ is used for the hinting problem, the following result is an
immediate corollary of Cor. 9.

Corollary 23 (DORM+ hinting problem regret). With convex losses lt(!) = ft(Ht!) and no meta-hints, the DORM+
hinting problem iterates !t satisfy, for each v 2 4m�1,

HintRegretT (v) ,
PT

t=1 lt(!t) �
PT

t=1 lt(v) 

q
m2/q(q�1)

2

PT
t=1 �t,1 for

�t,1 =

(
huber(k

Pt
s=t�D ⇢sk1, k⇢t�Dk1), for t < T

1
2k

Pt
s=t�D ⇢sk

2
1, for t = T

where ⇢t , 1h�t,!ti � �t for �t 2 @lt(!t) is the instantaneous hinting problem regret.

If, in addition, q = argminq0�2 m
2/q0(q0 � 1), then HintRegretT (v) 

q
(2 log2(m) � 1)

PT
t=1 �t,1.

Our next lemma, proved in App. J.1, provides an interpretable bound for each �t,1 term in terms of the hinting problem
subgradients (�t)t�1.

Lemma 24 (Hinting problem subgradient regret bound). Under the notation and assumptions of Cor. 23,

�t,1 

(
huber(⇠t, ⇣t) if t < T

1
2⇠t if t = T

, for

⇠t , 4(D + 1)
Pt

s=t�D k�sk
2
1 and

⇣t , 4k�t�Dk1
Pt

s=t�D k�sk1.

Now fix any u 2 W. We invoke Assump. 1, Cor. 23, and Lem. 24 in turn to bound the base problem regret

RegretT (u) =
PT

t=1 `t(wt) � `t(u)

 C0(u) + C1(u)
qPT

t=1 ft(ht(!t)) by Assump. 1

 C0(u) + C1(u)

r
infv2V

PT
t=1 ft(ht(v)) +

q
(2 log2(m) � 1)

PT
t=1 �t,1 by Cor. 23

 C0(u) + C1(u)

r
infv2V

PT
t=1 ft(ht(v)) +

q
(2 log2(m) � 1)( 12⇠T +

PT�1
t=1 huber(⇠t, ⇣t)) by Lem. 24.

The advertised bound now follows from the triangle inequality.

J.1. Proof of Lem. 24: Hinting problem subgradient regret bound

Fix any t 2 [T ]. The triangle inequality implies that

k⇢tk1 = k�t � 1h!t, �tik1  k�tk1 + |h!t, �ti|  2k�tk1

since !t 2 4m�1. We repeatedly apply this finding in conjunction with Jensen’s inequality to conclude

k
Pt

s=t�D ⇢sk
2
1  (D + 1)

Pt
s=t�D k⇢sk

2
1  4(D + 1)

Pt
s=t�D k�sk

2
1 and

k⇢t�Dk1k
Pt

s=t�D ⇢sk1  k⇢t�Dk1
Pt

s=t�D k⇢sk1  4k�t�Dk1
Pt

s=t�D k�sk1.

K. Examples: Learning to Hint with DORM+ and AdaHedgeD

By Thm. 12, AdaHedgeD satisfies Assump. 1 with ft(ht) = krtk⇤kht �
Pt

s=t�D rsk⇤ �
a2
t,F+2↵bt,F

diam(W)2+2↵ , C1(u) =
p

diam(W)2 + 2↵, and C0(u) = 2 diam(W)maxt2[T ]

Pt�1
s=t�D kgsk⇤.
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By Cor. 9, DORM+ satisfies Assump. 1 with ft(h) = krt�D + ht+1 � htkqkh �
Pt

s=t�D rskq , C0(u) = 0, and C1(u) =q
kuk2

p

2(p�1) .

These choices give rise to the hinting losses

l
DORM+
t (!) = krt�D + ht+1 � htkqkHt! �

Pt
s=t�D rskq and (11)

l
AdaHedgeD
t (!) = kgtkqkHt! �

Pt
s=t�D gskq when k·k⇤ = k·kq for q 2 [1, 1].

The following lemma, proved in App. K.1, identifies subgradients of these hinting losses.
Lemma 25 (Hinting loss subgradient). If lt(!) = kḡtkqkHt! � vtkq for some ḡt,vt 2 Rd

and Ht 2 Rd⇥m
, then

�t =

( kḡtkq

kHt!�vtkq�1
q

H
>
t |Ht! � vt|

q�1 sign(Ht! � vt) if q < 1

kḡtk1 sign(µ)H>
t ek if q = 1

2 @lt(!) (12)

for k = argmaxj2[d](Ht! � vt)j and µ = maxj2[d](Ht! � vt)j .

Our next lemma, proved in App. K.2, bounds the 1-norm of this hinting loss subgradient in terms of the base problem
subgradients.
Lemma 26 (Hinting loss subgradient bound). Under the assumptions and notation of Lem. 25, the subgradient �t satisfies

k�tk1  d
1/q

kḡtkqkHtk1 for kHtk1 the maximum absolute entry of Ht.

K.1. Proof of Lem. 25: Hinting loss subgradient

The result follows immediately from the chain rule and the following lemma.
Lemma 27 (Subgradients of p-norms). Suppose w 2 Rd

and k 2 argmaxj2[d] |wj |. Then

@kwkp 3

8
>><

>>:

|w|p�1

kwkp�1
p

sign(w) if kwkp 6= 0, p 2 [1, 1)

ek sign(wk) if kwkp 6= 0, p = 1

0 if kwkp = 0

.

Proof. Since 0 is a minimizer of k·kp, we have kukp � k0kp + h0,u � 0i for any u 2 Rd and hence 0 2 @k0kp.

For p 2 [1, 1), by the chain rule, if kwkp 6= 0,

@jkwkp = @j

�Pn
k=1 |wk|

p
�1/p

= 1
p

�Pn
k=1 |wk|

p
�(1/p)�1

p|wj |
p�1 sign(wj)

=
⇣�Pn

k=1 |wk|
p
�1/p⌘�(p�1)

|wj |
p�1 sign(wj)

=
⇣

|wj |
kwkp

⌘p�1
sign(wj).

For p = 1, we have that kwk1 = maxj2[n] |wj |. By the Danskin-Bertsekas Theorem (Danskin, 2012) for subdifferentials,
@kwk1 = conv{[@|wj | s.t. |wj | = kwk1} = conv{[ sign(wj)ej s.t. |wj | = kwk1}, where conv is the
convex hull operation.

K.2. Proof of Lem. 26: Hinting loss subgradient bound

If q 2 [1, 1), we have

k�tk1 =

����
kḡtkq

kHt!�
Pt

s=t�D gskq�1
q

H
>
t |Ht! �

Pt
s=t�D gs|

q�1 sign(Ht! �
Pt

s=t�D gs)

����
1


kḡtkq maxj2[d] kHtejkq

kHt!�
Pt

s=t�D gskq�1
q

kHt! �
Pt

s=t�D gsk
q�1
q by Hölder’s inequality for (q, p)

 d
1/q

kḡtkqkHtk1 by Lem. 21.
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If q = 1, we have

k�tk1 =
��kḡtk1 sign(µ)H>

t ek
��
1 = I[µ 6= 0]kḡtk1kHtk1  d

1/q
kḡtk1kHtk1.

L. Experiment Details
L.1. Subseasonal Forecasting Application

We apply the online learning techniques developed in this paper to the problem of adaptive ensembling for subseasonal
weather forecasting. Subseasonal forecasting is the problem predicting meteorological variables, often temperature and
precipitation, 2-6 weeks in advance. These mid-range forecasts are critical for managing water resources and mitigating
wildfires, droughts, floods, and other extreme weather events (Hwang et al., 2019). However, the subseasonal forecasting
task is notoriously difficult due to the joint influences of short-term initial conditions and long-term boundary conditions
(White et al., 2017).

To improve subseasonal weather forecasting capabilities, the US Department of Reclamation launched the Sub-Seasonal
Climate Forecast Rodeo competition (Nowak et al., 2020), a yearlong real-time forecasting competition for the Western
United States. Our experiments are based on Flaspohler et al. (2021), a snapshot of public subseasonal model forecasts
including both physics-based and machine learning models. These models were developed for the subseasonal forecasting
challenge and make semimonthly forecasts for the contest period (19 October 2019 – 29 September 2020).

To expand our evaluation beyond the subseasonal forecasting competition, we used the forecasts in Flaspohler et al. (2021)
for analogous yearlong periods (26 semi-monthly dates starting from the last Wednesday in October) beginning in Oct. 2010
and ending in Sep. 2020. Throughout, we refer to the yearlong period beginning in Oct. 2010 – Sep. 2011 as the 2011 year
and so on for each subsequent year. For each forecast date t, the models in Flaspohler et al. (2021) were trained only on data
available at time t and model hyper-parameters were tuned to optimize average RMSE loss on the 3-year period preceding
the forecast date t. For a few of the forecast dates, one or more models had missing forecasts; only dates for which all
models have forecasts were used in evaluation.

L.2. Problem Definition

Denote the set of d = 6 input models {M1, . . . Md} with labels: llr (Model1), multillr (Model2),
tuned catboost (Model3), tuned cfsv2 (Model4), tuned doy (Model5) and tuned salient fri (Model6).
On each semimonthly forecast date, each model Mi makes a prediction for each of two meteorological variables (cumulative
precipitation and average temperature over 14 days) and two forecasting horizons (3-4 weeks and 5-6 weeks). For the 3-4
week and 5-6 horizons respectively, the forecaster experiences a delay of D = 2 and D = 3 forecasts. Each model makes a
total of T = 26 semimonthly forecasts for these four tasks.

At each time t, each input model Mi produces a prediction at G = 514 gridpoints in the Western United States: xc
t,i 2

RG = Mi(t) for task c at time t. Let Xc
t 2 RG⇥d be the matrix containing each input model’s predictions as columns. The

true meterological outcome for task c is yc
t 2 RG. As online learning is performed for each task separately, we drop the task

superscript c in the following.

At each timestep, the online learner makes a forecast prediction ŷt by playing wt 2 W = 4d�1, corresponding to a convex
combination of the individual models: ŷt = Xtwt. The learner then incurs a loss for the play wt according to the root
mean squared (RMSE) error over the geography of interest:

`t(wt) =
1

p
G

kyt � Xtwtk2,

@`t(wt) 3 gt =

(
X>

t (Xtwt�yt)p
GkXtwt�ytk2

if Xtwt � yt 6= 0

0 if Xtwt � yt = 0

Our objective for the subseasonal forecasting application is to produce an adaptive ensemble forecast that competes with the
best input model over the yearlong period. Hence, in our evaluation, we take the competitor set to be the set of individual
models U = {ei : i 2 [d]}.



Online Learning with Optimism and Delay

M. Extended Experimental Results
We present complete experimental results for the four experiments presented in the main paper (see Sec. 7).

M.1. Competing with the Best Input Model

Results for our three delayed online learning algorithms — DORM, DORM+, and AdaHedgeD— on the four subseasonal
prediction tasks for the four optimism strategies described in Sec. 7 (recent g, prev g, mean g, none) are presented
below. Each table and figure shows the average RMSE loss and the annual regret versus the best input model in any given
year respectively for each algorithm and task.

DORM+ is a competitive model for all three hinting strategies and under the recent g hinting strategy achieves negative
regret on all tasks except Temp. 5-6w. For the Temp. 5-6w task, no online learning model outperforms the best input model
for any hinting strategy. For the precipitation tasks, the online learning algorithms presented achieve negative regret using
all three hinting strategies for all four tasks. Within the subseasonal forecasting domain, precipitation is often considered a
more challenging forecasting task than temperature (White et al., 2017). The gap between the best model and the worst
model tends to be larger for precipitation than for temperature, and this could in part explain the strength of the online
learning algorithms for these tasks.

Table 2: Hint recent g: Average RMSE of the 2011-2020 semimonthly forecasts for online learning algorithms (left) and input models
(right) over a 10-year evaluation period with the top-performing learners and input models bolded and blue. In each task, the online
learners compare favorably with the best input model and learn to downweight the lower-performing candidates, like the worst models
italicized in red.

RECENT G ADAHEDGED DORM DORM+ MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 MODEL6

PRECIP. 3-4W 21.726 21.731 21.675 21.973 22.431 22.357 21.978 21.986 23.344

PRECIP. 5-6W 21.868 21.957 21.838 22.030 22.570 22.383 22.004 21.993 23.257

TEMP. 3-4W 2.273 2.259 2.247 2.253 2.352 2.394 2.277 2.319 2.508

TEMP. 5-6W 2.316 2.316 2.303 2.270 2.368 2.459 2.278 2.317 2.569

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

�20

�10

0

10

Cumulative regret (RMSE loss)

AdaHedgeD (RMSE: 21.726)

DORM (RMSE: 21.731)

DORM+ (RMSE: 21.675)

Precipitation Weeks 3-4
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

�4

�2

0

2

4

Cumulative regret (RMSE loss)

AdaHedgeD (RMSE: 2.273)

DORM (RMSE: 2.259)

DORM+ (RMSE: 2.247)

Temperature Weeks 3-4

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
�30

�20

�10

0

10

20

Cumulative regret (RMSE loss)

AdaHedgeD (RMSE: 21.868)

DORM (RMSE: 21.957)

DORM+ (RMSE: 21.838)

Precipitation Weeks 5-6
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

�2

0

2

4
Cumulative regret (RMSE loss)

AdaHedgeD (RMSE: 2.316)

DORM (RMSE: 2.316)

DORM+ (RMSE: 2.303)

Temperature Weeks 5-6
Figure 6: Hint recent g: Yearly cumulative regret under RMSE loss for the three delayed online learning algorithms presented, over
the 10-year evaluation period. The zero line corresponds to the performance of the best input model in a given year.
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Table 3: Hint prev g: Average RMSE of the 2010-2020 semimonthly forecasts for all four tasks over over a 10-year evaluation period.

PREV G ADAHEDGED DORM DORM+ MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 MODEL6

PRECIP. 3-4W 21.760 21.777 21.729 21.973 22.431 22.357 21.978 21.986 23.344

PRECIP. 5-6W 21.943 21.964 21.911 22.030 22.570 22.383 22.004 21.993 23.257

TEMP. 3-4W 2.266 2.269 2.250 2.253 2.352 2.394 2.277 2.319 2.508

TEMP. 5-6W 2.306 2.307 2.305 2.270 2.368 2.459 2.278 2.317 2.569

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

�20

�10

0

10

Cumulative regret (RMSE loss)

AdaHedgeD (RMSE: 21.760)

DORM (RMSE: 21.777)

DORM+ (RMSE: 21.729)

Precipitation Weeks 3-4
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

�4

�2

0

2

4

Cumulative regret (RMSE loss)

AdaHedgeD (RMSE: 2.266)

DORM (RMSE: 2.269)

DORM+ (RMSE: 2.250)

Temperature Weeks 3-4

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

�10

0

10

20

Cumulative regret (RMSE loss)

AdaHedgeD (RMSE: 21.943)

DORM (RMSE: 21.964)

DORM+ (RMSE: 21.911)

Precipitation Weeks 5-6
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

�2

0

2

4
Cumulative regret (RMSE loss)

AdaHedgeD (RMSE: 2.306)

DORM (RMSE: 2.307)

DORM+ (RMSE: 2.305)

Temperature Weeks 5-6
Figure 7: Hint prev g: Yearly cumulative regret under RMSE loss for the three delayed online learning algorithms presented.

Table 4: Hint mean g: Average RMSE of the 2010-2020 semimonthly forecasts for all four tasks over over a 10-year evaluation period.

MEAN G ADAHEDGED DORM DORM+ MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 MODEL6

PRECIP. 3-4W 21.864 21.945 21.830 21.973 22.431 22.357 21.978 21.986 23.344

PRECIP. 5-6W 21.993 22.054 21.946 22.030 22.570 22.383 22.004 21.993 23.257

TEMP. 3-4W 2.273 2.277 2.257 2.253 2.352 2.394 2.277 2.319 2.508

TEMP. 5-6W 2.311 2.320 2.314 2.270 2.368 2.459 2.278 2.317 2.569
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Figure 8: Hint mean g: Yearly cumulative regret under RMSE loss for the three delayed online learning algorithms presented.

Table 5: Hint none: Average RMSE of the 2010-2020 semimonthly forecasts for all four tasks over over a 10-year evaluation period.

NONE ADAHEDGED DORM DORM+ MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 MODEL6

PRECIP. 3-4W 21.760 21.835 21.796 21.973 22.431 22.357 21.978 21.986 23.344

PRECIP. 5-6W 21.860 21.967 21.916 22.030 22.570 22.383 22.004 21.993 23.257

TEMP. 3-4W 2.266 2.272 2.258 2.253 2.352 2.394 2.277 2.319 2.508

TEMP. 5-6W 2.296 2.311 2.308 2.270 2.368 2.459 2.278 2.317 2.569
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Figure 9: Hint none: Yearly cumulative regret under RMSE loss for the three delayed online learning algorithms presented.
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M.2. Impact of Regularization

Results for three regularization strategies—AdaHedgeD, DORM+, and DUB—on all four subseasonal prediction as
described in Sec. 7. Fig. 10 shows the annual regret versus the best input model in any given year for each algorithm and
task, and Fig. 11 presents an example of the weights played by each algorithm in the final evaluation year, as well as the
regularization weight used by each algorithm.

The under- and over-regularization of AdaHedgeD and DUB respectively compared with DORM+ is evident in all four
tasks, both in the regret and weight plots. Due to the looseness of the regularization settings used in DUB, its plays can
be seen to be very close to the uniform ensemble in all four tasks. For this subseasonal prediction problem, the uniform
ensemble is competitive, especially for the 5-6 week horizons. However, in problems where the uniform ensemble has
higher regret, this over-regularization property of DUB would be undesirable. The more adaptive plays of DORM+ and
AdaHedgeD have the potential to better exploit heterogeneous performance among different input models.
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Figure 10: Overall regret: Yearly cumulative regret under the RMSE loss for the three regularization algorithms presented.
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Figure 11: Impact of regularization: The plays wt of online learning algorithms used to combine the input models for all four tasks in
the 2020 evaluation year. The weights of DUB and AdaHedgeD appear respectively over and under regularized compared to DORM+ due
to their selection of regularization strength �t (right).
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M.3. To Replicate or Not to Replicate

We compare the performance of replicated and non-replicated variants of our DORM+ algorithm as in Sec. 7. Both
algorithms perform well, but in all tasks, DORM+ outperforms replicated DORM+ (in which D + 1 independent copies of
DORM+ make staggered predictions). Fig. 12 provides an example of the weight plots produced by the replication strategy
for all for tasks.

The replicated algorithms only have the opportunity to learn from T/(D + 1) plays. For the 3-4 week horizons tasks D = 2
and for the 5-6 week horizons tasks D = 3. Because our forecasting horizons are short (T = 26), further limiting the
feedback available to each online learner via replication could be detrimental to practical model performance.

Table 6: Replication RMSE: Average RMSE of the 2010-2020 semimonthly forecasts for four tasks over over a 10-year evaluation
period for replicated versus standard DORM+.

DORM+ REPLICATED DORM+ MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 MODEL6

PRECIP. 3-4W 21.675 21.720 21.973 22.431 22.357 21.978 21.986 23.344

PRECIP. 5-6W 21.838 21.851 22.030 22.570 22.383 22.004 21.993 23.257

TEMP. 3-4W 2.247 2.249 2.253 2.352 2.394 2.277 2.319 2.508

TEMP. 5-6W 2.303 2.315 2.270 2.368 2.459 2.278 2.317 2.569
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Figure 12: Replication weights: The plays wt of DORM+ and replicated DORM+ for all four tasks in the final evaluation year.
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M.4. Learning to Hint

We examine the effect of optimism on the DORM+ algorithms and the ability of our “learning to hint” strategy to recover
the performance of the best optimism strategy in retrospect as described in Sec. 7. We use DORM+ as the meta-algorithm
for hint learning to produce the learned optimism strategy that plays a convex combination of the three constant hinters.

As reported in the main text, the regret of the base algorithm using the learned hinting strategy generally falls between the
worst and the best hinting strategy for any given year. Because the best hinting strategy for any given year is unknown a

priori, the adaptivity of the hint learner is useful practically. Currently, the hint learner is only optimizing a loose upper
bound on base problem regret. Deriving loss functions for hint learning that more accurately quantify the effect of the hinter
on base model regret is an important next step in achieving negative regret for online hinting algorithms.
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Figure 13: Overall regret: Yearly cumulative regret under the RMSE loss for DORM+ using the three constant hinting strategies
presented and the learned hinter, over the 10-year evaluation period.

M.5. Impact of Different Forms of Optimism

The regret analysis presented in this work suggest that optimistic strategies under delay can benefit from hinting at both the
“past” gt�D:t�1 missing losses and the “future” unobserved loss gt. To study the impact of different forms of optimism on
DORM+, we provide a recent g hint for either only the missing future loss gt, only the missing past losses gt�D:t�1,
or both past and future losses (the strategy used in this paper) gt�D:t. Inspired by the recommendation of an anonymous
reviewer, we also test two hint settings that only hint at the future unobserved loss but multiply the weight of that hint by
2D+1 or 3D+1, effectively increasing the importance of the future hint in the online learning optimization. Fig. 14 presents
the experimental results.

In this experiment, all settings of optimism improve upon the non-optimistic algorithm, and, for all tasks, providing hints for
missing future losses outperforms hinting at missing past losses. For all tasks save Temp. 5-6w, hinting at both missing past
and future losses yields a further improvement. The 2D+1 and 3D+1 settings demonstrate that, for some tasks, increasing
the magnitude of the optimistic hint can further improve performance in line with the online gradient descent predictions of
Hsieh et al. (2020, Thm. 13).

N. Algorithmic Details
N.1. ODAFTRL with AdaHedgeD and DUB tuning

The AdaHedgeD and DUB algorithms presented in the experiments are implementations of ODAFTRL with a negative
entropy regularizer  (w) =

Pd
j=1 wj lnwj + ln d, which is 1-strongly convex with respect to the norm k·k1 (Shalev-
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Figure 14: DORM+ average RMSE as in Table 1 as a function of optimism strategy; see App. M.5 for details.

Shwartz, 2007, Lemma 16) with dual norm k·k1. Each algorithm optimizes over the simplex and competes with the simplex:
W = U = 4d�1. We choose ↵ = supu2U  (u) = ln(d). In the following, define  t , �t for �t � 0. Our derivations
of the update equations for AdaHedgeD and DUB make use of the following properties of the negative entropy regularizer,
proved in App. N.4.

Lemma 28 (Negative entropy properties). The negative entropy regularizer  (w) =
Pd

j=1 wj lnwj + ln d with  t = �t 

for �t � 0 satisfies the following properties on the simplex W = 4d�1.

 
⇤
W(✓) , supw2Whw, ✓i �  (w) = ln

⇣Pd
j=1 exp(✓j)

⌘
� ln d,

(� )⇤W(✓) , supw2Whw, ✓i � � (w) =

(
� 

⇤
W(✓/�) = � ln(

Pd
j=1 exp(✓j/�)) � � ln d, if � > 0

maxj2[d] ✓j if � = 0
,

w⇤(✓,�) ,

8
<

:

exp(✓/�)Pd
j=1 exp(✓j/�)

if � > 0
I[✓=maxj ✓j ]P

k2[d] I[✓k=maxj ✓j ]
if � = 0

2 argminw2W � (w) � hw, ✓i ✓ @(� )⇤W(✓).

Our next corollary concerning optimal ODAFTRL objectives follows directly from Lem. 28.

Corollary 29 (Optimal ODAFTRL objectives). Instantiate the notation of Lem. 28, and define the functions Ft(w,�) ,
� (w) + hg1:t�1,wi for w 2 W. Then

�(� )⇤W(�(g1:t�1 + h)) = infw2W Ft(w,�) + hh,wi and

w⇤(�(g1:t�1 + h),�) = argminw2W Ft(w,�) + hh,wi.

Using Lem. 28 and Cor. 29, we can derive an expression, proved in App. N.5, for the AdaHedgeD �t updates.

Proposition 30 (AdaHedgeD �t). Instantiate the notation of Thm. 12, and define the auxiliary hint vector

ĥt , gt�D:t + �t(ht � gt�D:t) for �t , min( kgtk⇤
kht�gt�D:tk⇤

, 1) (13)

along with the scalars

c⇤ = maxj:wt,j 6=0 ht,j � gt�D:t,j and ĉ⇤ = maxj:ŵt,j 6=0 ĥt,j � gt�D:t,j

for

w̄t = argminw2W Ft+1(w,�t) =
exp(�g1:t/�t)Pd

j=1 exp(�g1:t,j/�t)
and

ŵt = argminw2W Ft+1(w,�t) + hĥt � gt�D:t,wi = exp(�(g1:t�D�1+ĥt)/�t)Pd
j=1 exp(�(g1:t�D�1,j+ĥt,j)/�t)
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by Cor. 29. If �t > 0,

�t = min(�(1)t , �
(2)
t , �

(3)
t )+ for

�
(1)
t = Ft+1(wt,�t) � Ft+1(w̄t,�t)

= �t ln(
P

j2[d] wt,j exp((ht,j � gt�D:t,j)/�t)) + hgt�D:t � ht,wti

= �t ln(
P

j2[d] wt,j exp((ht,j � gt�D:t,j � c⇤)/�t)) + hgt�D:t � ht,wti + c⇤,

�
(2)
t = hgt,wt � w̄ti, and

�
(3)
t = Ft+1(ŵt,�t) � Ft+1(w̄t,�t) + hgt,wt � ŵti

= �t ln(
P

j2[d] ŵt,j exp((ĥt,j � gt�D:t,j)/�t)) + hgt�D:t � ĥt, ŵti + hgt,wt � ŵti

= �t ln(
P

j2[d] ŵt,j exp((ĥt,j � gt�D:t,j � ĉ⇤)/�t)) + hgt�D:t � ĥt, ŵti + ĉ⇤ + hgt,wt � ŵti.

If �t = 0,

�t = min(�(1)t , �
(2)
t , �

(3)
t )+ for

�
(1)
t = hg1:t,wti � minj2[d] g1:t,j ,

�
(2)
t = hgt,wt � w̄ti, and

�
(3)
t = hg1:t, ŵti � minj2[d] g1:t,j + hgt,wt � ŵti.

Leveraging these results, we present the pseudocode for the AdaHedgeD and DUB instantiations of ODAFTRL in Algo-
rithm 1.

N.2. DORM and DORM+

The DORM and DORM+ algorithms presented in the experiments are implementations of ODAFTRL and DOOMD
respectively that play iterates in W , 4d�1 using the default value � = 1. Both algorithms use a p-norm regularizer
 = 1

2k·k
2
p, which is 1-strongly convex with respect to k·k =

p
p � 1k·kp (see Shalev-Shwartz, 2007, Lemma 17) with

k·k⇤ = 1p
p�1

k·kq . For the paper experiments, we choose the optimal value q = infq0�2 d
2/q0(q0 � 1) to obtain ln(d) scaling

in the algorithm regret; for d = 6, p = q = 2. The update equations for each algorithm are given in the main text by DORM
and DORM+ respectively. The optimistic hinters provide delayed gradient hints g̃t, which are then used to compute regret
gradient hints r̃t, where r̃t = hg̃t,wti � g̃t and ht =

Pt�1
s=t�D r̃s + hg̃t,wt�1i � g̃t.

N.3. Adaptive Hinting

For the adaptive hinting experiments, we use the DORM+ as both the base and hint learner. For the hint learner with DORM
base algorithm, the hint loss function is given by (11) with q = 2. The plays of the online hinter !t are used to generate the
hints ht for the base algorithm using the hint matrix Ht 2 Rd⇥m. The j-th column of Ht contains hinter j’s predictions for
the cumulative missing regret subgradients rt�D:t. The final hint for the base learner is ht = Ht!t. Psuedo-code for the
adaptive hinter is given in Algorithm 2.

N.4. Proof of Lem. 28: Negative entropy properties

The expression of the Fenchel conjugate for � > 0 is derived by solving an appropriate constrained convex optimization
problem for w = 4d�1, as shown in Orabona (2019, Section 6.6). The value of w⇤(✓,�) 2 @(� )⇤W(✓) uses the properties
of the Fenchel conjugate (Rockafellar, 1970; Orabona, 2019, Theorem 5.5) and is shown in Orabona (2019, Theorem 6.6).
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Algorithm 1 ODAFTRL with W = 4d�1,  (w) =
Pd

j=1 wj lnwj + ln(d), delay D � 0, and tuning strategy tuning

1: Parameter ↵ = supu24d�1
 (u) = ln(d)

2: Initial regularization weight: �0 = 0
3: if tuning is DUB then
4: Initial regularization sum: �0 = 0
5: Initial maximum: amax = 0
6: end if
7: Initial subgradient sum: g1:1 = 0 2 Rd

8: Dummy losses and iterates: g�D = · · · = g0 = 0 2 Rd, w�D = · · · = w0 = 0 2 Rd

9: for t = 1, . . . , T do
10: Receive hint ht 2 Rd

11: Output wt = argminw2W Ft�D(w,�t) + hht,wi as in Cor. 29
12: Receive gt�D 2 Rd and pay hgt�D,wt�Di

13: Update subgradient sum g1:t�D = g1:t�D�1 + gt�D

14: if tuning is AdaHedgeD then
15: Compute the auxiliary play w̄t�D = argminw2W Ft�D+1(w,�t�D) as in Cor. 29
16: Compute the auxiliary regret term �

(1)
t�D = Ft�D+1(wt�D,�t�D) � Ft�D+1(w̄t�D,�t�D) as in Prop. 30

17: Compute the drift term �
(2)
t�D = hgt�D,wt�D � w̄t�Di

18: Compute the auxiliary hint (13) ĥt�D , gt�2D:t�D +min( kgt�Dk⇤
kht�D�gt�2D:t�Dk⇤

, 1)(ht�D � gt�2D:t�D)

19: Compute the auxiliary play ŵt�D = argminw2W Ft�D+1(w,�t�D) + hĥt�D � gt�2D:t�D,wi as in Cor. 29
20: Compute the regret term �

(3)
t�D = Ft�D+1(ŵt�D,�t�D) � Ft�D+1(w̄t�D,�t�D) + hgt�D,wt�D � ŵt�Di as

in Prop. 30
21: Update �t+1 = �t +

1
↵ min(�(1)t�D, �

(2)
t�D, �

(3)
t�D)+ as in (2)

22: else if tuning is DUB then
23: Compute at�D,F = 2min

�
kgt�Dk1, kht�D �

Pt�D
s=t�2D gsk1

�
as in (1)

24: Compute bt�D,F = 1
2kht�D �

Pt�D
s=t�2D gsk

2
1 �

1
2 (kht�D �

Pt�D
s=t�2D gsk1 � kgt�Dk1)2+ as in (1)

25: Update �t+1 = �t + a2t�D,F + 2↵bt�D,F

26: Update maximum amax = max(amax
,at�2D:t�D�1,F )

27: Update �t+1 = 1
↵ (2a

max +
p
�t+1) as in DUB

28: end if
29: end for

N.5. Proof of Prop. 30: AdaHedgeD �t

First suppose �t > 0. The first term in the min of AdaHedgeD’s �t setting is derived as follows:

�
(1)
t , Ft+1(wt,�t) � Ft+1(w̄t,�t) by definition (2)

= Ft�D(wt,�t) + hht,wti + hgt�D:t � ht,wti � infw2W Ft+1(w,�t) by definition of w̄t

= Ft�D(wt,�t) + hht,wti + hgt�D:t � ht,wti + �t 
⇤
W(�g1:t/�t) by Cor. 29

= �t 
⇤
W(�g1:t/�t) � �t 

⇤
W((�ht � g1:t�D�1)/�t) + hgt�D:t � ht,wti

because wt 2 argminw2W Ft�D(wt,�t) + hht,wti

= �t(ln(
Pd

j=1 exp(�g1:t,j/�t)) � �t(ln(
Pd

j=1 exp((�g1:t�D�1,j � ht,j)/�t)) + hgt�D:t � ht,wti by Lem. 28

= �t ln

✓Pd
j=1

exp(�g1:t,j/�t)Pd
j=1 exp((�g1:t�D�1,j�ht,j)/�t)

◆
+ hgt�D:t � ht,wti

= �t ln

✓Pd
j=1

exp((�g1:t�D�1,j�ht,j)/�t) exp((ht,j�gt�D:t,j)/�t)Pd
j=1 exp((�g1:t�D�1,j�ht,j)/�t)

◆
+ hgt�D:t � ht,wti

= �t ln
⇣Pd

j=1 wt,j exp((ht,j � gt�D:t,j)/�t)
⌘
+ hgt�D:t � ht,wti by the expression for wt in Cor. 29.

The expression for the third term in the min of AdaHedgeD’s �t setting follows from identical reasoning.
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Algorithm 2 Learning to hint with DORM+ (q=2) hint learner, DORM+ base learner, and delay D � 0

1: Subgradient vector: g�D, · · ·g0 = 0 2 Rd

2: Meta-subgradient vector: ��D, · · · �0 = 0 2 Rm

3: Initial instantaneous regret: r�D = 0 2 Rd

4: Initial instantaneous meta-regret: ⇢�D = 0 2 Rm

5: Initial hint h0 = 0 2 Rd

6: Initial orthant meta-vector: !̃0 = 0 2 Rm

7: for t = 1, . . . , T do
8: // Update online hinter using DORM+ with q = 2
9: Find optimal unnormalized hint combination vector !̃t = max(0, !̃t�1 + ⇢t�D�1)

10: Normalize: !t =

(
1/m if !̃t = 0

!̃t/h1, !̃ti otherwise
11: Receive hint matrix: Ht 2 Rd⇥m in which each column is a hint for

Pt
s=t�D rs

12: Output hint ht = Ht!t

13: // Update DORM+ base learner and get next play

14: Output wt = DORM+(gt�D�1,ht)
15: Receive gt�D 2 Rd and pay hgt�D,wt�Di

16: Compute instantaneous regret rt�D = 1hgt�D,wt�Di � gt�D

17: Compute hint meta-subgradient �t�D 2 @lt�D(!t�D) 2 Rm as in (12)
18: Compute instantaneous hint regret ⇢t�D = 1h�t�D,!t�Di � �t�D

19: end for

Now suppose �t = 0. We have

�
(1)
t , Ft+1(wt,�t) � Ft+1(w̄t,�t) by definition (2)

= hg1:t,wti � infw2W Ft+1(w,�t) by definition of w̄t

= hg1:t,wti � minj2[d] g1:t,j by Cor. 29.

Identical reasoning yields the advertised expression for the third term.

O. Extension to Variable and Unbounded Delays
In this section we detail how our main results generalize to the case of variable and potentially unbounded delays. For each
time t, we define last(t) as the largest index s for which g1:s is observable at time t (that is, available for constructing wt)
and first(t) as the first time s at which g1:t is observable at time s (that is, available for constructing ws).

O.1. Regret of DOOMD with variable delays

Consider the DOOMD variable-delay generalization

wt+1 = argmin
w2W

hglast(t)+1:last(t+1) + ht+1 � ht,wi + B� (w,wt) with h0 , 0 and arbitrary w0.

(DOOMD with variable delays)

We first note that DOOMD with variable delays is an instance of SOOMD respectively with a “bad” choice of optimistic
hint g̃t+1 that deletes the unobserved loss subgradients glast(t+1)+1:t.

Lemma 31 (DOOMD with variable delays is SOOMD with a bad hint). DOOMD with variable delays is SOOMD with

g̃t+1 = g̃t + glast(t)+1:last(t+1) � gt + ht+1 � ht = ht+1 +
Pt

s=1 glast(s)+1:last(s+1) � gs. = ht+1 � glast(t+1)+1:t.

The following result now follows immediately from Thm. 4 and Lem. 31.

Theorem 32 (Regret of DOOMD with variable delays). If  is differentiable and hT+1 , glast(T+1)+1:T , then, for all
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u 2 W, the DOOMD with variable delays iterates wt satisfy

RegretT (u)  B� (u,w0) +
1
�

PT
t=1 b

2
t,O, for

b2
t,O , huber(kht �

Pt
s=last(t)+1 gsk⇤, kglast(t)+1:last(t+1) + ht+1 � htk⇤).

O.2. Regret of ODAFTRL with variable delays

Consider the ODAFTRL variable-delay generalization

wt+1 = argmin
w2W

hg1:last(t+1) + ht+1,wi + �t+1 (w). (ODAFTRL with variable delays)

Since ODAFTRL with variable delays is an instance of OAFTRL with g̃t+1 = ht+1 �
Pt

s=last(t+1)+1 gs, the following
result follows immediately from the OAFTRL regret bound, Thm. 14.
Theorem 33 (Regret of ODAFTRL with variable delays). If  is nonnegative and �t is non-decreasing in t, then, 8u 2 W,

the ODAFTRL with variable delays iterates wt satisfy

RegretT (u)  �T (u) +
PT

t=1 min(bt,F

�t
,at,F ) with

bt,F , huber(kht �
Pt

s=last(t)+1 gsk⇤, kgtk⇤) and (14)

at,F , diam(W)min
�
kht �

Pt
s=last(t)+1 gsk, kgtk⇤

�
.

O.3. Regret of DUB with variable delays

Consider the DUB variable-delay generalization

↵�t+1 = 2 max
jlast(t+1)�1

alast(j+1)+1:j,F +
qPlast(t+1)

i=1 a2i,F + 2↵bi,F . (DUB with variable delays)

Theorem 34 (Regret of DUB with variable delays). Fix ↵ > 0, and, for at,F ,bt,F as in (14), consider the DUB with
variable delays sequence. If  is nonnegative, then, for all u 2 W, the ODAFTRL with variable delays iterates wt satisfy

RegretT (u) 
� (u)

↵ + 1
�

�
2maxt2[T ] alast(t)+1:t�1,F +

qPT
t=1 a

2
t,F + 2↵bt,F

�

Proof. Fix any u 2 W. By Thm. 33, ODAFTRL with variable delays admits the regret bound

RegretT (u)  �T (u) +
PT

t=1 min( 1
�t
bt,F ,at,F ).

To control the second term in this bound, we apply the following lemma proved in App. H.1.

Lemma 35 (DUB with variable delays-style tuning bound). Fix any ↵ > 0 and any non-negative sequences (at)Tt=1,

(bt)Tt=1. If (�t)t�1 is non-decreasing and

�⇤
t+1 , 2maxjlast(t+1)�1 alast(j+1)+1:j +

qPlast(t+1)
i=1 a

2
i + 2↵bi  ↵�t+1 for each t

then

PT
t=1 min(bt/�t, at)  �⇤

first(T )  ↵�first(T ).

Since T  first(T ), �T  �first(T ), and last(first(T )) = T , the result now follows by setting at = at,F and bt = bt,F , so
that

RegretT (u)  �T (u) + ↵�first(T )  ( (u) + ↵)�first(T ).
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O.4. Proof of Lem. 35: DUB with variable delays-style tuning bound

We prove the claim

�t ,
Pt

i=1 min(bi/�i, ai)  �⇤
first(t)  ↵�first(t)

by induction on t.

Base case For t = 1, since last(first(t)) � t, we have

Pt
i=1 min(bi/�i, ai)  a1  2maxjt�1 alast(j+1)+1:j +

qPt
i=1 a

2
i + 2↵bi

 2maxjlast(first(t))�1 alast(j+1)+1:j +
qPlast(first(t))

i=1 a
2
i + 2↵bi = �⇤

first(t)  ↵�first(t)

confirming the base case.

Inductive step Now fix any t + 1 � 2 and suppose that

�i  �⇤
first(i)  ↵�first(i)

for all 1  i  t. Since first(last(i+1))  i+1 and �s is non-decreasing in s, we apply this inductive hypothesis to deduce
that, for each 0  i  t,

�2
i+1 � �2

i = (�i +min(bi+1/�i+1, ai+1))
2

� �2
i = 2�i min(bi+1/�i+1, ai+1) + min(bi+1/�i+1, ai+1)

2

= 2�last(i+1) min(bi+1/�i+1, ai+1) + 2(�i � �last(i+1))min(bi+1/�i+1, ai+1) + min(bi+1/�i+1, ai+1)
2

= 2�last(i+1) min(bi+1/�i+1, ai+1) + 2
iX

j=last(i+1)+1

min(bj/�j , aj)min(bi+1/�i+1, ai+1) + min(bi+1/�i+1, ai+1)
2

 2↵�first(last(i+1)) min(bi+1/�i+1, ai+1) + 2alast(i+1)+1:i min(bi+1/�i+1, ai+1) + a
2
i+1

 2↵�i+1 min(bi+1/�i+1, ai+1) + 2alast(i+1)+1:i min(bi+1/�i+1, ai+1) + a
2
i+1

 2↵bi+1 + a
2
i+1 + 2alast(i+1)+1:i min(bi+1/�i+1, ai+1).

Now, we sum this inequality over i = 0, . . . , t, to obtain

�2
t+1 

Pt
i=0(2↵bi+1 + a

2
i+1) + 2

Pt
i=0 alast(i+1)+1:i min(bi+1/�i+1, ai+1)

=
Pt+1

i=1(2↵bi + a
2
i ) + 2

Pt+1
i=1 alast(i+1):i�1 min(bi/�i, ai)


Pt+1

i=1(a
2
i + 2↵bi) + 2maxjt alast(j+1)+1:j

Pt+1
i=1 min(bi/�i, ai)

=
Pt+1

i=1(a
2
i + 2↵bi) + 2�t+1 maxjt alast(j+1)+1:j .

We now solve this quadratic inequality, apply the triangle inequality, and invoke the relation last(first(t + 1)) � t + 1 to
conclude that

�t+1  maxjt alast(j+1)+1:j +
1
2

q
(2maxjt alast(j+1)+1:j)2 + 4

Pt+1
i=1 a

2
i + 2↵bi

 2maxjt alast(j+1)+1:j +
qPt+1

i=1 a
2
i + 2↵bi

 2maxjlast(first(t+1))�1 alast(j+1)+1:j +
qPlast(first(t+1))

i=1 a
2
i + 2↵bi = �⇤

first(t+1)  ↵�first(t+1).

O.5. Regret of AdaHedgeD with variable delays

Consider the AdaHedgeD variable-delay generalization

�t+1 = 1
↵

Plast(t+1)
s=1 �s for �t defined in (2). (AdaHedgeD with variable delays)
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Theorem 36 (Regret of AdaHedgeD with variable delays). Fix ↵ > 0, and consider the AdaHedgeD with variable delays
sequence. If  is nonnegative, then, for all u 2 W, the ODAFTRL with variable delays iterates satisfy

RegretT (u) 
� (u)

↵ + 1
�

�
2maxt2[T ] alast(t+1)+1:t,F +

qPT
t=1 a

2
t,F + 2↵bt,F

�
.

Proof. Fix any u 2 W, and for each t, define �0t+1 = 1
↵

Pt
s=1 �s so that ↵(�0t+1 � �

0
t) = �t. Since the AdaHedgeD with

variable delays regularization sequence (�t)t�1 is non-decreasing, last(T )  T , and hence �T  �
0
T+1, Thm. 14 gives the

regret bound

RegretT (u)  �T (u) +
PT

t=1 �t  �T (u) + ↵�
0
T+1  ( (u) + ↵)�0T+1

and the proof of Thm. 14 gives the upper estimate (4):

�t  min
⇣

bt,F

�t
,at,F

⌘
for all t 2 [T ]. (15)

Hence, it remains to bound �0T+1. We have

↵�
0
T+1

2 =
PT

t=1 ↵(�
0
t+1

2
� �

0
t
2) =

PT
t=1

�
↵(�0t+1 � �

0
t)

2 + 2↵(�0t+1 � �
0
t)�

0
t

�

=
PT

t=1

�
�
2
t /↵+ 2�t�0t

�
by the definition of �0t+1

=
PT

t=1

�
�
2
t /↵+ 2�t�t + 2�t(�0t � �t)

�


PT

t=1

�
�
2
t /↵+ 2�t�t + 2�t maxt2[T ](�

0
t � �t)

�

=
PT

t=1

�
�
2
t /↵+ 2�t�t

�
+ 2↵�0T+1 maxt2[T ](�

0
t � �t)

=
PT

t=1

�
�
2
t /↵+ 2�t�t

�
+ 2�0T+1 maxt2[T ] �last(t+1)+1:t


PT

t=1

�
a2t,F /↵+ 2bt,F

�
+ 2�0T+1 maxt2[T ] alast(t+1)+1:t,F by (15).

Solving the above quadratic inequality for �0T+1 and applying the triangle inequality, we find

↵�
0
T+1  maxt2[T ] alast(t+1)+1:t,F + 1

2

q
4(maxt2[T ] alast(t+1)+1:t,F )2 + 4

PT
t=1 a

2
t,F + 2↵bt,F

 2maxt2[T ] alast(t+1)+1:t,F +
qPT

t=1 a
2
t,F + 2↵bt,F .


