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A. Concentration arguments
In this section we present results on the concentration of the variance for subgaussian random variables. Traditional results
on the concentration of the variances (Maurer & Pontil, 2009; Carpentier et al., 2011) are obtained in the bounded setting.
We propose results in a more general framework. Let us begin with some definitions.

Definition S1 (Sub-gaussian random variable). A random variable X is said to be κ2-sub-gaussian if

∀λ ≥ 0, exp(λ(X − EX)) ≤ exp(λ2κ2/2) .

And we define its ψ2-norm as
‖X‖ψ2

= inf
{
t > 0 |E[exp(X2/t2)] ≤ 2

}
.

We can bound the ψ2-norm of a subgaussian random variable as stated in the following lemma.

Lemma S1 (ψ2-norm). If X is a centered κ2-sub-gaussian random variable then

‖X‖ψ2
≤ 2
√

2√
3
κ .

Proof. A proposition from (Wainwright, 2019) shows that for all λ ∈ [0, 1), a sub-gaussian variable X verifies

E
(
λX2

2κ2

)
≤ 1√

1− λ
.

Taking λ = 3/4 and defining u = 2
√

2√
3 κ gives

E(X2/u2) ≤ 2 .

Consequently ‖X‖ψ2
≤ u.

A wider class of random variables is the class of sub-exponential random variables that are defined as follows.

Definition S2 (Sub-exponential random variable). A random variable X is said to be sub-exponential if there exists K > 0
such that

∀ 0 ≤ λ ≤ 1/K, E[exp(λ|X|)] ≤ exp(Kλ) .

And we define its ψ1-norm as
‖X‖ψ1

= inf {t > 0 |E[exp(|X|/t)] ≤ 2} .

A result from (Vershynin, 2018) gives the following lemma, that makes a connection between subgaussian and subexponential
random variables.
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Lemma S2. A random variable X is sub-gaussian if and only if X2 is sub-exponential, and we have∥∥X2∥∥
ψ1

= ‖X‖2ψ2
.

We now want to obtain a concentration inequality on the empirical variance of a sub-gaussian random variable. We give use
the following notations to define the empirical variance.

Definition S3. We define the following quantities for n i.i.d repetitions of the random variable X .

µ = E[X] and µ̂n = 1
n

n∑
i=1

Xi ,

µ(2) = E[X2] and µ̂(2)
n = 1

n

n∑
i=1

X2
i .

The variance and empirical variance are defined as follows

σ2 = µ(2) − µ2 and σ̂2
n = µ̂(2)

n − µ̂2
n .

We are now able to prove Theorem 1 that we restate below for clarity.

Theorem S1. Let X be a centered and κ2-sub-gaussian random variable sampled n ≥ 2 times. Let δ ∈ (0, 1). Let
c = (e − 1)(2e(2e − 1))−1 ≈ 0.07. With probability at least 1 − δ, the following concentration bound on its empirical
variance hold

∣∣σ̂2
n − σ2∣∣ ≤ 8

3κ
2 ·max

(
log(4/δ)
cn

,

√
log(4/δ)
cn

)
+ 2κ2 log(4/δ)

n
.

Proof. We have ∣∣σ̂2
n − σ2∣∣ =

∣∣∣µ̂(2)
n − µ̂2

n − (µ(2) − µ2)
∣∣∣

≤
∣∣∣µ̂(2)
n − µ(2)

∣∣∣+
∣∣µ̂2
n − µ2∣∣

≤
∣∣∣µ̂(2)
n − µ(2)

∣∣∣+ |µ̂n − µ||µ̂n + µ|

≤
∣∣∣µ̂(2)
n − µ(2)

∣∣∣+ |µ̂n|2

since µ = 0.

We now apply Hoeffding’s inequality to the Xt variables that are κ2-subgaussian, to get

P

(
1
n

n∑
i=1

Xi − µ > t

)
≤ exp

(
− n

2t2

2nκ2

)
= exp

(
−nt

2

2κ2

)
.

And finally

P

(
|µ̂n − µ| > κ

√
2 log(2/δ)

n

)
≤ δ.

Consequently with probability at least 1− δ, |µ̂n|2 ≤ 2κ2 log(2/δ)
n

.

The variables X2
t are sub-exponential random variables. We can apply Bernstein’s inequality as stated in (Chafaï et al.,

2012) to get for all t > 0:

P

(∣∣∣∣∣ 1n
n∑
i=1

X2
i − µ(2)

∣∣∣∣∣ > t

)
≤ 2 exp

(
−cnmin

(
t2

s2 ,
t

m

))
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≤ 2 exp
(
−cnmin

(
t2

m2 ,
t

m

))
.

with c = e−1
2e(2e−1) , s2 = 1

n

∑n
i=1
∥∥X2

i

∥∥
ψ1
≤ m2 and m = max1≤i≤n

∥∥X2
i

∥∥
ψ1

.

Inverting the inequality we obtain

P

(∣∣∣µ̂(2)
n − µ(2)

∣∣∣ > m ·max
(

log(2/δ)
cn

,

√
log(2/δ)
cn

))
≤ δ .

And finally, with probability at least 1− δ,

∣∣σ̂2
n − σ2∣∣ ≤ m ·max

(
log(4/δ)
cn

,

√
log(4/δ)
cn

)
+ 2κ2 log(4/δ)

n
.

Using Lemmas S2 and S1 we obtain that m ≤ 8κ2/3. Finally,

∣∣σ̂2
n − σ2∣∣ ≤ 8

3κ
2 ·max

(
log(4/δ)
cn

,

√
log(4/δ)
cn

)
+ 2cκ2 log(4/δ)

cn

≤ 3κ2 ·max
(

log(4/δ)
cn

,

√
log(4/δ)
cn

)
,

since 2c ≤ 1/3. This gives the expected result.

We now state a corollary of this result.

Corollary 1. Let T ≥ 2. LetX be a centered and κ2-sub-gaussian random variable. Let c = (e−1)(2e(2e−1))−1 ≈ 0.07.

For n =
⌈

72κ4

cσ4 log(2T )
⌉

, we have with probability at least 1− 1/T 2,

∣∣σ̂2
n − σ2∣∣ ≤ 1

2σ
2.

Proof. Let δ ∈ (0, 1). Let n =
⌈

log(4/δ)
c

(
6κ2

σ2

)2⌉
.

Then
log(4/δ)
cn

≤
(
σ2

6κ2

)2

< 1, since σ2 ≤ κ2, by property of subgaussian random variables.

With probability 1− δ, Theorem 1 gives

|σ̂2
n − σ2| ≤ 3κ2 σ

2

6κ2 ≤
1
2σ

2 .

Now, suppose that δ = 1/T 2. Then, with probability 1− 1/T 2, for n =
⌈

72κ4

cσ4 log(2T )
⌉

samples,

|σ̂2
n − σ2| ≤ 1

2σ
2 .

B. Proof of gradient concentration
In this section we prove Proposition 3.
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Proof. Let p ∈ ∆K and let i ∈ [K]. We compute

Gi − Ĝi =
∥∥∥∥Ω̂(p)−1Xi

σ̂i

∥∥∥∥2

2
−
∥∥∥∥Ω(p)−1Xi

σi

∥∥∥∥2

2

≤
∥∥∥∥Ω̂(p)−1Xi

σ̂i
− Ω(p)−1Xi

σi

∥∥∥∥
2

∥∥∥∥Ω̂(p)−1Xi

σ̂i
+ Ω(p)−1Xi

σi

∥∥∥∥
2
.

Let us now note A .= Ω̂(p)σ̂i and B .= Ω(p)σi. We have, using that ‖Xk‖2 = 1,∥∥∥∥Ω̂(p)−1Xk

σ̂k
− Ω(p)−1Xk

σk

∥∥∥∥
2

=
∥∥(A−1 −B−1)Xk

∥∥
2

≤
∥∥A−1 −B−1∥∥

2 ‖Xk‖2
≤
∥∥A−1(B −A)B−1∥∥

2

≤
∥∥A−1∥∥

2

∥∥B−1∥∥
2 ‖B −A‖2 .

One of the quantity to bound is
∥∥B−1

∥∥
2. We have

∥∥B−1∥∥
2 = ρ(B−1) = 1

min(Sp(B)) ,

where Sp(B) is the spectrum (set of eigenvalues) of B. We know that Sp(B) = σiSp(Ω(p)). Therefore we need to find the
smallest eigenvalue λ of Ω(p). Since the matrix is invertible we know λ > 0.

We will need the following lemma.

Lemma S3. Let X0 =
(
X>1 , · · · , X>k

)>
. We have

λmin(Ω(p)) ≥ min
k∈[K]

pk
σ2
k

λmin(X>0 X0).

Proof. We have for all p ∈ ∆K ,

min
i∈[K]

pi
σ2
i

K∑
k=1

XkX
>
k 4

K∑
k=1

pk
σ2
k

XkX
>
k .

Therefore
min
k∈[K]

pk
σ2
k

X>0 X0 4 Ω(p) .

And finally
min
k∈[K]

pk
σ2
k

λmin(X>0 X0) ≤ λmin(Ω(p)) .

Note now that the smallest eigenvalue of X>0 X0 is actually the smallest non-zero eigenvalue of X0X>0 , which is the Gram
matrix of (X1, . . . , Xd), that we note now Γ. This directly gives the following

Proposition S1. ∥∥B−1∥∥
2 ≤

1
σiλmin(Γ) max

k∈[K]

σ2
k

pk
.

We jump now to the bound of
∥∥A−1

∥∥
2. We could obtain a similar bound to the one of

∥∥B−1
∥∥

2 but it would contain σ̂k
values. Since we do not want a bound containing estimates of the variances, we prove the

Proposition S2. ∥∥A−1∥∥
2 ≤ 2

∥∥B−1∥∥
2 .
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Proof. We have, if we note H = A−B,∥∥A−1∥∥
2 =

∥∥(B +A−B)−1∥∥
2 ≤

∥∥B−1∥∥
2

∥∥(In +B−1H)−1∥∥
2 ≤ 2

∥∥B−1∥∥
2 ,

from a certain rank.

Let us now bound ‖B −A‖2. We have

‖B −A‖2 =

∥∥∥∥∥σi
K∑
k=1

pk
XkX

>
k

σ2
k

− σ̂i
K∑
k=1

pk
XkX

>
k

σ̂2
k

∥∥∥∥∥
2

=

∥∥∥∥∥
K∑
k=1

pkXkX
>
k

(
σi
σ2
k

− σ̂i
σ̂2
k

)∥∥∥∥∥
2

≤
K∑
k=1

pk

∣∣∣∣ σiσ2
k

− σ̂i
σ̂2
k

∣∣∣∣ ‖Xk‖22

≤
K∑
k=1

pk

∣∣∣∣ σiσ2
k

− σ̂i
σ̂2
k

∣∣∣∣.
The next step is now to use Theorem 1 in order to bound the difference

∣∣∣∣ σiσ2
k

− σ̂i
σ̂2
k

∣∣∣∣.
Proposition S3. With the notations introduced above, we have

‖B −A‖2 ≤
113Kσmax

σ4
min

κ2
max ·max

 log(4TK/δ)
Ti

,

√
log(4TK/δ)

Ti

 .

Proof. Corollary 1 gives that for all k ∈ [K], 1
2σ

2
k ≤ σ̂2

k ≤ 3
2σ

2
k.

A consequence of Theorem 1 is that for all k ∈ [K], if we note Tk the (random) number of samples of covariate k, we have,
with probability at least 1− δ,

∀k ∈ [K],
∣∣σ2
k − σ̂2

k

∣∣ ≤ 8
3κ

2
k ·max

 log(4TK/δ)
cTk

,

√
log(4TK/δ)

cTk

+ 2κ2
k

log(4TK/δ)
Tk

.

We note ∆k the r.h.s of the last equation. We begin by establishing a simple upper bound of ∆k. Using the fact that√
1/c ≤ 1/c and that 8/(3c) ≤ 38, we have

∆k ≤
8
3cκ

2
k ·max

 log(4TK/δ)
Tk

,

√
log(4TK/δ)

Tk

+ 2κ2
k

log(4TK/δ)
Tk

≤ 38κ2
k ·max

 log(4TK/δ)
Tk

,

√
log(4TK/δ)

Tk

+ 2κ2
k

log(4TK/δ)
Tk

≤ 40κ2
k ·max

 log(4TK/δ)
Tk

,

√
log(4TK/δ)

Tk

 .

Let k ∈ [K]. We have ∣∣∣∣ σiσ2
k

− σ̂i
σ̂2
k

∣∣∣∣ =
∣∣∣∣σiσ̂2

k − σ̂iσ2
k

σ2
kσ̂

2
k

∣∣∣∣ =
∣∣∣∣σiσ̂2

k − σiσ2
k + σiσ

2
k − σ̂iσ2

k

σ2
kσ̂

2
k

∣∣∣∣
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≤
∣∣∣∣σi(σ̂2

k − σ2
k)

σ2
kσ̂

2
k

∣∣∣∣+
∣∣∣∣σi − σ̂iσ̂2

k

∣∣∣∣
≤
∣∣∣∣σi(σ̂2

k − σ2
k)

σ2
kσ̂

2
k

∣∣∣∣+
∣∣∣∣ σ2

i − σ̂2
i

σ̂2
k(σi + σ̂i)

∣∣∣∣
≤
∣∣∣∣σi(σ̂2

k − σ2
k)

σ2
kσ̂

2
k

∣∣∣∣+
∣∣∣∣σ2
i − σ̂2

i

σ̂2
kσi

∣∣∣∣
≤
∣∣σ̂2
k − σ2

k

∣∣∣∣∣∣ σi
σ2
kσ̂

2
k

∣∣∣∣+
∣∣σ2
i − σ̂2

i

∣∣∣∣∣∣ 1
σ̂2
kσi

∣∣∣∣
≤ ∆k

2σmax

σ4
min

+ ∆i
2
√

2
σ3

min
.

Finally we have, using the fact that T ≥ Tk for all k ∈ [K]

‖B −A‖2 ≤
K∑
k=1

pk

∣∣∣∣ σiσ2
k

− σ̂i
σ̂2
k

∣∣∣∣
≤ 2σmax

σ4
min

(
K∑
k=1

pk∆k +
√

2
K∑
k=1

pk∆i

)

≤ 2σmax

σ4
min

 K∑
k=1

Tk
T

40κ2
k ·max

 log(4TK/δ)
Tk

,

√
log(4TK/δ)

Tk

+
√

2∆i


≤ 2σmax

σ4
min

(
K∑
k=1

40κ2
k ·max

(
log(4TK/δ)

T
,

√
Tk
T

√
log(4TK/δ)

T

)
+
√

2∆i

)

≤ 2σmax

σ4
min

(
K∑
k=1

40κ2
k ·max

(
log(4TK/δ)

T
,

√
log(4TK/δ)

T

)
+
√

2∆i

)

≤ 2σmax

σ4
min

K40κ2
max ·max

 log(4TK/δ)
Ti

,

√
log(4TK/δ)

Ti

+
√

2∆i


≤ (K +

√
2)80σmax

σ4
min

κ2
max ·max

 log(4TK/δ)
Ti

,

√
log(4TK/δ)

Ti

 .

The last quantity to bound to end the proof is
∥∥∥∥Ω̂(p)−1Xk

σ̂k
+ Ω(p)−1Xk

σk

∥∥∥∥
2
.

Proposition S4. We have ∥∥∥∥Ω̂(p)−1Xk

σ̂k
+ Ω(p)−1Xk

σk

∥∥∥∥
2
≤ 3

∥∥B−1∥∥
2 .

Proof. We have ∥∥∥∥Ω̂(p)−1Xk

σ̂k
+ Ω(p)−1Xk

σk

∥∥∥∥
2

=
∥∥(A−1 +B−1)Xk

∥∥
2

≤
∥∥A−1 +B−1∥∥

2 ‖Xk‖2
≤
∥∥(A−1 −B−1) + 2B−1∥∥

2

≤
∥∥A−1 −B−1∥∥

2 + 2
∥∥B−1∥∥

2 .

For T sufficiently large we have
∥∥∥∥Ω̂(p)−1Xk

σ̂k
+ Ω(p)−1Xk

σk

∥∥∥∥
2
≤ 3

∥∥B−1
∥∥

2.
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Combining Propositions S1, S2, S3 and S4 we obtain that Gi − Ĝi ≤ 6
∥∥B−1

∥∥3
2 ‖B −A‖2 and

Gi − Ĝi ≤ 678Kσmax

σ4
min

(
1

σiλmin(Γ) max
k∈[K]

σ2
k

pk

)3

· κ2
max ·max

 log(4TK/δ)
Ti

,

√
log(4TK/δ)

Ti

 ,

which proves Proposition 3.

C. Proofs of preliminary and easy results
In all the following we will denote by 4 the Loewner ordering: if A and B are two symmetric matrices, A 4 B iff B −A is
positive semi-definite.

C.1. Proof of Proposition 1

Proof. Let p, q ∈ ∆̊d, so that Ω(p) and Ω(q) are invertible, and λ ∈ [0, 1]. We have L(p) = Tr(Ω(p)−1) and L(λp+ (1−
λ)q) = Tr(Ω(λp+ (1− λ)q)−1), where

Ω(λp+ (1− λq)) =
d∑
k=1

λpk + (1− λ)qk
σ2
k

XkX
>
k

= λΩ(p) + (1− λ)Ω(q).

It is well-known (Whittle, 1958) that the inversion is strictly convex on the set of positive definite matrices. Consequently,

Ω(λp+ (1− λq))−1 = (λΩ(p) + (1− λ)Ω(q))−1 ≺ λΩ(p)−1 + (1− λ)Ω(q)−1.

Taking the trace this gives
L(λp+ (1− λ)q) < λL(p) + (1− λ)L(q).

Hence L is convex.

C.2. Proof of Lemma S4

Lemma S4. Let S be a symmetric positive definite matrix and D a diagonal matrix with strictly positive entries d1, . . . , dn.
Then

λmin(DSD) ≥ min
i

(di)2λmin(S).

Proof. We have λmin(S)Id 4 S and consequently, multiplying by D (positive definite) to the right and left we obtain
λmin(S)D2 4 DSD, hence

min
i

(di)2λmin(S) ≤ λmin(DSD).

D. Proofs of the slow rates
D.1. Proof of Proposition 2

Proof. We now conduct the analysis of Algorithm 1. Our strategy will be to convert the error L(pT )− L(p?) into a sum
over t ∈ [T ] of small errors. Notice first that the quantity∥∥Ω(p)−1Xk

∥∥2
2

can be upper bounded by
1

σiλmin(G) maxk∈[K]
σ2
k

0.5po , for p = pT . For p = p̂t, we can also bound this quantity by

4
σiλmin(G) maxk∈[K]

σ2
k

0.5po , using Lemma 3 to express p̂t with respect to lower estimates of the variances — and thus with

respect to real variance thanks to Corollary 1. Then, from the convexity of L, we have
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L(pT )− L(p?) = L(pT )− L
(

1/T
T∑
t=1

p̂t

)
+ L

(
1
T

T∑
t=1

p̂t

)
− L(p?)

≤
∑
k

−
∥∥∥∥Ω(pT )−1Xk

σk

∥∥∥∥2

2

(
pk,T −

1
T

T∑
t=1

p̂k,t

)
+ 1
T

T∑
t=1

(L(p̂t)− L(p?))

Using Hoeffding inequality,
(
pk,T − 1

T

∑T
t=1 p̂k,t

)
= 1

T

∑T
t=1 (I{k is sampled at t} − p̂k,t) is bounded by

√
log(2/δ)

T

with probability 1 − δ. It thus remains to bound the second term 1
T

∑T
t=1 (L(p̂t)− L(p?)). First, notice that L(p) is an

increasing function of σi for any i. If we define L̂ be replacing each σ2
i by lower confidence estimates of the variances σ̃2

i

(see Theorem 1), then

L(p̂t)− L(p?) ≤ L(p̂t)− L̂(p?) = L(p̂t)− L̂(p̂t) + L̂(p̂t)− L̂(p∗) ≤ L(p̂t)− L̂(p̂t).

Since the gradient of L with respect to σ2 is
(

2pi

σ3
i

∥∥Ω(p)−1Xi

∥∥2
2

)
i
, we can bound L(p̂t)− L̂(p̂t) by

1/σ3
min sup

k

∥∥Ω(p̂t)−1Xk

∥∥2
2

∑
i

2p̂i,t|σ2
i − σ̃2

i |.

Since p̂i,t is the probability of having a feedback from covariate i, we can use the probabilistically triggered arm setting of

Wang & Chen (2017) to prove that
1
T

∑T
t=1
∑
i 2p̂i|σ2

i − σ̃2
i | = O

(√
log(T )
T

)
. Taking δ of order T−1 gives the desired

result.

E. Analysis of the bandit algorithm
E.1. Proof of Lemma 1

We begin by a lemma giving the coefficients of Ω(p)−1.

Lemma S5. The diagonal coefficients of Ω(p)−1 can be computed as follows:

∀i ∈ [d], Ω(p)−1
ii =

d∑
j=1

σ2
j Cof(X>0 )2

ij

det(XT0 X0)
1
pj

.

Proof. We suppose that ∀i ∈ [d], pi 6= 0 so that Ω(p) is invertible.

We know that Ω(p)−1 = Com(Ω(p))>

det(Ω(p)) . We compute now det(Ω(p)).

det(Ω(p)) = det
(

d∑
k=1

pkXkX
>
k

σ2
k

)
= det((

√
T−1X)>

√
T−1X) = T−d det(X>)2

= T−d

∣∣∣∣∣∣∣∣∣
...

X̃1
... X̃d

...

∣∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣∣∣

...√
p1

σ1
X1

...
√
pd

σd
Xd

...

∣∣∣∣∣∣∣∣∣∣

2

= det(X0)2 p1

σ2
1
· · · pd

σ2
d

.
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We now compute Com(Ω(p))ii.

Com(Ω(p)) = Com(T−1/2X>T−1/2X) = Com(T−1/2X>) Com(T−1/2X>)> .

Let us note M .= T−1/2X =


· · ·

√
p1

σ1
X>1 · · ·

...

· · ·
√
pK

σK
X>K · · ·

. Therefore

Com(Ω(p))ii =
d∑
j=1

Com(M>)2
ij =

d∑
j=1

∏
k 6=j

pk
σ2
k

Cof(X>0 )2
ij .

Finally,

Ω(p)−1
ii =

d∑
j=1

σ2
j Cof(X>0 )2

ij

det(X>0 X0)
1
pj

.

This allows us to derive the exact expression of the loss function L and we restate Lemma 1.
Lemma S6. We have, for all p ∈ ∆d,

L(p) = 1
det(X>0 X0)

d∑
k=1

σ2
k

pk
Cof(X0X>0 )kk .

Proof. Using Lemma S5 we obtain

L(p) = Tr(Ω(p)−1) =
d∑
k=1

Ω(p)−1
kk

= 1
det(X>X)

d∑
k=1

σ2
k

pk

d∑
i=1

Cof(X>0 )2
ik = 1

det(X>0 X0)

d∑
k=1

σ2
k

pk
Com(X0X>0 )kk .

E.2. Proof of Lemma 4

Proof. We use the fact that for all i ∈ [d], pi ≥ poi /2. We have that for all i ∈ [d],

∇2
iiL(p) = Cof(Γ)iiσ2

i

det(Γ)
2
p3
i

≤ 2 Cof(Γ)iiσ2
i

det(Γ)(poi /2)3 .

We have pok =
σk
√

Cof(Γ)kk∑d
i=1 σi

√
Cof(Γ)ii

which gives

∇2
iiL(p) ≤ 16

σ2
max

(∑d
k=1 σk

√
Cof(Γ)kk

)3

det(Γ)σ3
min
√

mink Cof(Γ)kk
.= CS .

And consequently L is CS-Lipschitz smooth.

We can obtain an upper bound on CS using Corollary 1, which tells that σk/2 ≤ σk ≤ 3σk/2:

CS ≤ 432
σ2

max

(∑d
k=1 σk

√
Cof(Γ)kk

)3

det(Γ)σ3
min
√

mink Cof(Γ)kk
.
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E.3. Proof of Theorem 2

Proof. Proposition 3 gives that

|Gi − Ĝi| ≤ 678Kσmax

σ4
min

(
1

σiλmin(Gram) max
k∈[K]

σ2
k

pk

)3

· κ2
max ·max

 log(4TK/δ)
Ti

,

√
log(4TK/δ)

Ti

 .

Since each arm has been sampled at least a linear number of times we guarantee that log(4TK/δ)/Ti ≤ 1 such that

|Gi − Ĝi| ≤ 678K
(
σmax

σmin

)7 1
λmin(Γ)3

κ2
max
p3

min

√
log(4TK/δ)

Ti
.

Thanks to the presampling phase of Lemma 3, we know that pmin ≥ po/2. For the sake of clarity we note C .=

678K
(
σmax

σmin

)7 8
po3λmin(Γ)3κ

2
max such that |Gi − Ĝi| ≤ C

√
log(4TK/δ)

Ti
.

We have seen that L is µ-strongly convex, CL-smooth and that dist(p?, ∂∆d) ≥ η. Consequently, since Lemma 3 shows
that the pre-sampling stage does not affect the convergence result, we can apply (Berthet & Perchet, 2017, Theorem 7) (with
the choice δT = 1/T 2, which gives that

E[L(pT )]− L(p?) ≤ c1
log2(T )
T

+ c2
log(T )
T

+ c3
1
T
,

with c1 = 96C2K

µη2 , c2 = 24C2

µη3 + S and c3 = 30722K

µ2η4 ‖L‖∞ + µη2

2 + CS . With the presampling stage and Lemma 1,

we can bound ‖L‖∞ by

‖L‖∞ ≤
∑
j σ

2
j Cof(Γ)jj

σmin
√

Cof(Γ)min

∑
j

σj

√
Cof(Γ)jj

 .

We conclude the proof using the fact that R(T ) = 1
T

(L(pT )− L(p?)).

F. Analysis of the case K > d

F.1. Proof of Theorem 3

Proof. In order to ensure that L is smooth we pre-sample each covariate n times. We note α = n/T ∈ (0, 1). This forces

pi to be greater than α for all i. Therefore L is CS-smooth with CS ≤
2 maxk Cof(Γ)kkσ2

max
α3 det(Γ)

.= C

α3 .

We use a similar analysis to the one of (Berthet & Perchet, 2017). Let us note ρt
.= L(pt) − L(p?) and εt+1

.=
(eπ(t+1) − e?t+1)>∇L(pt) with e?t+1 = arg maxp∈∆K p>∇L(pt). (Berthet & Perchet, 2017, Lemma 12) gives for
t ≥ nK,

(t+ 1)ρt+1 ≤ tρt + εt+1 + CS
t+ 1 .

Summing for t ≥ nK gives

TρT ≤ nKρnK + CS log(eT ) +
T∑

t=nK
εt

L(pT )− L(p?) ≤ Kα(L(pnK)− L(p?)) + C

α3
log(eT )
T

+ 1
T

T∑
t=nK

εt .

We bound
∑T
t=nK εt/T as in Theorem 3 of (Berthet & Perchet, 2017) by 4

√
3K log(T )

T
+(

π2

6 +K

)
2 ‖∇L‖∞ + ‖L‖∞

T
= O

(√
log(T )
T

)
.
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We are now interested in bounding α(L(pnK)− L(p?)).

By convexity of L we have

L(pnK)− L(p?) ≤ 〈∇L(pnK), pnK − p?〉 ≤ ‖∇L(pnK)‖2 ‖pnK − p
?‖2 ≤ 2 ‖∇L(pnK)‖2 .

We have also
∂L

∂pk
(pnK) = −

∥∥∥∥Ω(pnK)−1Xk

σk

∥∥∥∥2

2
.

Proposition S1 shows that ∥∥Ω(p)−1∥∥
2 ≤

1
λmin(Γ)

σ2
max

mink pk
.

In our case, mink pnK = 1/K. Therefore ∥∥Ω(pnK)−1∥∥
2 ≤

Kσ2
max

λmin(Γ) .

And finally we have

‖∇L(pnK)‖2 ≤
K√

λmin(Γ)
σmax

σmin
.

We note C1
.= 2K2√

λmin(Γ)
σmax

σmin
. This gives

L(pT )− L(p?) ≤ αC1 + C

α3
log(T )
T

+O
(√

log(T )
T

)
.

The choice of α = T−1/4 finally gives

L(pT )− L(p?) = O
(

log(T )
T 1/4

)
.

F.2. Proof of Theorem 4

Proof. For simplicity we consider the case where d = 1 and K = 2. Let us suppose that there are two points X1 and X2
that can be sampled, with variances σ2

1 = 1 and σ2
2 = 1 + ∆ > 1, where ∆ ≤ 1. We suppose also that X1 = X2 = 1 such

that both points are identical.

The loss function associated to this setting is

L(p) =
(
p1

σ2
1

+ p2

σ2
2

)−1
= 1 + ∆
p2 + p1(1 + ∆) = 1 + ∆

1 + ∆p1
.

The optimal p has all the weight on the first covariate (of lower variance): p? = (1, 0) and L(p?) = 1.

Therefore
L(p)− L(p?) = 1 + ∆

1 + ∆p1
− 1 = p2∆

1 + ∆p1
≥ ∆

2 p2 .

We see that we are now facing a classical 2-arm bandit problem: we have to choose between arm 1 giving expected reward 0
and arm 2 giving expected reward ∆/2. Lower bounds on multi-armed bandits problems show that

EL(pT )− L(p?) & 1√
T
.

Thus we obtain
R(T ) & 1

T 3/2 .
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G. Geometric Interpretation
G.1. Proof of Proposition 4

Proof. We want to minimize L on the simplex ∆K . Let us introduce the Lagrangian function

L : (p1, . . . , pK , λ, µ1, . . . , µK) ∈ RK × R× RK+ 7→ L(p) + λ

(
K∑
k=1

pk − 1
)
− 〈µ, p〉

Applying Karush-Kuhn-Tucker theorem gives that p? verifies

∀k ∈ [d], ∂L
∂pk

(p?) = 0.

Consequently

∀k ∈ [d],
∥∥∥∥Ω(p?)−1Xk

σk

∥∥∥∥2

2
= λ− µk ≤ λ.

This shows that the points Xk/σk lie within the ellipsoid defined by the equation x>Ω(p?)−2x ≤ λ.

G.2. Geometric illustrations

In this section we present figures detailing the geometric interpretation discussed in Section 5.

Geometrically the dual problem (D) is equivalent to finding an ellipsoid containing all data points Xk/σk such that the sum
of the inverse of the semi-axis is maximized. The points that lie on the boundary of the ellipsoid are the one that have to be
sampled. We see here that we have to sample the points that are far from the origin (after being rescaled by their standard
deviation) because they cause less uncertainty.

We see that several cases can occur as shown on Figure 1. If one covariate is in the interior of the ellipsoid it is not sampled
because of the KKT equations (see Proposition 4). However if all the points are on the ellipsoids some of them may not be
sampled. It is the case on Figure 1(b) where X1 is not sampled. This is due to the fact that a little perturbation of another
point, for example X3 can change the ellipsoid such that X1 ends up inside the ellipsoid as shown on Figure 1(d). This case
can consequently be seen as a limit case.
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(a) p1 = 0.21 p2 = 0.37 p3 = 0.42 (b) p1 = 0 p2 = 0.5 p3 = 0.5

(c) p1 = 0.5 p2 = 0 p3 = 0.5 (d) p1 = 0 p2 = 0.5 p3 = 0.5

Figure 1. Different minimal ellipsoids


