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A. Proofs
We begin by showing that gL(θ0:L, hT ) from equation (9) is bounded by log(L+ 1) and that fL(θ0:L, hT ) from equation
(10) can potentially be unbounded. For the former

gL(θ0:L, hT ) = log
p(hT |θ0, π)

1
L+1

∑L
`=0 p(hT |θ`, π)

(18)

= log
p(hT |θ0, π)

p(hT |θ0, π) +
∑L
`=1 p(hT |θ`, π)

+ log(L+ 1) (19)

≤ log(1) + log(L+ 1). (20)

For the latter we have

fL(θ0:L, hT ) = log
p(hT |θ0, π)

1
L

∑L
`=1 p(hT |θ`, π)

→ +∞ as max
1≤`≤L

p(hT |θ`, π)→ 0 with p(hT |θ0, π) held constant.

Next we present proofs for all Theorems in the main paper, with each restated for convenience.

Theorem 1. The total expected information gain for policy π over a sequence of T experiments is

IT (π) := Ep(θ)p(hT |θ,π)

[∑T

t=1
Iht−1(ξt)

]
(7)

=Ep(θ)p(hT |θ,π) [log p(hT |θ, π)− log p(hT |π)] (8)

where p(hT |π) = Ep(θ)[p(hT |θ, π)].

Proof. We begin by rewriting Iht−1 in terms of the information gain. This closely mimics the development that we presented
in Section 2. By repeated appplication of Bayes Theorem we have

Iht−1
(ξt) = Ep(θ|ht−1)p(yt|θ,ξt)

[
log

p(yt|θ, ξt)
p(yt|ht−1, ξt)

]
(21)

= Ep(θ|ht−1)p(yt|θ,ξt)

[
log

p(θ|ht−1)p(yt|θ, ξt)
p(θ|ht−1)p(yt|ht−1, ξt)

]
(22)

= Ep(θ|ht−1)p(yt|θ,ξt)

[
log

p(θ|ht−1, ξt, yt)

p(θ|ht−1)

]
(23)

= Ep(θ|ht−1) [− log p(θ|ht−1)] + Ep(yt,θ|ξt,ht−1) [log p(θ|ht−1, ξt, yt)] (24)

= Ep(θ|ht−1) [− log p(θ|ht−1)] + Ep(yt|ξt,ht−1)p(θ|ht−1,ξt,yt) [log p(θ|ht−1, ξt, yt)] (25)

= Ep(yt|ξt,ht−1) [H[ p(θ|ht−1) ]−H[ p(θ|ht−1, ξt, yt) ] ] . (26)

Now noting that each Iht−1(ξt) is completely determined by ht−1 and π (in particular noting that ξt is deterministic given
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these, while θ is already marginalized out in each Iht−1
(ξt)), we can write

IT (π) = Ep(hT |π)

[
T∑
t=1

Iht−1
(ξt)

]
(27)

=

T∑
t=1

Ep(ht−1|π)

[
Iht−1

(ξt)
]

(28)

and substituting in our earlier formulation for Iht−1
(ξt)

=

T∑
t=1

Ep(ht−1|π)

[
Ep(yt|ξt,ht−1) [H[ p(θ|ht−1) ]−H[ p(θ|ht−1, ξt, yt) ] ]

]
. (29)

We now observe that we can write ht = ht−1 ∪ {(ξt, yt)}, which allows us to rewrite this as

=

T∑
t=1

Ep(ht|π) [H[ p(θ|ht−1) ]−H[ p(θ|ht) ] ] (30)

=

T∑
t=1

Ep(hT |π) [H[ p(θ|ht−1) ]−H[ p(θ|ht) ] ] (31)

= Ep(hT |π)

[
T∑
t=1

H[ p(θ|ht−1) ]−H[ p(θ|ht) ]

]
(32)

= Ep(hT |π) [H[ p(θ) ]−H[ p(θ|hT ) ]] , (33)

where the last line follows from the fact that we have a telescopic sum. To complete the proof, we rearrange this as

= Ep(θ,hT |π) [log p(θ|hT )− log p(θ)] (34)

= Ep(θ)p(hT |θ,π)

[
log

p(θ)p(hT |θ, π)

p(hT |π)
− log p(θ)

]
(35)

= Ep(θ)p(hT |θ,π) [log p(hT |θ, π)− log p(hT |π)] (36)

as required.

Theorem 2 (Sequential PCE). For a design function π and a number of contrastive samples L ≥ 0, let

LT (π, L) = Ep(θ0,hT |π)p(θ1:L) [gL(θ0:L, hT )] (11)

where gL(θ0:L, hT ) is as per (9), and θ0, hT ∼ p(θ, hT |π), and θ1:L ∼ p(θ) independently. Given minor technical
assumptions discussed in the proof, we have4

LT (π, L) ↑ IT (π) as L→∞ (12)

at a rate O
(
L−1

)
.

Proof. We first show that LT (π, L) is a lower bound on IT (π):

IT (π)− LT (π, L) = Ep(θ0,hT |π)

[
log

p(hT |θ0, π)

p(hT |π)

]
− Ep(θ0,hT |π)Ep(θ1:L)

[
log

p(hT |θ0, π)
1

L+1

∑L
`=0 p(hT |θ`, π)

]
(37)

= Ep(θ0,hT |π)Ep(θ1:L)

[
log

1
L+1

∑L
`=0 p(hT |θ`, π)

p(hT |π)

]
(38)

= Ep(θ0,hT |π)Ep(θ1:L)

[
log

(
1

L+ 1

L∑
`=0

p(θ`|hT )

p(θ`)

)]
(39)

4xL ↑ x means that xL is a monotonically increasing sequence in L with limit x.
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now introducing the shorthand p(θ−`0:L) := p
(
θ0:L\{`}

)
=
∏L
j=0,j 6=` p(θj),

= Ep(θ0,hT |π)Ep(θ1:L)

[
log

1
L+1

∑L
`=0 p(θ`|hT )p(θ−`0:L)

p(θ0:L)

]
. (40)

Now by the systemtry on term in side the log, we see that this expectation would be the same if it were instead taken over
p(θi, hT |π)p(θ−i0:L) for any i ∈ {0, . . . , L} (with i = 0 giving the original form). Furthermore, the result is unchanged if
we take the expectation over the mixture distribution 1

L+1

∑L
i=0 p(θi, hT |π)p(θ−i0:L) = p(hT |π) 1

L+1

∑L
i=0 p(θi|hT )p(θ−i0:L)

and thus we have

= Ep(hT |π)E 1
L+1

∑L
i=0 p(θi|hT )p(θ−i0:L)

[
log

1
L+1

∑L
`=0 p(θ`|hT )p(θ−`0:L)

p(θ0:L)

]
(41)

= Ep(hT |π)

[
KL (p̃(θ0:L|hT )||p(θ0:L))

]
(42)

where p̃(θ0:L|hT ) = 1
L+1

∑L
`=0 p(θ`|hT )p(θ−`0:L), which is indeed a distribution since∫

p̃(θ0:L|hT )dθ0:L =
1

L+ 1

L∑
`=0

(∫
p(θ`|hT )dθ` ·

∫
p(θ−`0:L)dθ−`0:L

)
= 1. (43)

Now by Gibbs’ inequality the expected KL in (42) must be non-negative, establishing IT (π) − LT (π, L) ≥ 0 and thus
IT (π) ≥ LT (π, L) as required.

We next show monotonicity in L, i.e. LT (π, L2) ≥ LT (π, L1) for L2 ≥ L1 ≥ 0, using similar argument as above

LT (π, L2)− LT (π, L1) = Ep(θ0,hT |π)Ep(θ1:L2
)

[
log

1
L1+1

∑L1

i=0 p(hT |θi, π)

1
L2+1

∑L2

j=0 p(hT |θj , π)

]
(44)

= Ep(θ0,hT |π)Ep(θ1:L2
)

[
log

1
L1+1

∑L1

i=0

(
p(θi|hT )/p(θi)

)
1

L2+1

∑L2

j=0

(
p(θj |hT )/p(θj)

)] (45)

= Ep(θ0,hT |π)Ep(θ1:L2
)

[
log

1
L1+1

∑L1

i=0

(
p(θi|hT )p(θ−i0:L1

)
)
/p(θ0:L1)

1
L2+1

∑L2

j=0

(
p(θj |hT )p(θ−j0:L2

)
)
/p(θ0:L2

)

]
(46)

= Ep(θ0,hT |π)Ep(θ1:L2
)

[
log

1
L1+1

∑L1

i=0 p(θi|hT )p(θ−i0:L2
)

1
L2+1

∑L2

j=0 p(θj |hT )p(θ−j0:L2
)

]
(47)

= Ep(hT |π)E 1
L+1

∑L1
`=0 p(θ`|hT )p(θ−`0:L2

)

[
log

1
L1+1

∑L1

i=0 p(θi|hT )p(θ−i0:L2
)

1
L2+1

∑L2

j=0 p(θj |hT )p(θ−j0:L2
)

]
(48)

= Ep(hT |π)

[
KL(p̃1||p̃2)

]
≥ 0 (49)

where p̃1 and p̃2 are, respectively, the distributions in the numerator and denominator in (48). The result then again follows
by Gibbs’ inequality.

Next we show LT (π, L) → IT (π) as L → ∞. First, note that the denominator in (11), 1
L+1

∑L
`=0 p(hT |θ`, π), is a

consistent estimator of the marginal p(hT |π), since 1
L+1p(hT |θ0, π)→ 0, and by the Strong Law of Large Numbers

1

L+ 1

L∑
`=1

p(hT |θ`, π) =
L

L+ 1
· 1

L

L∑
`=1

p(hT |θ`, π)
a.s.−−→ Ep(θ) [p(hT |θ, π)] = p(hT |π). (50)

Now from (38) we also have that

IT (π)− LT (π, L) = Ep(θ0,hT |π)Ep(θ1:L)

[
log

1
L+1

∑L
`=0 p(hT |θ`, π)

p(hT |π)

]
(51)
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and we have log
1

L+1

∑L
`=0 p(hT |θ`,π)

p(hT |π) → 0 almost surely as L→∞. The minor technical assumption, which is required to
establish convergence is that there exist some 0 < κ1, κ2 <∞ such that5

κ1 ≤
p(hT |θ, π)

p(hT |π)
≤ κ2 ∀θ, hT . (52)

using this assumption, the integrand of (51) is bounded, because∣∣∣∣∣log
1

L+1

∑L
`=0 p(hT |θ`, π)

p(hT |π)

∣∣∣∣∣ =

∣∣∣∣∣log

(
1

L+ 1

L∑
`=0

p(hT |θ`, π)

p(hT |π)

)∣∣∣∣∣ (53)

≤ max

(∣∣∣∣log

(
max
`

p(hT |θ`, π)

p(hT |π)

)∣∣∣∣ , ∣∣∣∣log

(
min
`

p(hT |θ`, π)

p(hT |π)

)∣∣∣∣) (54)

≤ max (|log κ2| , |log κ1|) (55)
<∞. (56)

Thus, the Bounded Convergence Theorem can be applied to conclude that IT (π)− LT (π, L)→ 0 as L→∞.

Finally, for the rate of convergence we apply the inequality log x ≤ x− 1 to (38) to get

IT (π)− LT (π, L) = Ep(θ0,hT |π)Ep(θ1:L)

[
log

1
L+1

∑L
`=0 p(hT |θ`, π)

p(hT |π)

]
(57)

≤ Ep(θ0,hT |π)Ep(θ1:L)

[
1

L+1

∑L
`=0 p(hT |θ`, π)

p(hT |π)
− 1

]
(58)

= Ep(θ0,hT |π)

 1
L+1

(
p(hT |θ0π) +

∑L
`=1 Ep(θ1:L)[p(hT |θ`, π)]

)
p(hT |π)

− 1

 (59)

= Ep(θ0,hT |π)

[
1

L+1 (p(hT |θ0π) + Lp(hT |π))

p(hT |π)
− 1

]
(60)

=
1

L+ 1
Ep(θ0,hT |π)

[
p(hT |θ0, π)

p(hT |π)
− 1

]
(61)

=
C

L+ 1
, (62)

where we can conclude C <∞ using (52). Combining this with the our previous result showing that LT (π, L) is a lower
bound on IT (π), we have shown that

0 ≤ IT (π)− LT (π, L) ≤ C

L+ 1
. (63)

This establishes the O(L−1) rate of convergence.

Theorem 3 (Permutation invariance). Consider a permutation σ ∈ Sk acting on a history h1
k, yielding h2

k =
(ξσ(1), yσ(1)), ..., (ξσ(k), yσ(k)). For all such σ, we have

E

[
T∑
t=1

Iht−1(ξt)

∣∣∣∣∣hk = h1
k

]
= E

[
T∑
t=1

Iht−1(ξt)

∣∣∣∣∣hk = h2
k

]

such that the EIG is unchanged under permutation. Further, the optimal policies starting in h1
k and h2

k are the same.

5In practice, we can actually weaken this assumption significantly if necessary by making κ1 and κ2 dependent on hT and θ
then assuming that the expectation Ep(θ0,hT |π)Ep(θ1:L)[log |κi(θj , hT )|] is finite for i ∈ {1, 2} and j ∈ {0, 1}. This then permits
κ1(hT , θ) → 0 and κ2(hT , θ) → ∞ for certain hT and θ, provided that these events are zero measure under both p(θ, hT |π) and
p(θ)p(hT |π), thereby avoiding potential issues with tail behavior in the limits of extreme values for θ.



Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design

Technical note: In this statement, the first expectation is with respect to p(hT |π) for policy π and the second is with respect
to p(hT |π′), where for t > k we set π′(ht) = π(σ−1(ht)) where σ−1 acts on the first k labels by permutation and as the
identity on other labels. This means we remove explicit variability under permutation caused by π, and show that no other
source of variability can arise.

Proof. To begin, we set up some notation. Given the partial history hk = h1
k, we complete the experiment by sampling

(ξt, yt) for t = k + 1, ..., T . We denote the resulting full history as h1
T , and define h2

T similarly. Next, we use Theorem 1 to
rewrite the conditional objective under consideration as

Ep(h1
T |π)

[
T∑
t=1

Iht−1
(ξt)

∣∣∣∣∣hk = h1
k

]
= Ep(θ|h1

k)
∏T
t=k+1 p(yt|θ,ξt)

[
log p(h1

T |θ, π)− log p(h1
T |π)

]
(64)

= Ep(θ|h1
k)

∏T
t=k+1 p(yt|θ,ξt)

[
log p(θ|h1

T )− log p(θ)
]

(65)

= Ep(θ|h1
k)p(h1

T |h1
k,θ,π)

[
log p(θ|h1

T )− log p(θ)
]
. (66)

A central point of the proof is that the posterior distribution p(θ|ht) is invariant to the order of the history. Indeed, we have

p(θ|ht) ∝ p(θ)
t∏

s=1

p(ys|θ, ξs) (67)

which shows that p(θ|h1
k) = p(θ|h2

k). Given a continuation of the history (ξk+1, yk+1), ..., (ξT , yT ), if we use the same
continuation starting from h1

k and h2
k to give h1

T and h2
T then we have p(θ|h1

T ) = p(θ|h2
T ). However, we need to show that

the continuations (ξk+1, yk+1), ..., (ξT , yT ) are equal in distribution.

We now show that the sampling distributions of (ξk+1, yk+1), ..., (ξT , yT ) are equal starting from h1
k and h2

k. We have
shown that θ ∼ p(θ|h1

k) is unchanged in distribution if we instead sample θ ∼ p(θ|h2
k). Further, we have

ξ1
k+1 = π(h1

k) ξ2
k+1 = π′(h2

k) (68)

which, by the construction of π′ implies ξ1
k+1 = ξ2

k+1. Together, these results imply that the observations y1
k+1 and y2

k+1

are equal in distribution. Proceeding inductively, since h1
k+1 and h2

k+1 are equal in distribution a similar argument shows
that h1

k+2 and h2
k+2 have the same distribution. Continuing in this way, we have that h1

T and h2
T are equal in distribution.

Together, these results imply that

Ep(θ|h1
k)p(h1

T |h1
k,θ,π)

[
log p(θ|h1

T )− log p(θ)
]

= Ep(θ|h2
k)p(h2

T |h2
k,θ,π

′)

[
log p(θ|h2

T )− log p(θ)
]

(69)

which conclude the first part of the proof.

To establish the permutation invariance of the optimal policy π∗, we reason by induction starting with k = T − 1, using
a dynamic programming style argument. Given hT−1, the total EIG is a function of p(θ|hT−1) and ξT . Since we do not
need to account for future asymmetry in the policy, we immediately have that the optimal final design ξT only depends on
p(θ|hT−1), which implies that is invariant to the order of the history.

We now assume that the optimal policy is permutation invariant starting from k + 2. Using the previous result (69), we
separete out the design ξk+1 and substitute π∗ for both π and π′ (since it is permutation invariant for the steps after k + 1 by
inductive hypothesis) to give

Ep(θ|h1
k)p(yk+1|θ,ξk+1)

∏T
t=k+2 p(yt|θ,π∗(ht−1))

[
log p(θ|h1

T )− log p(θ)
]

= Ep(θ|h2
k)p(yk+1|θ,ξk+1)

∏T
t=k+2 p(yt|θ,π∗(ht−1))

[
log p(θ|h2

T )− log p(θ)
]
.

(70)

To extend the optimal policy to k + 1, we consider choosing ξk+1 and then following π∗ thereafter. As (70) shows us, the
decision problem for ξk+1 is the same starting from h1

k and h2
k because the posterior distributions p(θ|h1

k) and p(θ|h2
k) are

equal, and the optimal policy after k+ 1 does not depend on history order. This implies that the optimal choice of ξk+1 is the
same for h1

k and h2
k. This implies that the optimal policies starting in h1

k and h2
k are the same. This completes the proof.
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Theorem 4. For a design function π and a number of contrastive samples L ≥ 1, let

UT (π, L) = E

[
log

p(hT |θ0, π)
1
L

∑L
`=1 p(hT |θ`, π)

]
(71)

where the expectation is over θ0, hT ∼ p(θ, hT |π) and θ1:L ∼ p(θ) independently. Then,

UT (π, L) ↓ IT (π) as L→∞ (72)

at a rate O(L−1).

Proof. We first show UT (π, L) is an upper bound to IT (π)

UT (π, L)− IT (π) = Ep(θ0,hT |π)Ep(θ1:L)

[
log

p(hT |θ0, π)
1
L

∑L
`=1 p(hT |θ`, π)

]
− Ep(θ0,hT |π)

[
log

p(hT |θ0, π)

p(hT |π)

]
(73)

= Ep(θ0,hT |π)Ep(θ1:L)

[
log p(hT |π)− log

(
1

L

L∑
`=1

p(hT |θ`, π)

)]
(74)

now using Jensen’s inequality

≥ Ep(θ0,hT |π)

[
log p(hT |π)− log

(
1

L

L∑
`=1

Ep(θ`) [p(hT |θ`, π)]

)]
(75)

= Ep(θ0,hT |π)

[
log p(hT |π)− log

(
1

L

L∑
`=1

p(hT |π)

)]
(76)

= Ep(θ0,hT |π) [log p(hT |π)− log p(hT |π)] (77)
= 0. (78)

To show monotonicity in L, pick L2 ≥ L1 ≥ 0 and consider the difference

δ := UT (π, L1)− UT (π, L2) = Ep(θ0,hT |π)Ep(θ1:L2
)

[
log

1
L2

∑L2

j=1 p(hT |θj , π)

1
L1

∑L1

i=1 p(hT |θi, π)

]
. (79)

Notice that we can write expression in the numerator 1
L2

∑L2

j=1 p(hT |θj , π) = EJ1,...,JL1

[
1
L1

∑L1

k=1 p(hT |θJk , π)
]
, where

the indices Jk have been uniformly drawn from 1, . . . , L2. We have

δ = Ep(θ0,hT |π)Ep(θ1:L2
)

[
logEJ1,...,JL1

[
1

L1

L1∑
k=1

p(hT |θJk , π)

]
− log

1

L1

L1∑
i=1

p(hT |θi, π)

]
(80)

now applying Jensen’s Inequality

≥ Ep(θ0,hT |π)Ep(θ1:L2
)

[
EJ1,...,JL1

[
log

1

L1

L1∑
k=1

p(hT |θJk , π)

]
− log

1

L1

L1∑
i=1

p(hT |θi, π)

]
(81)

then use the fact that any L1-subset of θ1, ..., θL2 has the same distribution

= Ep(θ0,hT |π)Ep(θ1:L2
)

[
log

1

L1

L1∑
i=1

p(hT |θi, π)− log
1

L1

L1∑
i=1

p(hT |θi, π)

]
= 0 (82)
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which establishes monotonicity.

Finally, convergence is shown analogously to Theorem 2. Again we adopt the assumption (52). The Strong Law of Large
Numbers gives us almost sure convergence log

(
1
L

∑L
`=1 p(hT |θ`, π)

)
→ log p(hT |π) as L→∞. Applying the Bounded

Convergence Theorem, as in Theorem 2, we have

lim
L→∞

(UT (π, L)− IT (π, L)) = Ep(θ0,hT |π)Ep(θ1:L)

[
lim
L→∞

log
p(hT |π)

1
L

∑L
`=1 p(hT |θ`, π)

]
(83)

= 0. (84)

Finally, for the rate of convergence, we have

UT (π, L)− IT (π) = Ep(θ0,hT |π)Ep(θ1:L)

[
log

p(hT |π)
1
L

∑L
`=1 p(hT |θ`, π)

]
(85)

= Ep(θ0,hT |π)Ep(θ1:L)

[
− log

(
1

L

L∑
`=1

p(hT |θ`, π)

p(hT |π)

)]
(86)

= Ep(θ0,hT |π)Ep(θ1:L)

[
− log

(
1 +

1

L

L∑
`=1

(
p(hT |θ`, π)

p(hT |π)
− 1

))]
(87)

= Ep(θ0,hT |π)Ep(θ1:L)

[ ∞∑
n=1

(−1)n
xn

n

]
(88)

where x = 1
L

∑L
`=1

(
p(hT |θ`,π)
p(hT |π) − 1

)
and we have applied the Taylor expansion for log(1 + x). We have

Ep(θ0,hT |π)Ep(θ1:L) [x] = 0 (89)

Ep(θ0,hT |π)Ep(θ1:L)

[
x2
]

=
1

L
Ep(θ0,hT |π)Ep(θ1:L)

[(
p(hT |θ`, π)

p(hT |π)
− 1

)2
]

(90)

and higher order terms are o(L−1) (Angelova, 2012; Nowozin, 2018). This shows that UT (π, L)− IT (π) → 0 at a rate
O(L−1). This concludes the proof.

B. Additional bounds
In this section, we consider a more general lower bound on IT (π) based on the ACE bound of Foster et al. (2020). We
consider a parametrized proposal distribution q(θ;hT ) which can be used to approximate the posterior p(θ|hT ). One
example of such a proposal would be an amortized variational approximation to the posterior that takes as input hT and
outputs a variational distribution over θ. It would be possible to share the representation R(hT ) from (17) between the
design network and the inference network. However, the following theorem is not limited to variational posteriors, and
concerns any parametrized proposal distribution.

Theorem 5. For a design function π, a number of contrastive samples L ≥ 1, and a parametrized proposal q(θ;hT ), we
have the sequential Adaptive Contrastive Estimation (sACE) lower bound

IT (π) ≥ Ep(θ0,hT |π)q(θ1:L;hT )

log
p(hT |θ0, π)

1
L+1

∑L
`=0

p(hT |θ`,π)p(θ`)
q(θ`;hT )

 (91)

and the sequential Variational Nested Monte Carlo (sVNMC) upper bound

IT (π) ≤ Ep(θ0,hT |π)q(θ1:L;hT )

log
p(hT |θ0, π)

1
L

∑L
`=1

p(hT |θ`,π)p(θ`)
q(θ`;hT )

 . (92)
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Proof. We begin by showing the sACE lower bound. The proof closely follows that of Theorem 2. We have the error term

δsACE = Ep(θ0,hT |π)

[
log

p(hT |θ0, π)

p(hT |π)

]
− Ep(θ0,hT |π)Eq(θ1:L;hT )

log
p(hT |θ0, π)

1
L+1

∑L
`=0

p(hT |θ`,π)p(θ`)
q(θ`;hT )

 (93)

= Ep(θ0,hT |π)Eq(θ1:L;hT )

log

1
L+1

∑L
`=0

p(hT |θ`,π)p(θ`)
q(θ`;hT )

p(hT |π)

 (94)

= Ep(θ0,hT |π)Eq(θ1:L;hT )

[
log

(
1

L+ 1

L∑
`=0

p(θ`|hT )

q(θ`;hT )

)]
(95)

now introducing the shorthand q(θ−`0:L;hT ) := q
(
θ0:L\{`};hT

)
=
∏L
j=0,j 6=` q(θj ;hT ),

= Ep(θ0,hT |π)Eq(θ1:L;hT )

[
log

1
L+1

∑L
`=0 p(θ`|hT )q(θ−`0:L;hT )

q(θ0:L;hT )

]
. (96)

Now by the systemtry on term in side the log, we see that this expectation would be the same if it were instead
taken over p(θi, hT |π)q(θ−i0:L;hT ) for any i ∈ {0, . . . , L}. It is also the same if we take the expectation over

1
L+1

∑L
i=0 p(θi, hT |π)q(θ−i0:L;hT ) = p(hT |π) 1

L+1

∑L
i=0 p(θi|hT )q(θ−i0:L;hT ) and thus we have

= Ep(hT |π)E 1
L+1

∑L
i=0 p(θi|hT )q(θ−i0:L;hT )

[
log

1
L+1

∑L
`=0 p(θ`|hT )q(θ−`0:L;hT )

q(θ0:L;hT )

]
(97)

= Ep(hT |π)

[
KL (q̆(θ0:L;hT )||q(θ0:L;hT ))

]
(98)

where q̆(θ0:L;hT ) = 1
L+1

∑L
`=0 p(θ`|hT )q(θ−`0:L;hT ), which is indeed a distribution since∫

q̆(θ0:L;hT )dθ0:L =
1

L+ 1

L∑
`=0

(∫
p(θ`|hT )dθ` ·

∫
q(θ−`0:L;hT )dθ−`0:L

)
= 1. (99)

Now by Gibb’s inequality the expected KL in (98) must be non-negative, establishing the required lower bound.

Turning to the sVNMC bound, we use a proof that is close in spirit to Theorem 4. We have the error term

δsV NMC = Ep(θ0,hT |π)Eq(θ1:L;hT )

log
p(hT |θ0, π)

1
L

∑L
`=1

p(hT |θ`,π)p(θ`)
q(θ`;hT )

− Ep(θ0,hT |π)

[
log

p(hT |θ0, π)

p(hT |π)

]
(100)

= Ep(θ0,hT |π)Eq(θ1:L;hT )

[
log p(hT |π)− log

(
1

L

L∑
`=1

p(hT |θ`, π)p(θ`)

q(θ`;hT )

)]
(101)

now using Jensen’s inequality

≥ Ep(θ0,hT |π)

[
log p(hT |π)− log

(
1

L

L∑
`=1

Eq(θ`;hT )

[
p(hT |θ`, π)p(θ`)

q(θ`;hT )

])]
(102)

= Ep(θ0,hT |π)

[
log p(hT |π)− log

(
1

L

L∑
`=1

Ep(θ`) [p(hT |θ`, π)]

)]
(103)

= Ep(θ0,hT |π)

[
log p(hT |π)− log

(
1

L

L∑
`=1

p(hT |π)

)]
(104)

= Ep(θ0,hT |π) [log p(hT |π)− log p(hT |π)] (105)
= 0. (106)

This establishes the upper bound.
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C. Gradient details
C.1. Score function gradient

Recall that our sPCE objective is

LT (πφ, L) = Ep(θ0:L)p(hT |θ0,πφ) [gL(θ0:L, hT )] (107)

= Ep(θ0:L)p(hT |θ0,πφ)

[
log

p(hT |θ0, πφ)
1

L+1

∑L
`=0 p(hT |θ`, πφ)

]
(108)

= Ep(θ0:L)p(hT |θ0,πφ)

[
log

p(hT |θ0, πφ)∑L
`=0 p(hT |θ`, πφ)

]
+ log(L+ 1) (109)

Differentiating this gives:

dLT
dφ

= Ep(θ0:L)

[∫
d

dφ

(
p(hT |θ0, πφ) log

p(hT |θ0, πφ)∑L
`=0 p(hT |θ`, πφ)

)
dhT

]
(110)

= Ep(θ0:L)

[∫
log

p(hT |θ0, πφ)∑L
`=0 p(hT |θ`, πφ)

d

dφ
p(hT |θ0, πφ) + p(hT |θ0, πφ)

d

dφ
log

p(hT |θ0, πφ)∑L
`=0 p(hT |θ`, πφ)

dhT

]
(111)

= Ep(θ0:L)

[ ∫
p(hT |θ0, πφ) log

p(hT |θ0, πφ)∑L
`=0 p(hT |θ`, πφ)

(
d

dφ
log p(hT |θ0, πφ)

)
dhT (112)

+

∫
p(hT |θ0, πφ)

(
d

dφ
log p(hT |θ0, πφ)

)
dhT −

∫
p(hT |θ0, πφ)

d

dφ
log

L∑
`=0

p(hT |θ`, πφ)dhT

]
(113)

= Ep(θ0:L)Ep(hT |θ0,πφ)

[
log

p(hT |θ0, πφ)∑L
`=0 p(hT |θ`, πφ)

(
d

dφ
log p(hT |θ0, πφ)

)
− d

dφ
log

L∑
`=0

p(hT |θ`, πφ)

]
. (114)

In line (112) we used the log-trick d
dxf(x) = f(x)

(
d
dx log f(x)

)
and again in line (114) (in the reverse direction), together

with the fact
∫

d
dφp(hT |θ0, πφ)dhT = d

dφ

∫
p(hT |θ0, πφ)dhT = 0.

C.2. Expanded reparametrized gradient

For completeness, we provided a fully expanded form of the gradient in (14), computed using the chain rule. In practice,
derivatives of this form are calculated automatically in PyTorch (Paszke et al., 2019).

Initially, we set up some additional notation. Suppose ξ the design is of dimension D1 and y the observation is of dimension
D2. Then u = (ξ, y) is of dimension D1 +D2. For an arbitrary scalar quantity x, we have

∂x

∂u
=
(

∂x
∂ξ(1)

... ∂x
∂ξ(D1)

∂x
∂y(1)

... ∂x
∂y(D2)

)
(115)

and
∂u

∂x
=
(
∂ξ(1)

∂x ... ∂ξ(D1)

∂x

∑D1

d=1
∂y(1)

∂ξ(d)
∂ξ(d)

∂x ...
∑D1

d=1
∂y(D2)

∂ξ(d)
∂ξ(d)

∂x

)>
. (116)

This notation enables us to concisely and clearly deal with both scalar and vector quantities. In general, the derivatives
∂a/∂b and da/db represent a matrix of shape (dim a,dim b) where one or both of a, b may have dimension 1. This notation
is particularly attractive because the Chain Rule for partial derivatives can be concisely expressed as follows. Suppose
a = a(b1(c), ..., bn(c), c), then the total derivative is given by

da

dc
=
∂a

∂c
+

n∑
i=1

∂a

∂bi

dbi
dc

(117)

where the normal rules of matrix multiplication apply. We now apply this in the context of the function g(θ0:L, hT ) which
was defined in Section 4.2.
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We have g = g(θ0:L, u1, ..., uT ). The Chain Rule implies that

dg

dφ
=

T∑
t=1

∂g

∂ut

dut
dφ

. (118)

We also have, for t = 1, ..., T , that ut = u(φ, ht−1, θ0, εt) = u(φ, u1, ..., ut−1, θ0, εt). This represents the dependence of ξt
on ht−1 via πφ, and the further dependence of yt on θ0 and εt. Expanding the derivatives again using the Chain Rule gives

dg

dφ
=

T∑
t=1

∂g

∂ut

(
∂ut
∂φ

+

t−1∑
s=1

∂ut
∂us

dus
dφ

)
. (119)

Again, we can expand the total derivative to give

dg

dφ
=

T∑
t=1

∂g

∂ut

(
∂ut
∂φ

+

t−1∑
s=1

∂ut
∂us

(
∂us
∂φ

+

s−1∑
r=1

∂us
∂ur

dur
dφ

))
. (120)

Rather than continuing in this manner, we observe that the current expansion (120) can be split up as follows

dg

dφ
=

T∑
t=1

∂g

∂ut

∂ut
∂φ

+
∑

1≤s<t≤T

∂g

∂ut

∂ut
∂us

∂us
∂φ

+
∑

1≤r<s<t≤T

∂g

∂ut

∂ut
∂us

∂us
∂ur

dur
dφ

(121)

which shows that we have completely enumerated over all paths of length 1 and 2 through the computational graph, and the
final term with a total derivative concerns paths of length 3 or more. This approach can be naturally extended to enumerate
over all paths. To write this concisely, we introduce a new variable k which denotes the length of the path, and then a sum
over all increasing sequences 1 ≤ t1 < ... < tk ≤ T . This gives

dg

dφ
=

T∑
k=1

 ∑
1≤t1<...<tk≤T

∂g

∂utk

∂utk
∂utk−1

...
∂ut2
∂ut1

∂ut1
∂φ

 . (122)

This can be written concisely as

dg

dφ
=

∑
k∈{1,...,T}

1≤t1<...<tk≤T

∂g

∂utk

k−1∏
j=1

∂utj+1

∂utj

 ∂ut1
∂φ

(123)

where the product is interpretted in the order given in (122) for the matrix multiplication to operate correctly, and an empty
product is equal to the identity.

D. Experiment details
Our experiments were implemented using PyTorch (Paszke et al., 2019) and Pyro (Bingham et al., 2018). An open-source
implementation of DAD, including code for reproducing each experiment, is available at https://github.com/
ae-foster/dad. Full details on running the code are given in the README.md file.

D.1. Location Finding

In this experiment we have K hidden objects or sources in Rd, d ∈ {1, 2, 3} and aim to learn their locations, θ = {θk}Kk=1.
The number of sources, K, is assumed to be known. Each of the sources emits a signal with intensity obeying the inverse-
square law. In other words, if a source is located at θk and we perform a measurement at a point ξ, the signal strength will
be proportional to 1

‖θk−ξ‖2 .

Since there are multiple sources, we consider the total intensity at location ξ, which is a superposition of the individual ones

µ(θ, ξ) = b+

K∑
k=1

αk
m+ ‖θk − ξ‖2

, (124)

https://github.com/ae-foster/dad
https://github.com/ae-foster/dad
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Figure 5. Log-total intensity

where αk can be known constants or random variables, b,m > 0 are constants controlling background and maximum signal,
respectively. Figure 5 shows the effect b and m have on log total signal strength.

We place a standard normal prior on each of the location parameters θk and we observe the log total intensity with some
Gaussian noise. We therefore have the following prior and likelihood:

θk
i.i.d.∼ N(0d, Id), log y | θ, ξ ∼ N(logµ(θ, ξ), σ). (125)

The model hyperparameters used in our experiments can be found in the table below.

Parameter Value
Number of sources, K 2
Base signal, b 10−1

Max signal, m 10−4

α1, α2 1
Signal noise, σ 0.5

We trained a DAD network to amortize experimental design for this problem, using the neural architecture outlined in
Section 4.3. Both the encoder and the decoder are simple feed-forward neural networks with a single hidden layer; details in
the following table. For the encoder

Layer Description Dimension Activation
Input ξ, y 3 -
H1 Fully connected 256 ReLU
Output Fully connected 16 -

and for the emitter

Layer Description Dimension Activation
Input R(ht) 16 -
H1 Fully connected 2 -
Output ξ 2 -

Since the likelihood is reparametrizable, we use (14) to calculate approximate gradients. We optimized the network using
Adam (Kingma & Ba, 2014) with exponential learning rate annealing with parameter γ. Full details are given in the
following table.
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Figure 6. Posterior distributions of the location finding example with K = 1 source R.

Parameter Value
Inner samples, L 2000
Outer samples 2000
Initial learning rate 5× 10−5

Betas (0.8, 0.998)
γ 0.98
Gradient steps 50000
Annealing frequency 1000

We used a greater number of inner and outer samples for a more accurate estimate of IT (π) for evaluation when computing
the presented values in Table 1 and in our Training Stability ablation, specifically L = 5 × 105 inner samples, and 256
(variational) or 2048 (other methods) outer samples.

Deployment times Deployment speed tests were performed on a CPU-only machine witht the following specifications:

Memory 16 GB 2133 MHz LPDDR3
Processor 2.8 GHz Quad-Core Intel Core i7
Operating System MacOS BigSur v.11.2.3

We took the mean and ±1 s.e. over 10 realizations. Deployment times for all methods are given in the following table

Method Deployment time (s)
Random 0.0026 ± 0.0001
Fixed 0.0018 ± 0.0001
DAD 0.0474 ± 0.0003
Variational 8963.2 ± 42.2

Discussion details In the discussion, we used a simpler form of the same model with K = 1 source and θ ∈ R, ξ ∈ R. In
this simplified setting, we can calculate the true optimal myopic (greedy) baseline using numerical integration. We evaluate
equation (1) using line integrals as follows

It(ξ) =

∫
p(θ|ht−1)Ep(y|θ)

[
log

p(y|θ)∫
p(θ′|ht−1)p(y|θ′)dθ′

]
dθ (126)

=

∫
p(θ|ht−1)Ep(y|θ)

[
log

∫
p(θ′|ht−1)p(y|θ′)dθ′

]
dθ + C (127)

where C = −H(p(y|θ)) is the entropy of a Gaussian, location independent and therefore constant with respect to ξ. We
calculate (127) for a range of designs, ξ ∈ Ξgrid, and select the optimal design ξ∗ = arg maxΞgrid It(ξ). The integrals
themselves are also calculated using numerical integration on a grid, Θgrid, and use sampling to calculate the inner
expectation; further details can in the table below.
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Figure 7. Comparison of two gradient methods for the hyperbolic temporal discounting model with T = 10 experiments.

Parameter Value
Design grid, Ξgrid 300 equally spaced from -3 to 3
θ grid, Θgrid 600 equally spaced from -4 to 4
y samples for inner expectation 400

It is important to emphasize that even in this simple one-dimensional setting evaluating the myopic strategy is extremely
costly and may require more sophisticated numerical integration techniques (e.g. quadrature) as posteriors become more
peaked. Furthermore, as Figure 6 indicates, the resulting posteriors are complex and multi-modal even in 1D. This
multi-modality may also be a reason why the variational method does not work well in this example.

D.2. Hyperbolic temporal discounting

We consider a hyperbolic temporal discounting model (Mazur, 1987; Vincent, 2016; Vincent & Rainforth, 2017) in which a
participant’s behaviour is characterized by the latent variables θ = (k, α) with prior distributions

log k ∼ N(−4.25, 1.5) α ∼ HalfNormal(0, 2) (128)

where the HalfNormal distribution is a Normal distribution truncated at 0. For given k, α, the value of the two propositions
“£R today” and “£100 in D days” with design ξ = (R,D) are given by

V0 = R, V1 =
100

1 + kD
. (129)

The probability of the participant selecting the second option, V1, rather than V0 is then modelled as

p(y = 1|k, α,R,D) = ε+ (1− 2ε)Φ

(
V1 − V0

α

)
(130)

where Φ is the c.d.f. of the standard Normal distribution, i.e.

Φ(z) =

∫ z

−∞

1√
2π

exp
(
− 1

2z
2
)

(131)

and we fix ε = 0.01. We considered the iterated version of this experiment, modelling T = 20 experiments with each
sampled setting for the latents k, α.

We began by training a DAD network to amortize experimental design for this problem. The design parameters R,D have
the constraints D > 0 and 0 < R < 100. We represented R,D in an unconstrained space ξd, ξr and transformed them using
the maps

D = exp (ξd) R = 100 sigmoid(ξr) (132)

We used the neural architecture outlined in Section 4.3. For the encoder Eφ1 we used the following network with two hidden
layers
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Layer Description Dimension Activation
Design input ξd, ξr 2 -
H1 Fully connected 256 Softplus
H2 Fully connected 256 Softplus
H3 Fully connected 16 -
H3’ Fully connected 16 -
Output y �H3 + (1− y)�H3′ 16 -

The emitter network Fφ2
similarly used two hidden layers as follows

Layer Description Dimension Activation
Input R(ht) 16 -
H1 Fully connected 256 Softplus
H2 Fully connected 256 Softplus
Output ξd, ξr 2 -

Since the number of experiments we perform is relatively large (T = 20), we constructed a score function gradient estimator
of (16) (see also § C.1 for details) and optimized this network with Adam (Kingma & Ba, 2014).We used exponential
learning rate annealing with parameter γ. Full details are given in the following table.

Parameter Value
Inner samples, L 500
Outer samples 500
Initial learning rate 10−4

Betas (0.9, 0.999)
γ 0.96
Gradient steps 100000
Annealing frequency 1000

For the fixed baseline, we used the same optimization settings, except we set the initial learning rate to 10−1. We trained the
DAD and fixed methods on a machine with 8 Intel(R) Xeon(R) CPU E5-2637 v4 @ 3.50GHz CPUs, one GeForce GTX 1080
Ti GPU, 126 GiB memory running Fedora 32. Note this is not the machine used to conudct speed tests. For the Badapted
baseline of Vincent & Rainforth (2017), we used the public code provided at https://github.com/drbenvincent/
badapted. We used 50 PMC steps with 100 particles. For the baselines of Frye et al. (2016) and Kirby (2009),
we used the public code provided at https://github.com/drbenvincent/darc-experiments-matlab/
tree/master/darc-experiments, which we reimplemented in Python. These methods do not involve a pre-training
step, except that we did not include time to compute the first design ξ1 within the speed test, as this can be computed before
the start of the experiment.

To implement the deployment speed tests fairly, we ran each method on a lightweight CPU-only machine, which more
closely mimics the computer architecture that we might expect to deploy methods such as DAD on. The specifications of
the machine we used are described below

Memory 7.7GiB
Processor Intel Core M-5Y10c CPU @ 0.80GHz × 4
Operating System Ubuntu 16.04 LTS

The values in Table 2 show the mean and standard error of the times observed from 10 independent runs on a idle system.
To make the final evaluation for each method in Table 3, we computed the sPCE and sNMC bounds using L = 5000
inner samples and 10000 outer samples of the outer expectation. We present the mean and standard error from the outer
expectation over 10000 rollouts.

D.2.1. ABLATION: TOTAL ENUMERATION

We compare the two methods for estimating gradients for the case of discrete observations: total enumeration of histories
(Equation 15) and score function gradient estimator (Equation 16). To this end we train DAD networks to perform T = 10
experiments, which gives rise to a total of 210 = 1024 possible histories.

https://github.com/drbenvincent/badapted
https://github.com/drbenvincent/badapted
https://github.com/drbenvincent/darc-experiments-matlab/tree/master/darc-experiments
https://github.com/drbenvincent/darc-experiments-matlab/tree/master/darc-experiments
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Figure 8. Comparison of posteriors obtained from a single rollout of the Death Process, used to compute the information gains quoted in
Section 6.3. The dashed line indicates the true value θ = 1.5 used to simulate responses.

Find that the two methods perform the same, both quantitatively and qualitatively. Table 5 reports the estimated upper and
lower bounds on the mutual information objective, indicating statistically equal performance of the two methods (mean
estimates are within 2 standard errors of each other). Figure 7 demonstrates the qualitative similarity in the designs learnt by
the two networks.

Lower bound, L10 Upper bound, U10

Complete enumeration 4.068± 0.0124 4.090± 0.0126
Score function gradient 4.037± 0.0126 4.058± 0.0128

Table 5. Final lower and upper bounds on the total information I10(π) for the Hyperbolic Temporal Discounting experiment with T = 10
experiments and different gradient estimation schemes (see § 4.2 and § C.1 for details). The bounds are finite sample estimates of
L10(π, L) and U10(π, L) with L = 5000. The errors indicate ±1 s.e. over the sampled histories.

D.3. Death process

For the Death Process model (Cook et al., 2008), we use the settings that were described by Kleinegesse et al. (2020).
Specifically, we use a truncated Normal prior for the infection rate

θ ∼ TruncatedNormal(µ = 1, σ = 1,min = 0,max =∞). (133)

The likelihood is then given by

η = 1− exp(−ξθ) y|θ, ξ ∼ Binomial(N, η) (134)

where we set N = 50. We consider a sequential version of this experiment as in Kleinegesse et al. (2020), with T = 4 and
in which an independent stochastic process is observed at each step, meaning there are no constraints relating ξ1, ..., ξ4 other
than the natural constraint ξt > 0.

We began by training a DAD network to perform experimental design for this problem. We used the neural architecture
outlined in Section 4.3. For the encoder Eφ1

we used the following network with two hidden layers

Layer Description Dimension Activation
Input ξ, y 2 -
H1 Fully connected 128 Softplus
H2 Fully connected 128 Softplus
Output Fully connected 16 -

The emitter network Fφ2 similarly used two hidden layers as follows

Layer Description Dimension Activation
Input R(ht) 16 -
H1 Fully connected 128 Softplus
H2 Fully connected 128 Softplus
Output ξ 1 Softplus
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Although the number of experiments we perform is relatively small (T = 4), we could not use complete enumeration due to
the prohibitively large size of the outcome space (|Y| = 51). Hence, we constructed a score function gradient estimator of
(16) (see also § C.1 for details) and optimized the DAD network with Adam (Kingma & Ba, 2014).We used exponential
learning rate annealing with parameter γ. Full details are given in the following table.

Parameter Value
Inner samples, L 500
Outer samples 500
Initial learning rate 0.001
Betas (0.9, 0.999)
γ 0.96
Gradient steps 100000
Annealing frequency 1000

For the fixed baseline, we used the same optimization settings, except we set the initial learning rate to 10−1 and we set
γ = 0.85. We trained the DAD and fixed methods using the same machine as used for training in Section D.2. For the
variational baseline, we used a truncated Normal variational family to approximate the posterior at each step. We used SGD
with momentum to optimize the design at each step, and to optimize the variational approximation to the posterior at each
step. We used exponential learning rate annealing with paramter γ. The settings used were

Parameter Value
Design inner samples 250
Design outer samples 250
Design initial learning rate 10−2

Design γ 0.9
Design gradient steps 5000
Inference initial learning rate 10−3

Inference γ 0.2
Inference gradient steps 5000
Momentum 0.1
Annealing frequency 1000

For the SeqBED baseline, we used the code publicly available at https://github.com/stevenkleinegesse/
seqbed. The speed tests except for SeqBED were implemented as in Section D.2. For SeqBED and the variational method,
we did not include the time to compute the first design as deployment time, as this can be computed before the start of the
experiment. Due to its long-running nature, we implemented the speed test for SeqBED using a more powerful machine
with 40 Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz processors and 189GiB memory. Therefore, the timing value for
SeqBED given in Table 4 represents a significant under-estimate of the expected computational time required to deploy this
method. However, we note that SeqBED can be applied to a broader class of implicit likelihood models.

For evaluation of I4(π) in the Death Process, it is possible to compute the information gain H[p(θ)]−H[p(θ|hT )] to high
accuracy using numerical integration. We then took the expectation of the information gain over rollouts, see Table 4 for the
exact number of rollouts used. This gives us an estimate

I4(π) = Ep(hT |π) [H[p(θ)]−H[p(θ|hT )]] (135)

which is shown to be a valid form for the total EIG in Section A.

For a comparison with SeqBED which is too slow to use this evaluation, we instead performed one rollout of each of
our methods using a fixed value θ = 1.5. This is close in spririt to the evaluation used in Kleinegesse et al. (2020).
Figure 8 shows the posterior distributions obtained from this rollout. The information gains were then computed using the
aforementioned numerical integration and are quoted in Section 6.3. We observe that, visually, the posterior distributions are
similar, and cluster near to the true value of θ.

https://github.com/stevenkleinegesse/seqbed
https://github.com/stevenkleinegesse/seqbed
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