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A. Proof of Theorem 2
Theoretical guarantees regarding the convergence of FedAvg
were given in (Wang et al., 2020). The proof relies on
Assumptions 1 to 3. The full proof is provided in (Wang
et al., 2020) for MD sampling where the MD sampling is
shown to satisfy Lemma 5. In Section A.1, we reproduce
the proof provided in (Wang et al., 2020) for Lemma 5 and,
in Section A.2, we show that clustered sampling satisfying
Proposition 1 also satisfies Lemma 5. As a result, FedAvg
when sampling clients with MD or clustered sampling has
identical asymptotic behavior.
Lemma 5. Suppose we are given z1, z2, ..., zn, x ∈ Rd. Let
l1, l2, ..., lm be the index of the sampled clients and S be the
set of sampled clients. We have
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A.1. Proof of Lemma 5 for Theorem 1 adapted from
(Wang et al., 2020)

Proof. Clients are selected with MD sampling. We denote
by l1, l2, ..., lm the m indices of the sampled clients which
are iid sampled from a multinomial distribution supported
on {1, ..., n} satisfying P(lx = i) = pi and

∑n
i=1 pi = 1.

By definition, MD sampling satisfies equation (24).

Regarding equation (25), we have:
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Using the Jensen inequality on the ‖·‖2 operator, we get:
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Using the Jensen inequality, we get the following upper
bound for the first term:
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where the equality follows from equation (24).

By definition, MD sampling is unbiased, i.e.
E
[
∇Llj (x)

]
= ∇L(x). Therefore, we get the fol-

lowing upper bound for the second term:
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where the first inequality comes from using Assumption 3.

Finally, substituting equation (29) and (34) in equation (27)
completes the proof.

A.2. Proof of Lemma 5 for Theorem 2

Proof. Clients are selected with clustered sampling. The
m clients indices l1, l2, ..., lm are still independently sam-
pled but no longer identically. Each index lk is sampled
from a distribution Wk. Each client can be sampled with
probability P(lk = i) = rk,i.

Clustered sampling follows Proposition 1 and therefore sat-
isfies equation (24).

Equation (27) holds for any sampling schemes. Therefore,
we also use it to prove equation (25) for clustered sampling.
Using the same steps as for the proof of Lemma 5 for MD
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sampling, we bound the first term of equation (27) as:
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Before bounding the second term, we define ∇LWk
(x) as

the expected gradient of the distribution Wk with respects
to the parameters x, i.e.
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Using this definition, we bound the second term as
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where the last inequality comes from using Assumption 3
and equation (38) and (40) are obtained with equation (36).

Finally, substituting equation (35) and (41) in equation (27)
completes the proof.

Equation (32) and (40) allow us to theoretically identify the
convergence improvement of clustered sampling over MD
sampling.
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with equality if and only if ∀k, l, ∇LWk
(x) = ∇LWl

(x).
Thus,BCl ≤ BMD with equality if and only if all the clients
have the same data distribution or the considered clustered
sampling is MD sampling.

B. MD and Clustered Sampling Comparison
B.1. Client aggregation weight variance

As in Section 3, we denote by SMD and SC(t) the ran-
dom variables associated respectively to MD and clustered
sampling. Also in Section 3, we have shown that
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We consider an unbiased clustered sampling. Therefore, the
sum of probability for client i over the m clusters satisfies∑m
k=1 r
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due to the unbiased aspect of the considered clustered
sampling. As such, we get:

VarSMD
[ωi(SMD)]−VarSC(t) [ωi(SC(t)] ≥ 0, (50)

with equality if and only if rtk,i = pi.

B.2. Probability for a client to be sampled at least once

In Section 3, we have shown that

p({i ∈ SMD}) = 1− (1− pi)m (51)
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and

p({i ∈ SC(t)}) = 1−
m∏
k=1

(1− rtk,i). (52)

Hence, we get:

p({i ∈ SMD})− p({i ∈ SC(t)}) (53)

=
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We consider an unbiased clustered sampling. Therefore,
when using the inequality of arithmetic and geometric
means, we get:
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with equality if and only if rtk,i = pi. Finally, we get:

p({i ∈ SMD}) ≥ p({i ∈ SC(t)}) (56)

C. Explaining Algorithm 1 and 2
Algorithms 1 and 2 can be written in term of data ratio
pi instead of samples number ni. While in both cases the
algorithms would be correct, it turns out to be simpler to
work with quantities of samples ni = piM instead which
are integers. Therefore, without loss of generality, we de-
note by r′k,i the number of samples allocated by client i to
distribution k. We retrieve the sampling probability of client
i in distribution Wk with rk,i =

r′k,i

M .

Also, without loss of generality, we prove Algorithms 1 and
2 at iteration t and therefore we use in the proofs rk,i and
Wk instead of rtk,i and W t

k.

C.1. Algorithm 1

We illustrate in Figure 3 the clients allocation scheme of
Algorithm 1 introduced in Section 4, by considering how a
client i is associated to them distributions. Theorem 3 states
that Algorithm 1 provides a sampling scheme satisfying
Proposition 1 with complexityO(n log(n)) which we prove
in Section 4 and in the following proof.

Proof. In term of complexity, the while loop for the client
allocation, as illustrated in Figure 3, either change client
or distribution at every step and is thus done in complexity
O(n+m). Sampling client is relevant if m < n. Therefore
the allocation complexity is equivalent to O(n + m) =
O(n). Also, sorting n elements is done in complexity
O(n log(n)). Therefore, Algorithm 1 overall complexity is
O(n log(n).

C.2. Algorithm 2

We illustrate in Figure 4, the clients allocation scheme of
Algorithm 2 introduced in Section 5 by considering how a
client i is associated to them distributions. Theorem 4 states
that Algorithm 2 provides a sampling scheme satisfying
Proposition 1 and takes time complexity O(n2d+X). We
prove these statements in Section 5 and the following proof.

Proof. With identical reasoning as for Algorithm 1, clients
are allocated in complexity O(n). Computing the similar-
ity between two clients requires d elementary operations,
where d is the number of parameters in the model, and has
thus complexity O(d). Computing the similarity matrix
requires computing n(n−1)

2 client similarities and thus has
total complexity O(n2d). Computing the similarity tree
depends on the clustering method which we consider has
complexity O(X). Transforming the tree as discussed in
Section 5 requires going through its n− 1 nodes and thus
has time complexity O(n). Cutting the tree requires consid-
ering at most every nodes and has thus complexity O(n).
Lastly, the tree is cut in at most n branches and sorting them
takes therefore complexity O(n log(n). Finally, combining
all these time complexities gives for Algorithm 2 a time
complexity of O(n2d+X).

In practice, the m distributions are computed at every itera-
tion, while the server is required to compute the similarity
between sampled clients and all the other clients. There-
fore the similarity matrix can be estimated in complexity
O(nmd), and Algorithm 2 has complexity O(nmd+X).

D. Additional Experiments
We describe in Section 6 the different datasets used for
the experiments and how we use the Dirichlet distribution
to partition CIFAR10 in realistic heterogeneous federated
datasets. In all the experiments, we consider a batch size of
50. For every CIFAR10 dataset partition, the learning rate
is selected in {0.001, 0.005, 0.01, 0.05, 0.1} to minimize
FedAvg with MD sampling training loss.

D.1. CIFAR10 partitioning illustration

In Figure 5, we show the influence of α on the resulting
federated dataset heterogeneity. α = 10 provides almost
an iid dataset and identical class percentages, column (a) ,
and same number of samples per class, column (b). With
α = 0.001, we get a very heterogeneous dataset with almost
only one class per client translating into some classes much
more represented than others due to the unbalanced nature
aspect of the created federated dataset, cf Section 6.
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rk−1,i−1 rk,i−1 rk,i rk,i+1 rk+1,i+1

M M M
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Figure 3. Illustration of the clients allocation scheme of Algorithm 1. Clients are considered in decreasing importance of their number of
samples and always allocate client samples to distributions that already received samples but do not yet have M of them. As a result, after
allocating a client, all distributions except at most one have 0 or M samples. Client i is only sampled in Wk because every distribution
with index inferior to k are filled with clients of index inferior to i, and because there is enough room in Wk to receive all the samples that
need to be allocated for client i.

B1 B2 B3 B4
... Bm Bm+1Bm+2 ... BK

W1 W2 W3 W4
... Wm

q1 q2 q3 q4 qm qm+1 qm+2 qK

q1 q2 qm+1,1 q3 qm+1,2 q4 qm+2 qm qK

M M M M M

∑K
l=1 ql =

∑K
l=1

∑
i∈Bl

r′l,i =
∑n

i=1mni = mM

Figure 4. Illustration of the clients allocation scheme of Algorithm 2. After the tree is split in K groups of clients, the groups are ordered
and we consider without loss of generality that their number of samples are inversely proportional to their index. With Algorithm 2, the
first m groups, i.e. B1 to Bm, are each associated to one distribution, i.e. W1 to Wm. The remaining groups are considered one after the
other and split among the remaining slots in the groups. Each distribution has M samples from clients participating to the FL process.
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Figure 5. Effect of α on the resulting clients partitioning when
using a Dirichlet distribution. Plots in column (a) represent the
percentage of each class owned by the clients. Plots in column (b)
give for every class its total number of samples across clients. We
consider in this work α ∈ {0.001, 0.01, 0.1, 10}.

0 200 400 600 800 1000

1.8

2.0

2.2

2.4

2.6

2.8

Gl
ob

al
 L

os
s

0 200 400 600 800 1000
# rounds

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Gl
ob

al
 L

os
s

Sampling
MD
Alg. 1
Alg. 2 Arccos

Alg. 2 L2
Alg. 2 L1

Figure 6. Effect of the similarity measure chosen for Algorithm 2
on the training loss convergence. We consider the evolution of the
global loss, equation (1), in function of the server iteration t. For
clarity concerns, we plot the global loss obtained with rolling mean
over 50 server iterations (top) and the raw global loss (bottom).
We consider CIFAR partitioned with Dir(α = 0.01), learning rate
lr = 0.05, N = 100 SGD, and m = 10 sampled clients.

D.2. Influence of the similarity measure

Figure 6 shows the effect similarity measures (Arccos, L2,
and L1) have on training global loss convergence. We re-
trieve that Algorithm 1 outperforms MD sampling by re-
ducing clients aggregation weight variance. We remind that
the hierarchical tree is obtained using Ward’s method in
this work. We notice that the tree similarity measures gives
similar performances when using Algorithm 2 with Ward
hierarchical clustering method.. This justifies the use of
Arccos similarity for the other experiments.

D.3. More details on Figure 2

For sake of clarity, we note that the training loss displayed in
Figures 2 is computed as the rolling mean over 50 iterations.
In Figure 7, we provide the raw training global loss with the
testing accuracy at every server iteration.

D.4. Influence of m the number of sampled clients, and
N the number of SGD run

We also investigates the influence the number of sampled
clients m and the number of SGD run N have on the FL
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Figure 7. We investigate the improvement provided by clustered
sampling on federated unbalanced datasets partitioned from
CIFAR10 using a Dirichlet distribution with parameter α ∈
{0.001, 0.01, 0.1, 10} for respective row (a), (b), (c), (d). We
use N = 100, m = 10, and respective learning rate for each
dataset lr = {0.05, 0.05, 0.05, 0.1}.
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Figure 8. We consider the federated dataset partitioned from CI-
FAR10 using a Dirichlet distribution with parameter α = 0.01.
We investigate the influence of N , the number of SGD run by each
client, and m, the number of sampled clients, on the training loss
convergence. For each plot, experiments in first row use respec-
tively lr = {0.1, 0.05} and for second row lr = {0.05, 0.05}.

convergence speed and smoothness in Figure 8. We notice
that the more important the amount of local work N is, and
the faster clustered sampling convergence speed is. With
more local work, clients better fit their data. In non-iid
dataset this translates in more forgetting on the classes and
samples which are not part of the sampled clients. Regard-
ing the amount of sampled clients m, we notice that with
a smaller amount of sampled clients the improvement of
clustered sampling over MD sampling is more important.
We associate this result to the better data representativity of
clustered sampling. For the same reason, when we increase
the number of sampled clients, we see faster convergence
for both MD and clustered sampling. The performance of
clustered sampling is closer but still better than the one of
MD sampling.

For sake of clarity, we note that the training loss displayed in
Figures 8 is computed as the rolling mean over 50 iterations.
In Figure 7, we provide the raw training global loss with the
testing accuracy at every server iteration.

D.5. Local regularization

With FedProx (Li et al., 2018), every client’s local loss
function is equipped with a regularization term forcing the
updated model to stay close to the current global model, i.e.
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Figure 9. We consider the federated dataset partitioned from CI-
FAR10 using a Dirichlet distribution with parameter α = 0.01.
We investigate the influence of N the number of SGD run by each
client in the first two rows withN = 10 andN = 500 form = 10
and the influence of sampled clients with m = 5 and m = 20 for
N = 100 in the last two rows. For each dataset, we use respective
learning rate lr = {0.1, 0.05, 0.05, 0.05}.
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Figure 10. Training loss convergence for FL with FedProx local
loss function regularization (µ = 0.1). We consider CIFAR10
partitioned with Dir(α = 0.01), learning rate lr = 0.05, m = 10
sampled clients, and N = 100 SGD.

L′i(θt+1
i ) = Li(θt+1

i ) +
µ

2

∥∥θt+1
i − θt

∥∥2 (57)

where θt+1 is the updated local model of client i and θt is the
current global model. µ is the hyperparameter monitoring
the regularization and is common for all the clients. This
framework enables smoother federated learning processes.

We try a range of regularization term µ ∈
{0.001, 0.01, 0.1, 1.} and keep µ = 0.1 maximizing
the performances of FedAvg with regularization and MD
sampling. We notice in Figure 10 that Algorithm 1 and 2
still outperform MD sampling.
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