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Abstract

We analyze the properties of gradient descent on
convex surrogates for the zero-one loss for the ag-
nostic learning of halfspaces. We show that when
a quantity we refer to as the soft margin is well-
behaved—a condition satisfied by log-concave
isotropic distributions among others—minimizers
of convex surrogates for the zero-one loss are ap-
proximate minimizers for the zero-one loss itself.
As standard convex optimization arguments lead
to efficient guarantees for minimizing convex sur-
rogates of the zero-one loss, our methods allow for
the first positive guarantees for the classification
error of halfspaces learned by gradient descent
using the binary cross-entropy or hinge loss in the
presence of agnostic label noise.

1. Introduction

We analyze the performance of gradient descent on a convex
surrogate for the zero-one loss in the context of the agnostic
learning of halfspaces. By a halfspace we mean a function
x s sgn(w' ) € {£1} for some w € R?. Let D be ajoint
distribution over (z,%), where the inputs € R and the
labels y € {£1}, and denote by D, the marginal of D over
x. We are interested in the performance of halfspaces found
by gradient descent in comparison to the best-performing
halfspace over D, so let us define, for w € R4,

0—-1

CITp (w) = P(z,y)wD(Sgn(wTaj) 7é y)7

OPT := Hm‘in errOD_l(w).
wl|=1

We consider the agnostic setting, i.e. we make no assump-
tions on the relationship between x and y and so in general
OPT > 0. Due to the non-convexity and discontinuity of
the zero-one loss, the standard approach for minimizing the
classification error is to consider a convex surrogate loss
¢: R — R for which 1(z < 0) < O(¥(z)) and to instead

"Department of Statistics, UCLA Department of Com-
puter Science, UCLA. Correspondence to: Quanquan Gu
<qgu@cs.ucla.edu>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Yuan Cao? Quanquan Gu?

minimize the surrogate risk
Fy(w) := E@gy)~p [ﬁ(yw—rm)} (D)

Without access to the population risk itself, one can take
samples {(z;, yi)}7 "D and optimize (1) by gradient
descent on the empirical risk E(w), defined by taking the
expectation in (1) over the empirical distribution of the sam-
ples. By using standard tools from convex optimization and
Rademacher complexity, such an approach is guaranteed
to efficiently minimize the population surrogate risk up to
optimization and statistical error. The question is then, given
that we have found a halfspace  — w | z that minimizes
the surrogate risk, how does this halfspace compare to the
best halfspace as measured by the zero-one loss? And how
does the choice of the surrogate loss affect this behavior? To
the best of our knowledge, no previous work has been able
to demonstrate that gradient descent on convex surrogates
can yield approximate minimizers for the classification error
over halfspaces, even for the case of the standard logistic
(binary cross-entropy) loss £(z) = log(1 + exp(—=z)) or the
hinge loss ¢(z) = max(1 — z,0).

We show below that the answer to these questions depend
upon what we refer to as the soft margin function of the
distribution at a given minimizer for the zero-one loss. (We
note that in general, there may be multiple minimizers for
the zero-one loss, and so we can only refer to @ given min-
imizer.) For o € R? satisfying ||7| = 1, we say that the
halfspace v satisfies the ¢z-soft-margin property if for some
function ¢; : [0,1] — R, for all v € [0, 1],

Pp, (5" 2| <) < ¢5(7).

The key insight of our analysis is that the soft margin can
be used to bound the error under convex surrogates for the
zero-one loss by the error achieved under the zero-one loss
itself. In particular, for bounded distributions D,,, we show
in Lemma 5.1 below that

Fy(v) < inf, {(1 + LBy~ 1(€))OPT + ¢(7) + a}.

where ¢y is a soft margin function corresponding to a unit
norm minimizer v of the population zero-one loss, and v
is a scalar multiple of ©. Thus, provided ¢;(7) is well-
behaved in the sense that ¢;(7y) is small when ~ is small,
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minimizers of convex surrogates for the zero-one loss will
be approximate minimizers for the zero-one loss itself. This
implies that any black-box optimization algorithm which
can efficiently minimize convex functions, like gradient
descent on the logistic loss, will produce halfspaces which
are approximate minimizers for the zero-one loss itself. In
particular, we are able to show the following guarantees for
the output of gradient descent on convex surrogates for the
zero-one loss.

1. Hard margin distributions. If ||z|| < Bx almost
surely and there is y > 0 such that o'z > 7 as., then
erty ! (wy) < O(3'OPT) +e.

2. Sub-exponential distributions satisfying anti-
concentration. If random vectors from D, are
sub-exponential and satisfy an anti-concentration
inequality for projections onto one dimensional
subspaces, then err%‘l(wt) < O(OPT1/2) + ¢. This
covers any log-concave isotropic distribution.

For each of our guarantees, the runtime and sample complex-
ity are poly(d, e~1). The exact rates are given in Corollaries
5.3,5.6 and 5.11. In Table 1 we compare our results with
known lower bounds in the literature. To the best of our
knowledge, our results are the first to show that gradient
descent on convex surrogates for the zero-one loss can learn
halfspaces in the presence of agnostic label noise, despite
the ubiquity of this approach for classification problems.

The remainder of the paper is organized as follows. In Sec-
tion 2, we review the literature on learning halfspaces in the
presence of noise. In Section 3, we discuss the notion of soft
margins which will be essential to our proofs, and provide
examples of soft margin behavior for different distributions.
In Section 4 we show that gradient descent efficiently finds
minimizers of convex surrogate risks and discuss how the
tail behavior of the loss function can affect the time and
sample complexities of gradient descent. In Section 5 we
provide our main results, which relies upon using soft mar-
gins to convert minimizers for the convex surrogate risk
to approximate minimizers for the classification error. We
conclude in Section 6.

2. Related Work

The problem of learning halfspaces is a classical problem
in machine learning with a history almost as long as the
history of machine learning itself, starting from the percep-
tron (Rosenblatt, 1958) and support vector machines (Boser
et al., 1992) to today. Much of the early works on this prob-
lem focused on the realizable setting, i.e. where OPT = 0.
In this setting, the Perceptron algorithm or methods from
linear programming can be used to efficiently find the
optimal halfspace. In the setting of agnostic PAC learn-

ing (Kearns et al., 1994) where OPT > 0 in general, the
question of which distributions can be learned up to clas-
sification error OPT + ¢, and whether it is possible to do
so in poly(d, 1/¢) time (where d is the input dimension),
is significantly more difficult and is still an active area of
research. It is known that without distributional assump-
tions, learning up to even O(OPT) + ¢ is NP-hard, both
for proper learning (Guruswami & Raghavendra, 2009) and
improper learning (Daniely, 2016). Due to this difficulty, it
is common to make a number of assumptions on either D,
or to impose some type of structure to the learning problem.

A common structure imposed is that of structured noise:
one can assume that there exists some underlying half-
space y = sgn(v'x) that is corrupted with probability
p(z) € [0,1], possibly dependent on the features z. The
simplest setting is that of random classification noise, where
p(x) = n, so that each label is flipped with the same prob-
ability (Angluin & Laird, 1988); polynomial time algo-
rithms for learning under this noise condition were shown
by Blum et al. (1998). The Massart noise model intro-
duced by Massart et al. (2006) relaxes this assumption to
p(z) < p for some absolute constant p < 1/2. The Tsy-
bakov noise model (Tsybakov et al., 2004) is a general-
ization of the Massart noise model that instead requires a
tail bound on P(p(z) > 1/2 — t) for t > 0. Awasthi et al.
(2015) showed that optimally learning halfspaces under
Massart noise is possible for the uniform distribution on the
unit sphere, and Awasthi et al. (2016) showed this for log-
concave isotropic distributions. The recent landmark result
of Diakonikolas et al. (2019) provided the first distribution-
independent result for optimally learning halfspaces under
Massart noise, answering a long-standing (Sloan, 1988)
open problem in computational learning.

By contrast, in the agnostic PAC learning setting, one makes
no assumptions on p(z), so one can equivalently view ag-
nostic PAC learning as an adversarial noise model in which
an adversary can corrupt the label of a sample = with any
probability p(z) € [0, 1]. Recent work suggests that even
when D, is the Gaussian, agnostically learning up to ex-
actly OPT + ¢ likely requires exp(1/¢) time (Goel et al.,
2020; Diakonikolas et al., 2020b). In terms of positive
results in the agnostic setting, Kalai et al. (2008) showed
that a variant of the Average algorithm (Servedio, 1999)
can achieve risk O(OPT/log(1/oPT)) risk in poly(d, 1/¢)
time when D, is uniform over the unit sphere. Awasthi
et al. (2017) demonstrated that a localization-based algo-
rithm can achieve O(OPT) + ¢ under log-concave isotropic
marginals. Diakonikolas et al. (2020d) showed that for a
broad class of distributions, the output of projected SGD
on a nonconvex surrogate for the zero-one loss produces a
halfspace with risk O(OPT) + ¢ in poly(d, 1/¢) time. For
more background on learning halfspaces in the presence of
noise, we refer the reader to Balcan & Haghtalab (2021).
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Table 1. Comparison of our results with other upper and lower bounds in the literature.

Algorithm D, Population Risk Known Lower Bound
Non-convex G.D. Concentration, O(OPT) N/A

(Diakonikolas et al., 2020d) anti-concentration

Convex G.D. Sub-exponential, O~(OPT1/2) Q(OPT - polylog(1/orT))
(this paper) anti-concentration (Diakonikolas et al., 2020d)
Convex G.D. s-heavy tail (s > 2), O(OPT?/(2+29)) Q(OPT! /%)

(this paper) anti-concentration (Diakonikolas et al., 2020d)
Convex G.D. Hard margin O(5 'OPT) Q(y~1OPT)

(this paper) (Diakonikolas et al., 2019)

‘We note that Diakonikolas et al. (2020d) also showed that
the minimizer of the surrogate risk of any convex surrogate
for the zero-one loss is a halfspace with classification error
w(OPT). Ben-David et al. (2012) and Awasthi et al. (2017)
showed similar lower bounds that together imply that em-
pirical risk minimization procedures for convex surrogates
yield halfspaces with classification error Q(OPT). Given
such lower bounds, we wish to emphasize that in this paper
we are not making a claim about the optimality of gradi-
ent descent (on convex surrogates) for learning halfspaces.
Rather, our main interest is the characterization of what
are the strongest learning guarantees possible with what is
perhaps the simplest learning algorithm possible. Given the
success of gradient descent for the learning of deep neural
networks, and the numerous questions that this success has
brought to the theory of statistics and machine learning,
we think it is important to develop a thorough understand-
ing of what are the possibilities of vanilla gradient descent,
especially in the simplest setting possible.

Recent work has shown that gradient descent finds approxi-
mate minimizers for the population risk of single neurons
x + o(w ") under the squared loss (Diakonikolas et al.,
2020a; Frei et al., 2020), despite the computational in-
tractability of finding the optimal single neuron (Goel et al.,
2019). The main contribution of this paper is that despite
the computational difficulties in exact agnostic learning,
the standard gradient descent algorithm satisfies an approx-
imate agnostic PAC learning guarantee, in line with the
results found by Frei et al. (2020) for the single neuron.

2.1. Notation

We say that a differentiable loss function ¢ is L-Lipschitz
if [¢/(2)| < L for all z in its domain, and we say the loss
is H-smooth if its derivative ¢’ is H-Lipschitz. We use the
word “decreasing” interchangeably with “non-increasing”.
We use the standard O(+), €(-) order notations to hide uni-
versal constants and O(-), €(-) to additionally suppress log-

arithmic factors. Throughout this paper, ||z|| refers to the
standard Euclidean norm on R? induced by the inner prod-
uct z " z. We will emphasize that a vector v is of unit norm
by writing v. We assume D is a probability distribution over
R? x {41} with marginal distribution D, over R%. For
general decreasing function ¢, for which an inverse func-
tion may or may not exist, we overload the notation /=1 by
denoting /=1(t) := inf{z : £(2) < t}.

3. Soft Margins

In this section we will formally introduce the soft margin
function and describe some common distributions for which
it takes a simple form.

Definition 3.1. Let v € RY satisfy ||v]| = 1. We say v
satisfies the soft margin condition with respect to a function
o5 : R = Rifforall v € [0, 1], it holds that

Eonp, [1 (072 <7)] < da(v).

We note that our definition of soft margin is essentially an
unnormalized version of the soft margin function considered
by Foster et al. (2018) in the context of learning GLMs, since
they defined ¢5(7y) as the probability that |o" z/ ||z||| <
. This concept was also considered by Balcan & Zhang
(2017) for s-concave isotropic distributions under the name
‘probability of a band’.

Below we will consider some examples of soft margin func-
tion behavior. We shall see later that our final generalization
bounds will depend on the behavior of ¢ () for ~ suffi-
ciently small, and thus in the below examples we only care
about the behavior of ¢;(-) in small neighborhoods of the
origin. In our first example, we show that (hard) margin
distributions have simple soft margin functions.

Example 3.2 (Hard margin distributions). If D, is a hard
margin distribution in the sense that v' x > v* > 0 for
some v* > 0 almost surely, then ¢5(y) = 0 for v < v*.
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Proof. This follows immediately: P(|o" x| < 7) = 0 when
v < vE. O

Note that the soft margin function in Example 3.2 is specific
to the vector v, and does not necessarily hold for arbitrary
unit vectors in R<. By contrast, for many distributions it is
possible to derive bounds on soft margin functions that hold
for any vector v, which we shall see below is a key step for
deriving approximate agnostic learning guarantees for the
output of gradient descent.

The next example shows that provided the projections
of D, onto one dimensional subspaces satisfy an anti-
concentration property, then all soft margins function for
that distribution take a simple form. To do so we first intro-
duce the following definition.

Definition 3.3 (Anti-concentration). For v € R?, denote by
ps(+) the marginal distribution of x ~ D, on the subspace
spanned by v. We say D, satisfies U-anti-concentration if
there is some U > 0 such that for all unit norm v, py(z) <
U forall z € R.

A similar assumption was used in Diakonikolas et al.
(2020c;d;e) for learning halfspaces; in their setup, the anti-
concentration assumption was for the projections of D, onto
two dimensional subspaces rather than the one dimensional
version we consider here.

Example 3.4 (Distributions satisfying anti-concentration).
If D,, satisfies U-anti-concentration, then for any unit norm
v, ¢5(v) < 2U.

Proof. We can write P(|o"z| < ) = [7 ps(2)dz <
2~U. O

We will show below that log-concave isotropic distributions
satisfy U-anti-concentration for U = 1. We first remind
the reader of the definition of log-concave isotropic distribu-
tions.

Definition 3.5. We say that a distribution D, over x € R?
is log-concave if it has a density function p(-) such that
log p(+) is concave. We call D, isotropic if its mean is the
zero vector and its covariance matrix is the identity matrix.

Typical examples of log-concave isotropic distributions in-
clude the standard Gaussian and the uniform distribution
over a convex set.

Example 3.6 (Log-concave isotropic distributions). If D, is
log-concave isotropic then it satisfies 1-anti-concentration,
and thus for any © with ||o|| = 1, ¢5(7y) < 2.

Proof. This was demonstrated in Balcan & Zhang (2017,
Proof of Theorem 11).! O]

"The cited theorem implies a similar bound of the form O(~)

4. Gradient Descent Finds Minimizers of the
Surrogate Risk

We begin by demonstrating that gradient descent finds
weights that achieve the best population-level surrogate risk.
The following theorem is a standard result from stochastic
optimization. For completeness, we present its proof in
Appendix E.

Theorem 4.1. Suppose ||z|| < Bx a.s. Let { be convex,
L-Lipschitz, and H-smooth, with £(0) < 1. Let v € R? be
arbitrary with ||v|| <V for some V > 1, and suppose that
the initialization wy satisfies ||wo|| < V. For any €,6 >
0 and for any provided n < (2/5)H713§2, if gradient
descent is run for T = (4/3)n~ e~ |jwo — v||?, then with
probability at least 1 — 6,

4Bx V'L
NG

2log(2/0) L
n

Fo(wr—1) < Fy(v) +

+8BxV

This shows that gradient descent learns halfspaces that have
a population surrogate risk competitive with that of the best
predictor with bounded norm for any norm threshold V. For
distributions that are linearly separable by some margin y >
0, the above theorem allows us to derive upper bounds on
the sample complexity that suggest that exponentially tailed
losses are preferable to polynomially tailed losses from both
time and sample complexity perspectives, touching on a
recent problem posed by Ji et al. (2020).

Corollary 4.2 (Sample complexity for linearly separable
data). Assume ||z|| < Bx a.s. Suppose that for some U €
RY, ||0|| = 1, there is v > 0 such that yo ' = > 7y a.s. If { is
convex, decreasing, L-Lipschitz, and H-smooth, and if we
fix a step size of n < (2/5)H ' B>, then

e Assume { has polynomial tails, so that for some
Co,p > 0and {(z) < Coz"P holds for all z > 1.
Provided n. = Q(y~2e~272/P), then running gradient
descent for T = Q(y~2e=1=2/?) iterations guaran-
tees that erry; *(wr) < e.

e Assume { has exponential tails, so that for some
Co,C1,p > 0, £(z) < Cpexp(—C12P) holds for all
2> 1. Thenn = Q(y 2 2) and T = Q(y 271)
guarantees that err); ' (wr) < e.

The proof for the above Corollary can be found in Appendix
D. At a high level, the above result shows that if the tails of
the loss function are heavier, one may need to run gradient

holds for the more general set of s-concave isotropic distributions.
We focus here on log-concave isotropic distributions for simplicity.
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descent for longer to drive the population surrogate risk,
and hence the zero-one risk, to zero.2 In the subsequent
sections, we shall see that this phenomenon persists beyond
the linearly separable case to the more general agnostic
learning setting.

Remark 4.3. The sample complexity in Theorem 4.1 can be
improved from O(e~2) to O(e~1) if we use online stochas-
tic gradient descent rather than vanilla gradient descent.
The proof of this is somewhat more involved as it requires
a technical workaround to the unboundedness of the loss
function, and may be of independent interest. We present
the full analysis of this in Appendix A.

5. Gradient Descent Finds Approximate
Minimizers for the Zero-One Loss

We now show how we can use the soft margin function
to develop bounds for the zero-one loss of the output of
gradient descent.

5.1. Bounded Distributions

We first focus on the case when the marginal distribution
D, is bounded almost surely.

By Theorem 4.1, since by Markov’s inequality we have
that erry ' (w) < £(0)~'Fy(w), if we want to show that
the zero-one population risk for the output of gradient de-
scent is competitive with that of the optimal zero-one loss
achieved by some halfspace v € R?, it suffices to bound
F;(v) by some function of OPT. To do so we decompose
the expectation for Fy(v) into a sum of three terms which
incorporate OPT, the soft margin function, and a term that
drives the surrogate risk to zero by driving up the margin on
those samples that are correctly classified.

Lemma 5.1. Let v be a unit norm population risk minimizer
for the zero-one loss, and suppose v satisfies the soft margin
condition with respect to some ¢ : [0,1] — R. Assume that
lz|| < Bx a.s. Let v =V for V> 0 be a scaled version
of v. If L is decreasing, L-Lipschitz and ¢(0) < 1, then

Fy(v) < inf {(1+ LVBx)OPT +6() + ((V)}.

In particular, for v =y~ ()0 for some & > 0, we have

Fy(v) < inf {(14 LBxy™'¢7}(€))OPT + 6(7) + ¢}

Proof. We begin by writing the expectation as a sum of

2We note that in Corollary 4.2, there is a gap for the sample
complexity and runtime when using polynomially tailed vs. ex-
ponentially tailed losses. However, such a gap may be an artifact
of our analysis. Deriving matching lower bounds for the sample
complexity or runtime of gradient descent on polynomially tailed
losses remains an open problem.

three terms,

E[l(yv"z)] =E [E(vax)]l (y@T:E < O)}

[E(y z)1 (0 < Yo'z < 7)]
[ (yv'x)1 (yz? x> 'y)} . )

For the first term, we use that £ is L-Lipschitz and decreasing
as well as Cauchy—Schwarz to get

E[f(yv" 2)1(yo "z < 0)] <E[(1 + Ljv z)1(yo 'z < 0)]
< (1+ LVBx)E[1(ys "z < 0)]
= (1+ LVBx)OPT.

In the last inequality we use that ||z|| < Bx a.s. For the
second term,

E [Z(yv—rx)]l (0< Yo'z < 7)]
<UOE[L(0<yv'z <7)] <o), 3)

where we have used that ¢ is decreasing in the first inequality
and Definition 3.1 in the second. Finally, for the last term,
we can use that ¢ is decreasing to get

E [¢(yo'z)1 (yo'z > 7)]
=E [é(yVT)Tx)]l (yVT)Tx >Vy)] <ovy). @

le). O

Note that for the hinge loss, £~1(g) = 0 for e < 1, while for
losses with exponential tails like the binary cross-entropy
loss, £~1(¢) = O(log(1/¢)). This means that the contri-
bution of the £~1(¢) term in Lemma 5.1 is negligible for
the losses used in standard black-box optimization algo-
rithms. Thus, Lemma 5.1 shows that we can bound the
population risk under convex surrogates of the zero-one
loss by a quantity involving OPT, the classification error
achieved by minimizers of the zero-one loss, the soft margin
@(7), and some negligible additional terms. Since gradient
descent is able to efficiently minimize the population risk
over any norm-boudned domain, we can easily translate this
into a guarantee for the weights found by gradient descent,
as given in our next theorem.

The final claim comes from taking V = y~1/~

Theorem 5.2. Suppose ||z|| < Bx a.s. Let { be convex,
decreasing, L-Lipschitz, and H-smooth, with 0 < £(0) <
1. Assume that a unit norm population risk minimizer of
the zero-one loss, v, satisfies the ¢-soft-margin condition
for some increasing ¢ : R — R. Fix a step size n <
(2/5)H 'By> Let e1,7v > 0 and e2 > 0 be arbitrary.
Denote by wr the output of gradient descent run for T =
(4/3)n~teT 2 [0~ (e9)] =2 iterations after initialization
at the origin. Then, with probability at least 1 — 9,

errOD 1(wT) < 1/6(0)[(1 + LBxvy ' 1(e2))OPT
+¢(7) +O0(y N ea)n ) + a1 + &2,
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where O(-) hides absolute constants that depend on L, H,
and log(1/9).

Proof. We take v = Vv for a given unit-norm zero-one
population risk minimizer ¥ in Theorem 4.1 to get that for
some universal constant C' > 0 depending only on L and
log(1/6), with probability at least 1 — 4,

Fy(wr) < Fy(v) +e1/2+CVBxn~ 2 (5)
By Lemma 5.1, for any v > 0 it holds that
Fy(v) < (1+ LVBx)OPT + ¢(7) + £(V7).
Again we take V = v~ 1/71(g5) to get

Fy(wr) < (14 Ly~ ")OPT + ¢(7)
+O(y H  (e)n V) ter +ea (6)

Finally, by Markov’s inequality,

Ell(ywg_,2)] _ Fy(wr)
P(yw, < = .
Putting (6) together with (7) completes the proof. O

A few comments on the proof of the above theorem are in
order. Note that the only place we use smoothness of the
loss function is in showing that gradient descent minimizes
the population risk in (5), and it is not difficult to remove
the H-smoothness assumption to accommodate e.g. the
hinge loss; indeed, in Theorem 5.10 below, we provide an
analogous result for unbounded distributions using SGD
that allows for non-smooth convex surrogates at the cost of
requiring a small step size. On the other hand, that ¢ is L-
Lipschitz is key to the proof of Lemma 5.1. Non-Lipschitz
losses such as the exponential loss or squared hinge loss
would incur additional factors of y~! in front of OPT in
the final bound for Theorem 5.2.> We shall see below in
the proof of Proposition 5.5 that this would yield worse

guarantees for err; ! (wr).

Additionally, in concordance with the result from Corollary
4.2, we see that if the tail of ¢ is fatter, then £~ (¢5) will be
larger and so our guarantees would be worse. In particular,
for losses with exponential tails, £~ (g2) = O(log(1/¢2)),
and so by using such losses we incur only additional loga-
rithmic factors in 1/e5. For this reason, we will restrict our
attention in the below results to the logistic loss—which is
convex, decreasing, 1-Lipschitz and !/4-smooth—although
they apply equally to more general losses with different
bounds that will depend on the tail behavior of the loss.

3This is because the first term in (2) would be bounded by
OPT -sup,. <y g, £(2). For Lipschitz losses this incurs a term of
order O(V') while (for example) the exponential loss would have
a term of order O(exp(V)), and our proof requires V = Q(y™1).

We now demonstrate how to convert the bounds given in
Theorem 5.2 into bounds solely involving OPT by substitut-
ing the forms of the soft margin functions given in Section
3.

Corollary 5.3 (Hard margin distributions). Suppose that
||lz|| < Bx a.s. and that a unit norm population risk mini-
mizer  for the zero-one loss satisfies |0 x| > 7 > 0 almost
surely under D, for some ¥ > 0. For simplicity assume
that £(z) = log(1 + exp(—=z)) is the logistic loss. Then for
any €,6 > 0, with probability at least 1 — 0, running gra-
dient descent for T = ©(n~'e™'572) withn < 2B3*/5 is
guaranteed to find a point wr such that

erty Hwr) < [OPT+2BX7_1OPT log(Q/OPT)} +e,

L
log 2
provided n = Q(7-2B% log(1/8)e2).

Proof. Since [v'z| > 4* > 0, ¢(v*) = 0. Note
that the logistic loss is 1/4-smooth and satisfies £=1(g) €
[log(1/(2¢)),log(2/e)]. By taking e¢a = OPT the
result follows by applying Theorem 5.2 with runtime
T = 4n~ ' e~ 572 log?(1/20PT). O

Remark 5.4. The bound O(5~'OPT) in Corollary 5.3 is
tight up to logarithmic factors® if one wishes to use gradient
descent on a convex surrogate of the form {(yw' x). Di-
akonikolas et al. (2019, Theorem 3.1) showed that for any
convex and decreasing !, there exists a distribution over the
unit ball with margin v > 0 such that a population risk mini-
mizer w* := argmin, E[{(yw " x)] has zero-one population
risk at least Q(~1k), where k is the upper bound for the
Massart noise probability. The Massart noise case is more
restrictive than the agnostic setting and satisfies OPT < k.
A similar matching lower bound was shown by Ben-David
et al. (2012, Proposition 1).

In the below Proposition we demonstrate the utility of hav-
ing soft margins. As we saw in the examples in Section
3, there any many distributions that satisfy ¢(v) = O(7).
We show below the types of bounds one can expect when
¢(y) = O(~?) for some p > 0.

Proposition 5.5 (Soft margin distributions). Suppose
|z|| < Bx a.s. and that the soft margin function for a pop-
ulation risk minimizer of the zero-one loss satisfies () <
Con? for some p > 0. For simplicity assume that ¢ is the
logistic loss, and let n < (2/5)3;(2. Assuming OPT > 0,
then for any €, 6 > 0, with probability at least 1—46, gradient

“In fact, one can get rid of the logarithmic factors here by
using the hinge loss rather than the logistic loss. In this case one
needs to modify Lemma E.1 to accomodate non-smooth losses,
which can be done with runtime O(e~?) rather than O(¢™*) by
e.g. Shalev-Shwartz & Ben-David (2014, Lemma 14.1) or using a
similar argument to the one we provide for SGD in Appendix C.
Then we use the fact that £~*(0) = 1 for the hinge loss.
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descent run for T = O(n~1e 1OPT~¥U*P)) iterations
withn = Q(OPT =Y U+P) 10g(1/8)e~2) samples satisfies

err%_l(wT) < O ((OO + Bx)OPTﬁ> + ¢,
Proof. By Theorem 5.2, we have

et (wy) < 1/1ogz[ (14 LBxy " (c2)) OPT

+ Co? + O(W_IBxﬁ_l(sz)n_l/g) +e1+ 62} )

For the logistic loss, L = 1 and ¢~ '(e) €
[log(1/2¢),log(2/¢)] and so we take e = OPT. Choosing
AP = ~~LOPT, we get v = OPTY(*P) and hence

err); H(wr) < 2(2+ ByOPT 17 log(2/opPT))OPT
+20,0PTT7 + 2¢1,

provided n = Q(OPTT#52;2log(1/5) log?(1/opT)) and
T = 477*151_10PT_2/(1+”) log?(1/20pPT). O

By applying Proposition 5.5 to Examples 3.4 and 3.6 we
get the following approximate agnostic learning guaran-
tees for the output of gradient descent for log-concave
isotropic distributions and other distributions satisfying U-
anti-concentration.

Corollary 5.6. Suppose that D, satisfies U-anti-
concentration and ||z|| < Bx a.s. Then for any
€,0 > 0, with probability at least 1 — 6, gradient de-
scent on the logistic loss with step size n < (2/5)By>
and run for T = O(n_ls_loPTfl) iterations and
n = Q(OPT *log(1/8)e2) samples returns weights wp
satisfying erry L (wr) < O(OPTY?)+¢, where O(-), ()
hide universal constant depending on Bx, U, log(1/6) and
log(1/oPT) only.

To conclude this section, we compare our result to the vari-
ant of the Average algorithm, which estimates the vector
wavg = d 'E(, ) [zy]. Kalai et al. (2008) showed that
when D, is the uniform distribution over the unit sphere,
wavg achieves risk O(OPT+/log(1/opT)). Estimation of
Wavg can be viewed as the output convex optimization pro-
cedure, since it is the minimum of the convex objective
function Faye(w) = E[((w, z) — y)?].

Although £(w) = ((w, z) — y)? is convex, it is not decreas-
ing and thus is not covered by our analysis. On the other
hand, this loss function is not typically used in practice for
classification problems, and the aim of this work is to char-
acterize the guarantees for the most typical loss functions
used in practice, like the logistic loss. Finally, we wish
to note that the approach of soft margins is not likely to
yield good bounds for the classification error when D, is

the uniform distribution on the unit sphere. This is because
the soft margin function behavior on this distribution has
a necessary dimension dependence. On the other hand, if
we instead considered a scaled version of this distribution,
namely v/d - Unif ({|||| = 1}), then this dimension depen-
dence would disappear. We provide detailed calculations
for this in Appendix B.

5.2. Unbounded Distributions

We show in this section that we can achieve essentially the
same results from Section 5.1 if we relax the assumption
that D, is bounded almost surely to being sub-exponential
or possibly s-heavy-tailed.

Definition 5.7 (Sub-exponential distributions). We say D,
is C'y,-sub-exponential if every x ~ D, is a sub-exponential
random vector with sub-exponential norm at most C,. In
particular, for any v with ||o]| = 1, Pp_(|o7z| > t) <
eXp(_t/Cm)'

It is well-known that log-concave isotropic distributions are
C'n-sub-exponential with C,, a universal constant indepen-
dent of the dimension (Balcan & Zhang, 2017).

Definition 5.8 (s-heavy tailed). We say D, is s-heavy-
tailed if there exists a universal constant Cp, > 0 such
that for every v € RY with ||v|| = 1, the probability den-
sity function py(t) on the subspace spanned by v satisfies
p@(t) < CnL(l + |t|)727s'

We use this particular definition of s-heavy tailed so that we
can more easily compare our upper bounds with the lower
bounds of (Diakonikolas et al., 2020c).

As was the case for bounded distributions, the key to the
proof for unbounded distributions comes from bounding the
surrogate risk at a minimizer for the zero-one loss by some
function of the zero-one loss.

Lemma 5.9. Suppose D, is C,,-sub-exponential. Denote
by v as a unit norm population risk minimizer for the zero-
one loss, and let v = Vv for V > 0 be a scaled version of
v. If € is decreasing, L-Lipschitz and £(0) < 1, then

~ Te) < i
E(gyy~pl(yv' ) < ;gfo {é(v) +£(V7y)

+(1+ LV +LVCy, 1og(1/opT))opT}.

If D, is only s-heavy tailed with constant C,,, > 0, then we
have

T .
Ey)~pt(yv’ @) < inf {600 +ev)

+ (14 LV)OPT + LVC,,OPT = }

Proof. We first show the sub-exponential case. We again
use the decomposition (2), with the only difference coming
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from the bound for the first term, which we show here. Fix
& > 0to be chosen later. We can write

E[f(yo )1 (yv "z < 0)]
<E[1+LV|p 2))(yv z < 0)]
= OPT + LVE[[s " 2|1(yv 2 <0, |57 2| < €)]
+ LVIE[|1’)Tx|]1(y17Tx <0, |o" x| > £)]

< (1+LV§)OPT+LV/ P(jo" 2| > t)dt (8)
13

< (1+LV§)OPT—|—LV/ exp(—t/C,)dt
3

= (14 LVE)OPT + Cp, LV exp(—£/Chy).

The first inequality comes from Cauchy—Schwarz, the sec-
ond from truncating, and the last from the definition of
C'-sub-exponential. Taking £ = C, log(1/opT) results in

E[f(vax)]l(y@Tx <0)]
< (1+ LV + LVC,,log(1/orT)) OPT.

When D, is s-heavy tailed, we can continue from (8) in
a similar fashion. Denote by p; as the probability density
function of D, on the subspace spanned by v. Then we have

E[t(yv ") 1(ys" = < 0)]
<1+ LVEOPT + LVE[|o " z|1(|5 2| > €)]

— (14 LVEOPT 4+ LV / s (D)t
§

<t
<A+ LVEOPT+LVCy, | 51
< (1+ LVEOPT + LVC /5 (1+t)2+sdt

< (1+LVE)OPT + LVOm/ timsde
3
= (1+ LVEOPT 4+ LVC,,£°.

This bound is optimized when £ = OPT%, which leads
to the desired bound. O

To derive an analogue of Theorem 5.2 for unbounded distri-
butions, we need to extend the analysis for the generaliza-
tion bound for the output of gradient descent we presented
in Theorem 4.1 to unbounded distributions. Rather than
using (full-batch) vanilla gradient descent, we instead use
online stochastic gradient descent. The reason for this is that
dealing with unbounded distributions is significantly simpler
with online SGD due to the ability to work with expectations
rather than high-probability bounds. It is straightforward to
extend our results to vanilla gradient descent at the expense
of a more involved proof by using methods from e.g., Zhang
et al. (2019).

Below we present our result for unbounded distributions. Its
proof is similar to that of Theorem 5.2 and can be found in
Appendix C.

Theorem 5.10. Suppose D, is C,,-sub-exponential, and
let E[||z]|*] < B%. Let { be convex, L-Lipschitz, and de-
creasing with 0 < £(0) < 1. Let e,y > 0 and g2 > 0 be
arbitrary, and fix a step sizen < L_2B;{251/4. By running
online SGD for T = 2n~ e 'y ~2[(~ (e4)] 2 iterations af-
ter initialization at the origin, SGD finds a point wy, t < T,
such that in expectation over ((x1,y1),. .., (X7, yr)) ~
DT,

Eferr® (w,)] < Ve(o) [M) Y&y +ept OPT

+ (L (e2)y ™ + LCpt ™ (e2)y ' log(1/opPT)) OPT} .
If instead we only know D, is s-heavy tailed, we have
Elerry ()] < Yoo [9(7) + &1 + 2

+ (1 + LE Y (e2)7~1)OPT + Lcmz-l(gz)y—loPTﬁ's} .

The above theorem yields the following bound for sub-
exponential distributions and heavy-tailed distributions
satisfying U-anti-concentration. Recall from Example
3.6 that log-concave isotropic distributions are O(1)-sub-
exponential and satisfy anti-concentration with U = 1.
Corollary 5.11. Suppose D, is C,,-sub-exponential with
E[|z]|*] < B% and assume U-anti-concentration holds.
Let ¢ be the logistic loss and let € > 0. Fix a step
sizen < B;{2€/16. By running online SGD for T =
O(nileflch*lOPT_l) iterations, there exists a point
wy, t < T, such that

E[err%_l(wt)} <0 (OPT1/2) +e.
If instead we only know D, is s-heavy tailed, we have

Elerry " ()] < O (OPT0 ) + &,

Proof. Consider sub-exponential distributions first. By
Example 3.4, ¢(y) < 2qU. Since (~'(e) €
[log(1/2¢),log(2/€)], we can take ¢ = OPT in Theo-
rem 5.10 to get

Elerr® ™ (wy)] < Viog(2) [QWU +e
+ (24 Cy + LCpy log?(2/opT)) OPT} :

This bound is optimized when Uy = C,,7v 'OPT,
ie, v = U*1/2C},Z/QOPT%. Substituting  this
value for v we get the desired bound with T =
21og(2)n~te~1C,, U OPT " log®(1/20pT).

For s-heavy tailed distributions, the argument is essentially
the same. We again use ¢(vy) < 2yU and take e5 = OPT.
The optimal choice of v occurs when ATIOPTTH = 4.
Solving for vy gives v = OPT 209 and the result follows
by substituting - into Theorem 5.10. O
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Remark 5.12. Diakonikolas et al. (2020d, Theorem 1.4)
recently showed that if the marginal of D over x is the
standard Gaussian in d dimensions, for every convex, non-
decreasing loss {, the minimizer v = argmin,, Fy(w)
satisfies erty ' (v) = Q(OPT/log(1/opT)), in compari-
son with our upper bound of O(OPTl/z). For s-heavy-

tailed distributions, their lower bound is errly *(v) =

Q(OPTl_%), so that as s — 2 our upper bound tends
1o O(OPTY3) in comparison to their lower bound of
Q(0 PT1/2). Further narrowing the gap between our up-
per bounds and their lower bounds is an interesting open
problem.

We also wish to note that Diakonikolas et al. (2020d) showed
that by using gradient descent on a certain bounded and
decreasing non-convex surrogate for the zero-one loss, it
is possible to show that gradient descent finds a point with
ertly ! (wr) < O(OPT) +e. In comparison with our result,
this is perhaps not surprising: if one is able to show that gra-
dient descent with a bounded and decreasing loss function
can achieve population risk bounded by O(E[¢(yv " x)]) for
arbitrary v € R, then the same proof technique that yields
Theorem 5.10 from Lemma 5.9 would demonstrate that
ert, ! (w;) < O(OPT). Since the only globally bounded
convex function is constant, this approach would require
working with a non-convex loss.

6. Conclusion and Future Work

In this work we analyzed the problem of learning halfspaces
in the presence of agnostic label noise. We showed that the
simple approach of gradient descent on convex surrogates
for the zero-one loss (such as the cross entropy or hinge
losses) can yield approximate minimizers for the zero-one
loss for both hard margin distributions and sub-exponential
distributions satisfying an anti-concentration inequality en-
joyed by log-concave isotropic distributions. Our approach
relied upon developing a novel connection between minimiz-
ers of convex surrogates of the zero-one loss to minimizers
of the zero-one loss itself, with the soft margin property
playing a key role in this connection. Our results match
(up to logarithmic factors) lower bounds shown for hard
margin distributions. For future work, we are interested in
exploring the utility of the soft margin for understanding
other classification problems.
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A. Fast Rates with Stochastic Gradient Descent

In Theorem 4.1, we showed that Fy(wr) < Fp(v) + O(1/+/n) given n samples from D by using vanilla (full-batch)
gradient descent. In this section we demonstrate that by instead using stochastic gradient descent, one can achieve
Fy(wr) < O(Fy(v)) + O(1/n) by appealing to a martingle Bernstein bound. We note that although the population risk
guarantee degrades from Fy(v) to O(F;(v)), our bounds for the zero-one risk in vanilla gradient descent already have
constant-factor errors and so the constant-factor error for F;(v) will not change the order of our final bounds.

The version of stochastic gradient descent that we study is the standard online SGD. Suppose we sample z; = (¢, Y1) =p
fort =1,...,T, and let us denote the o-algebra generated by the first ¢ samples as G; = o (21, .. ., 2;). Define

ﬁt(w) = Uyew " xy), ]E[F\t(wt)|gt_1] = F(w) = E(%y)NDE(yw:x).
The online stochastic gradient descent updates take the form
W41 ‘= Wt — nVﬁt(wf)

We are able to show an improved rate of O(¢~!) when using online SGD.

Theorem A.1 (Fast rate for online SGD). Assume that ((-) > 0 is convex, strictly decreasing, L-Lipschitz and H-smooth.
Assume ||z|| < Bx a.s. For simplicity assume that wy = 0. Let v € R? be arbitrary with ||v|| < V. Letn < (32HB% )1
Then for any €, > 0, by running online stochastic gradient descent for T = O(e~1V? log(1/0)) iterations, with probability
at least 1 — 0 there exists a point wy=, with t* < T, such that

erryy *(wy-) < O(E[(yo " @)]) +¢,
where O(+) hides constant factors that depend on L, H and Bx only.

In this section we will sketch the proof for the above theorem. First, we note the following guarantee for the empirical risk.
This result is a standard result in online convex optimization (see, e.g., Theorem 14.13 in Shalev-Shwartz & Ben-David
(2014)).

Lemma A.2. Suppose that £(-) > 0 is convex and H-smooth, and that ||x|| < Bx a.s. Then for any a € (0, 1), for fixed
step size n < a/(SHBg(), and for any T > 1, it holds that

LN LN o — o
~N"F <1 ~NTF o
T L t(we) < ( +04)T ; t(v) + T

From here, one could take expectations and show that in expectation over the randomness of SGD, the population risk found
by gradient descent is at most (1 + «) F;(v) + O(1/T), but we are interested in developing a generalization bound that has
the same fast rate but holds with high probability, which requires significantly more work. Much of the literature for fast rates
in stochastic optimization require additional structure to achieve such results: Bartlett et al. (2006) showed that the empirical
risk minimizer converges at a fast rate to its expectation under a low-noise assumption; Sridharan et al. (2009) achieved fast
rates for the output of stochastic optimization by using explicit regularization by a strongly convex regularizer; Srebro et al.
(2010) shows that projected online SGD achieves fast rates when min,, E[¢(yv " x)] = 0. By contrast, we show below that
the standard online SGD algorithm achieves a constant-factor approximation to the best population risk at a fast rate. We do
so by appealing to the following martingale Bernstein inequality.

Lemma A.3 (Beygelzimer et al. (2011), Theorem 1). Let {Y;} be a martingale adapted to the filtration G;, and let Yy = 0.
Let {D.} be the corresponding martingale difference sequence. Fix T > 0, and define the sequence of conditional variance

Ur-1:= ) E[D}|Gi-1],

t<T

and assume that Dy < R almost surely. Then for any ¢ € (0, 1), with probability greater than 1 — 4,

Yr-1 < Rlog(1/6) + (e = 2)Ur-1/R.
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We would like to take Y; = >, [F'(wy) — F,(w,)], which has martingale difference sequence D; = F(w;) — F(w;). The
difficulty here is showing that D, < R almost surely for some absolute constant K. The obvious fix would be to show that
the weights w; stay within a bounded region throughout gradient descent via early stopping. In the case of full-batch gradient
descent, this is indeed possible: in Lemma E.1 we showed that ||w; — v|| < ||wg — v|| throughout gradient descent, which
would imply that £(yw, x) is uniformly bounded for all samples z throughout G.D., in which case D; < F(w;) would hold
almost surely. But for online stochastic gradient descent, since we must continue to take draws from the distribution in order
to reduce the optimization error, there isn’t a straightforward way to get a bound on ||w; || to hold almost surely throughout
the gradient descent trajectory.

Our way around this is to realize that in the end, our end goal is to show something of the form
erryy *(w;) < O(E[l(yv " @)]) + O(1/T),

since then we could use a decomposition similar to Lemma 5.1 to bound the right hand side by terms involving OPT and a
soft margin function. Since for a non-negative H-smooth loss [¢/(2)]? < 4H{(z) holds, it actually suffices to show that the
losses {[¢/(y,w " x,)]>}¥ concentrate around their expectation at a fast rate. Roughly, this is because one would have

T-—1
. 1
min Ep (It (ywi ))?) < T2 (¢ (yew] z¢)?] + O(1/T)
-1
4H
< T U(yew, ) + O(1/T)
t=0
T-1
4H
< Uyv ) +O(1)T). ©)

t

Il
=)

To finish the proof we can then use the fact that v is a fixed vector of constant norm to show that the empirical risk on the
last line of (9) concentrates around O(E[{(yv " z)]) at rate O(1/T). For decreasing and convex loss functions, ¢'(z)? is
decreasing so the above provides a bound for err(l);1 (w¢) by Markov’s inequality.

This shows that the key to the proof is to show that {¢'(y;w;z)?} concentrates at rate O(1/T'). The reason this is easier
than showing concentration of {/(y;w;x;)} is because for Lipschitz losses, ¢'(y;w, x;)? is uniformly bounded regardless of
the norm of w;. This ensures that the almost sure condition needed for the martingale difference sequence in Lemma A.3
holds trivially. We note that a similar technique has been utilized before for the analysis of SGD (Ji & Telgarsky, 2020; Cao
& Gu, 2020; Frei et al., 2019), although in these settings the authors used the concentration of {¢’(z;)} rather than {¢'(z;)?}
since they considered the logistic loss, for which |¢'(z)| < £(z). Since not all smooth loss functions satisfy this inequality,
we instead use concentration of {¢'(z;)?}.

Below we formalize the above proof sketch. We first show that {¢'(y;w, x;)?} concentrates at rate O(1/T') for any fixed
sequence of gradient descent iterates {w; }.

Lemma A4. Let { be any differentiable L-Lipschitz function, and let z; = (x4, yt) D, Denote G =o0(z1,...,2t)
the c-algebra generated by the first t draws from D, and let {w;} be any sequence of random variables such that w; is
Gi_1-measurable for each t. Then for any § > 0, with probability at least 1 — 6,

1= y 2 4 , 2 4L%log(1/§
T ; E(,y)~p ([5 (yw; z)] ) < T [ (yew/ 24)]” + #/) (10)

Proof. For simplicity, let us denote

J(w) i=Eyyen ([(lwT2)]"), Tiw) = [y 2)]’

We begin by showing the second inequality in (10). Define the random variable

V=Y (J(w,) = Jr(w,)) (1n

T<t
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Then Y; is a martingale with respect to the filtration G;_; with martingale difference sequence D; := J(w;) — jt(wt). We
need bounds on D; and on E[D?|G; 1] in order to apply Lemma A.3. Since  is L-Lipschitz,

Dy < J(wt) = Eqzyy~p ([_El(yUTz)P) <L
Similarly,
E[Ty(w)?|Gi-1) = E ([¢ (vl @)]' |9H)

< 12E ([¢' (g )] 161+ )
= L2J(wy). (12)

In the inequality we use that £ is L-Lipschitz, so that |[¢'(«)] < L. We then can use (12) to bound the squared increments,

E(Df|G1-1) = J(w;)* = 27 (w)ELTy(w0)|Ge—1] + E[ T (wr)?|Ge1]
< E[Ji(wr)?|Gs 1]
< L2 (wy).
This allows for us to bound . _
Ur—1 =Y E[D}Gi1] < L7 J(wy).
t=0 t=0

Lemma A.3 thus implies that with probability at least 1 — J, we have

_ T-1
Z — Ji(wy)) < L*1og(1/8) + (exp(1) — 2) > J(wy).
t=0 t=0
Using that (1 — exp(1) + 2)~! < 4, we divide each side by 7" and get
lTZ‘f gT ! | 417 los(1/9)
T & =7 et il T
This completes the proof. O

Next, we show that the average of {¢(y;v " x;)} is at most twice its mean at rate O(1/7).

Lemma A.5. Let { be any L-Lipschitz function, and suppose that £(0) < 1 and ||z||, < B a.s. Let v € R? be arbitrary
with ||v|| < V. For any 6 > 0, with probability at least 1 — 9,

1=~ 2(1+ LV Bx)log(1/6)
= ; Fy(v) < 2F(v) + TX .

Proof. Let G; = o(z1,...,2) be the o-algebra generated by the first ¢ draws from D. Then the random variable
Y; = > (Fr(v) — F(v)) is a martingale with respect to the filtration G;_; with martingale difference sequence

D, := F,(v) — F(v). We need bounds on D; and on E[D2|G,_1] in order to apply Lemma A.3. Since £ is L-Lipschitz and
|z|| < Bx a.s., that ||v|| < V implies that almost surely,

D, < Fy(v) = l(yv " 2,) < (1 + LVBx). (13)
Similarly,

E[Fy(v)*|Gs-1] = E [((yev " 1)’|Ge1]
< (1+ LVBx)E[l(y " 2¢)]
= (1+ LVBx)F(v). (14)



Agnostic Learning of Halfspaces with Gradient Descent via Soft Margins

In the inequality, we have used that (x;, ;) is independent from G;_; together with (13). We then can use (14) to bound the
squared increments,

E[D?|G—1] = F(v)? — 2F ()E[F;(v)|G;—1] + E[F(v)?(Ge-1]
< E[F,(v)?|G¢-1]
< (14 LVBx)F(v).

This allows for us to bound
T—1

E[D?|G:—1] < (1 + LV Bx)TF(v).
t=0
Lemma A.3 thus implies that with probability at least 1 — J, we have

T-1

Z(Ft(v) — F(v)) < (14 LVBx)log(1/§) + (exp(1) — 2)TF(v).
=0

Using that exp(1) — 2 < 1, we divide each side by 7" and get

1 F(v) < 2F(v) + 2(1 + LVB;() log(l/d).

Finally, we put these ingredients together for the proof of Theorem A.1.

Proof. Since { is convex and H-smooth, we can take a = 1/4 in Lemma A.2 to get
(V) + —. (15)
We can therefore bound

min E ([¢'(yw/"2))*) < =

= . 412 log(2/6)
+

A
Nl
2
2
®
8
=

~ 2 o)
16H S Fifun) + AL 17%(2/5)

IN

20H ~ 5L%log(2/8) +V?

2

40H (1 + LV Bx)nlog(2/6) + 5L%*nlog(2/6) + V?
nT '

The second inequality holds since ¢ is L-Lipschitz so that we can apply Lemma A.4. The third inequality uses that ¢ is

non-negative and H-smooth, so that [¢(2)]? < 4H/{(z) (see Srebro et al. (2010, Lemma 2.1)). The fourth inequality uses
(15), and the final inequality uses Lemma A.5.

<

< 40HF(v) + (16)

Since £ is convex and decreasing, <1 ¢'(2)* = 2¢'(2)¢"(z) < 0, s0 £'(z)? is decreasing. By Markov’s inequality, this implies
Pyw, = < 0) =P ([¢'(yw, 2)]*> > £/(0)%) < [¢'(0)] 2E ([¢'(yw, 2)]?) .
Substituting this into (16), this implies that with probability at least 1 — §,
err)s (wy) < O(F(v)) + O(V?1og(1/68)/T).
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We note that the above proof works for an arbitrary initialization wq such that ||wg|| is bounded by an absolute constant with

high probability, e.g. with the random initialization wg N (0, 1,/d). The only difference is that we need to replace V2
with ||wg — v||* < O(V2) in (15) and the subsequent lines.

B. Soft Margin for Uniform Distribution

We show here that the soft margin function for the uniform distribution on the sphere has an unavoidable dimension
dependence. Consider z ~ D is uniform on the sphere in d dimensions. Then x has the same distribution as z/ || z||, where
z ~ N(0, I) is the d-dimensional Gaussian. The soft margin function on x thus satisfies, for ||v|| = 1,

6(1) = Pu(lvTal <9) = P, (Jo7 22/ |l2l° < *).

By symmetry, we can rotate the coordinate system so that v = (1,0, ... ), which results in ¢(~) taking the form

i=17%i

Z% 2 2\ 2 2d 2
P WS’Y :P((1_7)21 <7 Zi:2zi>
2

=P (Zf < 1 j ~2 Z?:2 222) > P(zf < 722?:221'2)-

Since 2 ZLQ 22 = O(~2d) with high probability by concentration of the x? distribution, and since P(|21| < a) = ©(a)
for the Gaussian, this shows that ¢(y) = Q(7v/d) when D, is uniform on the sphere. Thus our approach of using the soft
margin in Theorem 5.2 to derive generalization bounds will result in multiplicative terms attached to OPT that will grow
with d for such a distribution.

On the other hand, note that if we instead consider the uniform distribution on the sphere scaled by \V/d, then the same
argument about would yield

By concentration of the x?(d) distribution, 52?:2 22 = O((d — 1)/d) = ©(1) w.h.p. and thus we could use the
1-anti-concentration of the standard d dimensional Gaussian to get ¢(v) < O(y/72/(1 —~2)) = O(¥).

C. Proofs for Unbounded Distributions

In this section we prove Theorem 5.10.

C.1. Empirical Risk

First, we derive an analogue of Lemma E.1 that holds for any distribution satisfying E[||z|*] < B3 by appealing to online
stochastic gradient descent. Note that any distribution over R? with sub-Gaussian coordinates satisfies E[||9c||2] < B? for
some B € R.

. . iid.
We use the same notation from Section A, where we assume samples z; = (z,7;) '~ D fort = 1,...,T, and

Gt :=0o(z1,...,2), and denote

~

Fy(w) = f(yew " @), B[Fy(wp)|Gr] = F(wy) = E(ay)mpllyw/ z).
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The online stochastic gradient descent updates take the form
W1 = W — 'fIVﬁt(ﬂ)t)

Lemma C.1. Suppose Ep,_[|z?] < B%. Suppose that { is convex and L-Lipschitz. Let v € R and ¢, € (0,1) be
arbitrary, and consider any initialization wg € R<. Provided n < L_2B;(25 /2, then forany T € N,

1= l[wo — v]|?
= § EF <F 7o = Vil )
T pore ('LUt) — (1]) + T]T +E

Proof. The proof is very similar to that of the proof of Lemma A.2 described in Appendix C.1, so we describe here the main
modifications. The key difference comes from the gradient upper bound: for g; = ¢'(y;w,’ z;), instead of getting an upper
bound that holds a.s. in terms of the loss, we only show that its expectation is bounded by a constant:

Ellg:ll* 1Ge—1] < B (yewrze)? |2:]* 1G] < L*E[[l]|* G —1] < L* Bk
By convexity, (g;, w; — v) > ﬁt(wt) - F (v). Thus taking n = O(¢), we get

lwe — v)|* = El[lwesr — vl|* |Ge-1] > E2n(Fy(we) — Fo(v)) — 02 || gel|* 1G]
> 2n(F(w;) — F(v)) —n*L* B
> 2n(F(wy) — F(v) —¢).

Taking expectations with respect to the randomness of SGD and summing from 0 to 7' — 1, we get

1 = lwo — vl|?
— E EF <F o= 0 L.
T =0 (Wt) B (U) * nT Te

O

We note that the above analysis is quite loose and we are aware of a number of ways to achieve faster rates by introducing
various assumptions on ¢ and D,; we chose the presentation above for simplicity.

With the above result in hand, we can prove Theorem 5.10.

Proof. Consider sub-exponential distributions first. Let e; > 0. By taking n < L*2B;(251 /8and T = 2V277715171,
Lemma C.1 and Markov’s inequality, this implies that there exists some ¢ < 7" such that

Elerrd ! (wy)] < E[F(wy)] < Ye(o) | F(v) + 7‘7/; +e1/2< F(v) + 51}.
By Lemma 5.9, this implies that for any v > 0,
Elerr " (wy)] < 1/e(0) [ (14 Ch + LV Cp, log(Y/orT)) OPT + ¢(y) + £(Vy) + 61} .
For £5 > 0, by taking V = y~1/~1(e5), this means that for any v > 0, we have
Elerry ! (wy)] < Ye(0) [ (14 Cpy 4+ LCw ™ (22)7 " log(1/oPT)) OPT + ¢(7) + &1 + 62]

For V = ~"1"1(gy), we need T = 2y 25~ 1 10 (e2)]%.

For heavy-tailed distributions, the proof is essentially identical except now we use the heavy-tailed part of Lemma 5.9:
Elerrls (w)] < Ye)[6(y) + &1+ 22 + (1 + LE (227 JOPT + LCt " (e3)7 7 OPTT] .

The same choice of V' and T gives the result.
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D. Loss Functions and Sample Complexity for Separable Data

We present here the proof of Corollary 4.2.

Proof. Letv = V. By Theorem 4.1, for any ,6 > 0 and V' > 0, running gradient descent for T’ = 4[¢(0)]"1n=1V2s 7!
iterations guarantees that w = wp_; satisfies

Fy(w) < Fy(v) +£(0) - /3 + CVn~1/2
for some absolute constant C' > 0 depending only on L, Bx, and log(1/§). By Markov’s inequality, this implies

1

P(yw'z < 0) < LFg( ) < o)

0 (Fg(v) + @s + CVn_l/Q) . (17)

Since yT)Tx > v a.s., we have
Fy(v) = E(gy)~pl(yVo' z) < (V7).

If £ has polynomial tails, then by taking V' > v~ (6C,[£(0)]"*e~1)1/? we get Fy(v) < Co(7yV)7? < %. Substituting
this into (17), this implies
%

£
Plyw'z <0) < =+ ——r.
(yw'z <0) < 2+€(O)n1/2

(18)

. -2 _2_2 . . s -2 _1_3 . . 0—1
Thus, provided n = Q(y~2¢~ "~ ?), if we run gradient descent for T' = Q(y~“¢~ "~ # ) iterations, we have that err; ~ (w) <
E.
If £ has exponential tails, then by taking V > v~ [C;* log(6Col(0)e~1)]'/P we get Fy(v) <
this case as well. This shows that for exponential tails, taking n = Q(y~2¢2) and T = Q( - ‘1) suffices to achieve
ertl H(w) < e. O

E. Remaining Proofs

In this section we provide the proof of Theorem 4.1. We first will prove the following bound on the empirical risk.

Lemma E.1. Suppose that { is convex and H-smooth. Assume ||z|| < Bx a.s. Fix a step size n < (2/5)H'By?,
and let v € R be arbitrary. Then for any initialization wo, and for any € > 0, running gradient descent for T =
(4/3)e 1 |wg — v||* ensures that for all t < T, |jw , and

T-1
— 1 — —
Fy(wr-1) < T ; Fy(wy) < Fy(v) +¢

To prove this, we first introduce the following upper bound for the norm of the gradient.

Lemma E.2 (Shamir (2020), Proof of Lemma 3). Suppose that ¢ is H-smooth. Then for any p € (0 1), provided

n < 2pH B Fg(wt) is decreasing in t. Moreover, if T € N is arbitrary and u € R is such that Fg( ) < Fy(wr),
then for any t < T, we have the following gradient upper bound,

[V < Filw) ~ Falw)) (19)

1— (
n(l —p)
With this gradient upper bound, we can prove Lemma E.1.

Proof. Let € > 0 be fixed and let T' = ( / 3)5 n~!|Jwo — v||” be as in the statement of the lemma. We are done if
Fg(wT) < F g( ), so let us assume that F| p(’U) < F p(w ). We proceed by providing the appropriate lower bounds for

—~ — 2
Jwe = ol = fwess = oll* = 20 (Felwn),we = v) = 2 |[Fetw) |
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For any v € R%, by convexity of £,

— 1 &
<VF@(U)),’LU - U> = Zﬁl(yinﬂfi)(yinmi —yv' z;)

i=1

Y

LS ) — )

i=1
= Fy(w) - Fy(v), (20)
by convexity of £. On the other hand, since E(v) < E(wT), by Lemma E.2, for any ¢t < 7', (19) holds, i.e.

1
n(l—p)

Thus, for n < (2/5)H‘1B;(2, putting egs. (20) and (21) together yields

T (Bitw) - Fo(w)). e

—~ . 2
Jwn = oll* = s = ol* = 20 (VEe(we), we = v) = 02| VEa(wy)|

— — 1 — —
> 2n(F, —F) -7 ——= ( F, - F
> 20(Fywe) = Fo(o)) =+ =7y (Folw) ~ Fo(v)
3 /i~ —
=0 (Fotw)) - Faw)) .
Summing and teloscoping over ¢t < T,
T-1 2
IS = (4/3) wo —v||” _ =
— F, < F, - < F, .
T; v(wy) < Fo(v) + T < Fy(v) +e

By Lemma E.2, E(wt) is decreasing in ¢, and therefore

Folwr—q1) = gril%l Fy(w) < 71! ;Fé(wt)7

completing the proof. O

Lemma E.1 shows that throughout the trajectory of gradient descent, ||w;|| stays bounded by the norm of the reference
vector v. We can thus use Rademacher complexity bounds to prove Theorem 4.1.

Proof. By Lemma E.1, it suffices to show that the gap between the empirical and population surrogate risk is small. To do
so, we use a Rademacher complexity argument. Denote by G the function class

Gy ={z—w'z:|w| <3V}

Since ¢ is L-Lipschitz and £(0) < 1, it holds that £(yw'x) < 1+ 3LV < 4LV. We therefore use standard results in
Rademacher complexity (e.g. Theorem 26.12 of Shalev-Shwartz & Ben-David, 2014) to get that with probability at least
1 -9, forany w € Gy,

2BxVL 2log(2/6
2BxVL | gy [21082/0)
Vn n
Since the output of gradient descent satisfies ||[wr_1 — v|| < ||wo — v|| < 2V, we see that wr_1 € Gy. We can thus apply
the Rademacher complexity bound to both wp_; € Gy and v € Gy, proving the theorem. O

Fy(w) < Fo(w) +



