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Abstract

We consider a one-hidden-layer leaky ReLU net-
work of arbitrary width trained by stochastic gra-
dient descent (SGD) following an arbitrary ini-
tialization. We prove that SGD produces neural
networks that have classification accuracy com-
petitive with that of the best halfspace over the
distribution for a broad class of distributions that
includes log-concave isotropic and hard margin
distributions. Equivalently, such networks can
generalize when the data distribution is linearly
separable but corrupted with adversarial label
noise, despite the capacity to overfit. To the best
of our knowledge, this is the first work to show
that overparameterized neural networks trained
by SGD can generalize when the data is corrupted
with adversarial label noise.

1. Introduction
The remarkable ability of neural networks trained by
stochastic gradient descent (SGD) to generalize, even when
trained on data that has been substantially corrupted with
random noise, seems at ends with much of contemporary
statistical learning theory (Zhang et al., 2017). How can a
model class which is rich enough to fit randomly labeled
data fail to overfit when a significant amount of random
noise is introduced into the labels? And how is it that a local
optimization method like SGD is so successful at learning
such model classes, even when the optimization problem is
highly non-convex?

In this paper, we approach these questions by analyzing
the performance of SGD-trained networks on distributions
which can have substantial amounts of label noise. For a
distribution D over features (x, y) ∈ Rd × {±1}, let us
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define

OPT := min
v∈Rd, ‖v‖=1

P(x,y)∼D

(
y 6= sgn

(
〈v, x〉

))
(1)

as the optimal classification error achieved by a halfspace
〈v, ·〉. We prove that for a broad class of distributions, SGD-
trained one-hidden-layer neural networks achieve classifi-
cation error at most Õ(

√
OPT) in polynomial time. Equiv-

alently, one-hidden-layer neural networks can learn halfs-
paces up to risk Õ(

√
OPT) in the distribution-specific ag-

nostic PAC learning setting. Our result holds for neural
networks with leaky-ReLU activations trained on the cross-
entropy loss and, importantly, hold for any initialization,
and for networks of arbitrary width.

By comparing the generalization of the neural network with
that of the best linear classifier over the distribution, we can
make two different but equally important claims about the
training of overparameterized neural networks. The first
view is that SGD produces neural networks with classifi-
cation error that is competitive with that of the best linear
classifier over the distribution, and that this behavior can oc-
cur for neural networks of any width and any initialization.
In this view, our work provides theoretical support for the
hypothesis put forward by Nakkiran et al. (2019) that the
performance of SGD-trained networks in the early epochs
of training can be explained by that of a linear classifier.

The second view is that of the problem of learning half-
spaces in the presence of adversarial label noise. (Note
that adversarial label noise is distinct from the notions of
adversarial examples or adversarial training (Goodfellow
et al., 2014; Madry et al., 2018), where the features x are
perturbed rather than the labels y.) In this setting, one views
the (clean) data as initially coming from a linearly sepa-
rable distribution but for which each sample (x, y) ∼ D
has its label flipped y 7→ −y with some sample-dependent
probability p(x) ∈ [0, 1]. Then the best error achieved by
a halfspace is Ex∼Dx [p(x)] = OPT. Viewed from this per-
spective, our result shows that despite the clear capacity of
an overparameterized neural network to overfit to corrupted
labels, when trained by SGD, such networks can still gener-
alize (albeit achieving the suboptimal risk

√
OPT). We note

that the optimization algorithm we consider is vanilla on-
line SGD without any explicit regularization methods such
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as weight decay or dropout. This suggests that the ability
of neural networks to generalize in the presence of noise
is not solely due to explicit regularization, but that some
forms of implicit regularization induced by gradient-based
optimization play an important role.

1.1. Related Work

We discuss here a number of works related to the questions
of optimization and generalization in deep learning. An
approach that has attracted significant attention recently is
the neural tangent kernel (NTK) approximation (Jacot et al.,
2018). This approximation relies upon the fact that for a
specific initialization scheme, extremely wide neural net-
works are well-approximated by the behavior of the neural
network at initialization, which in the infinite width limit
produces a kernel (the NTK) (Du et al., 2019; 2018; Allen-
Zhu et al., 2019; Zou et al., 2019; Cao & Gu, 2020; Arora
et al., 2019a;b; Cao & Gu, 2019; Frei et al., 2019; Zou &
Gu, 2019; Ji & Telgarsky, 2020b; Chen et al., 2019). Using
an assumption on separability of the training data, it is com-
monly shown that SGD-trained neural networks in the NTK
regime can perfectly fit any training data. Under certain
conditions, one can also derive generalization bounds for
the performance of SGD-trained networks for distributions
that can be perfectly classified by functions related to the
NTK.

Although significant insights into the training dynamics of
SGD-trained networks have come from this approach, it
is known that neural networks deployed in practice can
traverse far enough from their initialization such that the
NTK approximation no longer holds (Fort et al., 2020). A
line of work known as the mean field approximation allows
for ultra-wide networks to be far from their initialization
by connecting the trajectory of the weights of the neural
network to the solution of an associated partial differential
equation (Mei et al., 2019; Chizat et al., 2019; Chen et al.,
2020). A separate line of work has sought to demonstrate
that the concept classes that can be learned by neural net-
works trained by gradient descent are a strict superset of
those that can be learned by the NTK (Allen-Zhu & Li,
2019; Wei et al., 2019; Li et al., 2019b; Woodworth et al.,
2020; Li et al., 2020a).

More relevant to our work is understanding the generaliza-
tion of neural network classifiers when the data distribution
has some form of label noise. Works that explicitly derive
generalization bounds for SGD-trained neural networks in
the presence of label noise are scarce. Even for the simple
concept class of halfspaces x 7→ sgn(〈v, x〉), there are often
tremendous difficulties in determining whether or not any
algorithm can efficiently learn in the presence of noise. For
this reason let us take a small detour to detail some of the
difficulties in learning halfspaces in the presence of noise,

to emphasize the difficulty of learning more complicated
function classes in the presence of noise.

The most general (and most difficult) noise class is that of
adversarial label noise, which is equivalent to the agnos-
tic PAC learning framework (Kearns et al., 1994). In this
setting, one makes no assumption on the relationship be-
tween the features and the labels, and so continuing with the
notation from (1), the optimal risk OPT achieved by a half-
space is strictly positive in general. It is known that learning
up to classification error O(OPT) + ε cannot be done in
poly(d, ε−1) time without assumptions on the marginal dis-
tribution ofD (Daniely, 2016). For this reason it is common
to assume some type of structure on the noise or the distri-
bution to get tractable guarantees.

One relaxation of the noise condition is known as the Mas-
sart noise (Massart et al., 2006) where one assumes that each
sample has its label flipped with some instance-dependent
probability p(x) ≤ p < 1/2. Under this noise model, it
was recently shown that there are efficient algorithms that
can learn up to risk p + ε (Diakonikolas et al., 2019). A
more simple noise setting is that of random classification
noise (RCN) (Angluin & Laird, 1988), where the labels
of each sample are flipped with probability p. Polynomial
time algorithms for learning under this model were first
shown by Blum et al. (1998). Previous theoretical works
on the ability of neural network classifiers to generalize
in the presence of label noise were restricted to the RCN
setting (Hu et al., 2020a) or Massart noise setting (Li et al.,
2019a). In this paper, we consider the most general setting
of adversarial label noise.

In terms of distribution-specific learning guarantees in the
presence of noise, polynomial time algorithms for learning
halfspaces under Massart noise for the uniform distribution
on the sphere were first shown by Awasthi et al. (2015),
and for log-concave isotropic distributions by Awasthi et al.
(2016). Awasthi et al. (2017) constructed a localization-
based algorithm that efficiently learns halfspaces up to risk
O(OPT) when the marginal is log-concave isotropic. For
more background on learning halfspaces in the presence of
noise, we refer the reader to Balcan & Haghtalab (2021).

Returning to the neural network literature, in light of
the above it should not be surprising that computational
tractability issues arise even for the case of neural networks
consisting of a single neuron. Goel et al. (2019) showed
that learning a single ReLU neuron up to the best-possible
risk OPTReLU (under the squared loss) is computationally
intractable, even when the marginal is a standard Gaus-
sian. By contrast, Frei et al. (2020) showed that gradient
descent on the empirical risk can learn single ReLUs up
to risk O(

√
OPTReLU) efficiently for many distributions.

Two recent works have shown that even in the realizable
setting—i.e., when the labels are generated by a neural net-



Generalization of Neural Networks in the Presence of Adversarial Label Noise

work without noise—it is computationally hard to learn one-
hidden-layer neural networks with (non-stochastic) gradient
descent when the marginal distribution is Gaussian (Goel
et al., 2020; Diakonikolas et al., 2020a).

In terms of results that show neural networks can general-
ize in the presence of noise, Li et al. (2019a) considered
clustered distributions with real-valued labels (using the
squared loss) and analyzed the performance of GD-trained
one-hidden-layer neural networks when a fraction of the la-
bels are switched. They derived guarantees for the empirical
risk but did not derive a generalization bound for the result-
ing classifier. Hu et al. (2020a) analyzed the performance
of regularized neural networks in the NTK regime when
trained on data with labels corrupted by RCN, and argued
that regularization was helpful for generalization. By con-
trast, our work shows that neural networks can generalize
for linearly separable distributions corrupted by adversarial
label noise without any explicit regularization, suggesting
that certain forms of implicit regularization in the choice
of the algorithm plays an important role. We note that a
number of researchers have sought to understand the im-
plicit bias of gradient descent (Soudry et al., 2018; Ji &
Telgarsky, 2019; Lyu & Li, 2020; Ji & Telgarsky, 2020a;
Moroshko et al., 2020; Li et al., 2020b). Such works assume
that the distribution is linearly separable by a large margin,
and characterize the solutions found by gradient descent (or
gradient flow) in terms of the maximum margin solution.

Finally, we note some recent works that connected the train-
ing dynamics of SGD-trained neural networks with linear
models. Brutzkus et al. (2018) showed that SGD-trained
one-hidden-layer leaky ReLU networks can generalize on
linearly separable data. Shamir (2018) compared the perfor-
mance of residual networks with those of linear predictors in
the regression setting. They showed that there exist weights
for residual networks with generalization performance com-
petitive with linear predictors, and they proved that SGD
is able to find those weights when there is a residual con-
nection from the input layer to the output layer. Nakkiran
et al. (2019) provided experimental evidence for the hypoth-
esis that much of the performance of SGD-trained neural
networks in the early epochs of training can be explained
by linear classifiers. Hu et al. (2020b) provided theoretical
evidence for this hypothesis by showing that overparam-
eterized neural networks with the NTK initialization and
scaling have similar dynamics to a linear predictor defined in
terms of the network’s NTK. Shah et al. (2020) showed that
neural networks are biased towards simple classifiers even
when more complex classifiers are capable of improving
generalization.

2. Problem Description and Results
In this section we study the problem we consider and our
main results.

2.1. Notation

For a vector v, we denote ‖v‖ as its Euclidean norm. For a
matrix W , we use ‖W‖F to denote its Frobenius norm. We
use the standard O(·) and Ω(·) notations to ignore universal
constants when describing growth rates of functions. The
notation Õ(·) and Ω̃(·) further ignores logarithmic factors.
We use a ∨ b to denote the maximum of a, b ∈ R, and a ∧ b
their minimum. The notation 1(E) denotes the indicator
function of the set E, which is one on the set and zero
outside of it.

2.2. Problem Setup

Consider a distribution D over (x, y) ∈ Rd × {±1} with
marginal distribution Dx over x. Let m ∈ N, and consider
a one-hidden-layer leaky ReLU network with m neurons,

fx(W ) :=

m∑
j=1

ajσ(〈wj , x〉), (2)

where σ(z) = max(αz, z) is the leaky-ReLU activation
with α ∈ (0, 1]. Assume that aj

i.i.d.∼ Unif(±a) for some
a > 0 and that the {aj} are randomly initialized and not
updated throughout training, as is commonly assumed in
theoretical analyses of SGD-trained neural networks (Du
et al., 2019; Arora et al., 2019b; Ji & Telgarsky, 2020b).1

We are interested in the classification error for the neural
network,

err(W ) := P(x,y)∼D

(
y 6= sgn

(
fx(W )

))
,

where sgn(z) = 1 if z > 0, sgn(0) = 0, and sgn(z) = −1
otherwise. We will seek to minimize err(W ) by minimiz-
ing,

L(W ) := E(x,y)∼D`(yfx(W )),

where ` is a convex loss function. We will use the fact
that for any convex, twice differentiable and decreasing
function `, the function −`′ is non-negative and decreasing,
and thus −`′ can also serve as a loss function. In particular,
by Markov’s inequality, these properties allow us to bound

1The specific choice of the initialization of the second layer
is immaterial; our analysis holds for any second-layer weights
that are fixed at a random initialization. The only difference that
may arise is in the sample complexity: if with high probability
‖a‖ = Θ(1) then the sample complexity requirement will be the
same within constant factors, while for initializations satisfying
‖a‖ = ω(1) or ‖a‖ = o(1) our upper bound for the sample
complexity will become worse as the network becomes larger.
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the classification error by the population risk under −`′:

P(x,y)∼D

(
y 6= sgn

(
fx(W )

))
= P

(
y · fx(W ) ≤ 0

)
= P

(
− `′

(
yfx(W )

)
≥ −`′(0)

)
≤

E(x,y)∼D − `′
(
yfx(W )

)
−`′(0)

(3)

Thus, provided −`′(0) > 0, upper bounds for the popula-
tion risk under −`′ yield guarantees for the classification
error. This property has previously been used to derive
generalization bounds for deep neural networks trained by
gradient descent (Cao & Gu, 2020; Frei et al., 2019; Ji &
Telgarsky, 2020b; Chen et al., 2019). To this end, we make
the following assumptions on the loss throughout this paper.

Assumption 2.1. The loss `(·) : R → R is convex,
twice differentiable, decreasing, 1-Lipschitz, and satisfies
−`′(0) > 0. Moreover, for z ≥ 1, ` satisfies −`′(z) ≤ 1/z.

The assumption that −`′(z) ≤ 1/z for z ≥ 1 is to ensure
that the surrogate loss −`′ is not too large on samples that
are classified correctly. Note that the standard loss used
for training neural networks in binary classification tasks—
the binary cross-entropy loss `(z) = log(1 + exp(−z))—
satisfies all of the conditions in Assumption 2.1. We denote
the population risk under the surrogate loss −`′ as follows,

E(W ) := E(x,y)∼D − `′(yfx(W )).

We seek to minimize the population risk by minimizing
the empirical risk induced by a set of i.i.d. examples
{(xt, yt)}t≥1 using the online stochastic gradient descent
algorithm. Denote ft(W ) = fxt

(W ) as the neural network
output for sample xt, and denote the loss under ` and −`′
for sample xt by

L̂t(W ) := `(ytft(W )), Êt(W ) := −`′(ytft(W )). (4)

The updates of online stochastic gradient descent are given
by

W (t+1) := W (t) − η∇L̂t(W (t)).

Before proceeding with our main theorem we will intro-
duce some of the definitions and assumptions which will
be used in our analysis. The first is that of sub-exponential
distributions.

Definition 2.2 (Sub-exponential distributions). We say Dx
is Cm-sub-exponential if every x ∼ Dx is a sub-exponential
random vector with sub-exponential norm at most Cm. In
particular, for any v̄ ∈ Rd with ‖v̄‖ = 1, PDx

(|v̄>x| ≥
t) ≤ exp(−t/Cm).

We note that every sub-Gaussian distribution is sub-
exponential. The next property we introduce is that of a

soft margin. This condition was recently utilized by Frei
et al. (2021) and Zou et al. (2021) for the agnostic learning
of halfspaces using convex surrogates for the zero-one loss.
Definition 2.3. Let v̄ ∈ Rd satisfy ‖v̄‖ = 1. We say v̄
satisfies the soft margin condition with respect to a function
φv̄ : R→ R if for all γ ∈ [0, 1], it holds that

Ex∼Dx

[
1
(
|v̄>x| ≤ γ

)]
≤ φv̄(γ).

The soft margin can be seen as a probabilistic analogue
of the standard hard margin, where we relax the typical
requirement for a margin-based condition from holding al-
most surely to holding with some controlled probability.
As written above, the soft margin condition can hold for a
specific vector v̄ ∈ Rd, and our final generalization bound
below will only care about the soft margin function for a
halfspace v̄ that achieves population risk OPT. However,
for many distributions, one can show that all unit norm vec-
tors v̄ satisfy a soft margin of the form φv̄(γ) = O(γ). One
important class of such distributions are those satisfying a
type of anti-concentration property.
Definition 2.4 (Anti-concentration). For v̄ ∈ Rd, denote by
pv̄(·) the marginal distribution of x ∼ Dx on the subspace
spanned by v̄. We say Dx satisfies U -anti-concentration if
there is some U > 0 such that for all unit norm v̄, pv̄(z) ≤
U for all z ∈ R.

Anti-concentration is a typical assumption used for deriving
distribution-specific agnostic PAC learning guarantees (Kli-
vans et al., 2009; Diakonikolas et al., 2020b;c; Frei et al.,
2021) as it allows for one to ignore pathological distribu-
tions where arbitrarily large probability mass can be con-
centrated in tiny regions of the domain. Below, we collect
some examples of soft margin function behavior for dif-
ferent distributions, including those satisfying the above
anti-concentration property. We shall see in Theorem 2.6
that the behavior of φ(γ) for γ � 1 will be the determining
factor in our generalization bound, and thus in the below
examples one only needs to pay attention to the behavior of
φ(γ) for γ sufficiently small.
Example 2.5. 1. If |v̄>x| > γ∗ a.s., then φv̄(γ) = 0 for

γ < γ∗.

2. If Dx satisfies U -anti-concentration, then for any v̄
with ‖v̄‖ = 1, φv̄(γ) ≤ 2Uγ holds.

3. If Dx is isotropic and log-concave (i.e. its probability
density function is log-concave), then Dx satisfies 1-
anti-concentration and hence φv̄(γ) ≤ 2γ for all v̄.

The proofs for the properties described in Example 2.5 can
be found in Frei et al. (2021, Section 3).

2.3. Main Results

With the above in place, we can provide our main result.



Generalization of Neural Networks in the Presence of Adversarial Label Noise

Theorem 2.6. Assume Dx is Cm-subexponential and there
exists BX > 0 such that E[‖x‖2] ≤ B2

X < ∞. Denote
OPT := min‖w‖=1 P(x,y)∼D(y〈w, x〉 < 0) as the best clas-
sification error achieved by a unit norm halfspace v∗. Let
m ∈ N be arbitrary, and consider a leaky-ReLU network of
the form (2) where a = 1/

√
m. Let W (0) be an arbitrary

initialization and denote G0 := ‖W (0)‖F . Let the step size
satisfy η ≤ B−2

X . Then for any γ > 0, by running online
SGD for T = O(η−1γ−2[φv∗(γ) + OPT]−2[1 ∨G0]) iter-
ations, there exists a point t∗ < T such that in expectation
over (x1, . . . , xT ) ∼ DT ,

P(x,y)∼D

(
y 6= sgn

(
fx(W (t∗))

))
≤ 2|`′(0)|−1α−1φv∗(γ)

+

[(
1 + γ−1Cm + γ−1Cm log(1/OPT)

)
OPT

]
.

To concretize the generalization bound in Theorem 2.6 we
need to analyze the properties of the soft margin function
φv∗ at the best halfspace and then optimize over the choice
of γ. But before doing so, let us make a few remarks on
Theorem 2.6 that hold in general. The sample complexity
(number of SGD iterations) T , and the resulting generaliza-
tion bound, are independent of the number of neurons m,
showing that the neural network can generalize despite the
capacity to overfit.2 If ‖x‖ ≤ BX a.s. for some absolute
constant BX , then the sample complexity is dimension-
independent, while if Dx is isotropic, E[‖x‖2] = d and so
the sample complexity is linear in d. Finally, we note that
large learning rates and arbitrary initializations are allowed.

In the remainder of the section, we will discuss the impli-
cations of Theorem 2.6 for common distributions. The first
distribution we consider is a hard margin distribution.

Corollary 2.7 (Hard margin distributions). Suppose there
exists some v∗ ∈ Rd, ‖v∗‖ = 1, and γ0 > 0 such that
P
(
y 6= sgn(〈v∗, x〉)

)
= OPT and |〈v∗, x〉| ≥ γ0 > 0

almost surely over Dx. Assume for simplicity that ` is the
binary cross-entropy loss, `(z) = log(1 + exp(−z)). Then
under the settings of Theorem 2.6, there exists some t∗ <
T = O(η−1γ−2

0 OPT−2[1 ∨G0]) such that in expectation
over (x1, . . . , xT ) ∼ DT ,

P(x,y)∼D

(
y 6= sgn

(
fx(W (t∗))

))
≤ Õ(γ−1

0 OPT).

The proof of Corollary 2.7 can be found in Appendix A and
follows from Theorem 2.6 γ = γ0 and using φv∗(γ0) = 0.

2Brutzkus et al. (2018, Theorem 7) showed that if there
are T samples and m = Ω(T/d), then for any set of labels
(y1, . . . , yT ) ∈ {±1}T and for almost every (x1, . . . , xT ) ∼ DTx ,
there exist hidden layer weights W ∗ and outer layer weights
~a ∈ Rm such that ft(W ∗) = yt for all t ∈ [T ]. In contrast,
Theorem 2.6 shows that when m is sufficiently large there exist
neural networks that can fit random labels of the data but SGD
training avoids these networks.

The above result shows that if the data comes from a lin-
early separable data distribution with margin γ0 but is then
corrupted by adversarial label noise, then SGD-trained net-
works will still find weights that can generalize with classifi-
cation error at most Õ(γ−1

0 OPT). In the next corollary we
show that for distributions satisfying U -anti-concentration
we get a generalization bound of the form Õ(

√
OPT).

Corollary 2.8 (Distributions satisfying anti-concentration).
Assume Dx satisfies U -anti-concentration. Assume for
simplicity that ` is the binary cross-entropy loss, `(z) =
log(1 + exp(−z)). Then under the settings of Theorem 2.6,
there exists some t∗ < T = O(η−1OPT−3[1 ∨ G0]) such
that in expectation over (x1, . . . , xT ) ∼ DT ,

P(x,y)∼D

(
y 6= sgn

(
fx(W (t∗))

))
≤ Õ(

√
OPT).

The proof of Corollary 2.8 can be foudn in Appendix A
and follows by taking γ = OPT1/2 in Theorem 2.6 and
using that φv(γ) = O(γ) for distributions satisfying U -anti-
concentration. The above corollary covers, for instance,
log-concave isotropic distributions like the Gaussian or the
uniform distribution over a convex set by Example 2.5.

Taken together, Corollaries 2.7 and 2.8 demonstrate that
despite the capacity for overparameterized neural networks
to overfit to the data, SGD-trained neural networks are fairly
robust to adversarial label noise. We emphasize that our
results hold for SGD-trained neural networks of arbitrary
width and following an arbitrary initialization, and that the
resulting generalization and sample complexity do not de-
pend on the number of neurons m. In particular, the above
phenomenon cannot be explained by the neural tangent ker-
nel approximation, which is highly dependent on assump-
tions about the initialization, learning rate, and number of
neurons.

2.4. Comparisons with Related Work

We now discuss how our result relates to others appear-
ing in the literature. First, Brutzkus et al. (2018) showed
that by running multiple-pass SGD on the hinge loss one
can learn linearly separable data. They assume a noiseless
(OPT = 0) model over a norm-bounded domain and as-
sume a hard margin distribution, so that y〈v∗, x〉 > γ0 for
some γ0 > 0. In the noiseless setting, Corollaries 2.7 and
2.8 generalize their result to include unbounded, linearly
separable (marginal) distributions without a hard margin
like log-concave isotropic distributions. More significantly,
our results hold in the adversarial label noise setting (a.k.a.,
agnostic PAC learning). This allows for us to compare the
generalization of an SGD-trained neural network with that
of the best linear classifier over the distribution, and make
a much more general claim about the dynamics of SGD-
trained neural networks.
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Hu et al. (2020b) showed that for sufficiently wide neural
networks with the NTK initialization scheme, and under
the assumption that the components of the input distribu-
tion are independent, the dynamics in the early stages of
SGD-training are closely related to that of a linear predictor
defined in terms of the NTK of the neural network. By
contrast, our result holds for any initialization and neural
networks of any width and covers a larger class of distri-
butions. Their result was for the squared loss, while ours
holds for the standard losses used for classification problems.
Our results can be understood as a claim about the ‘early
training dynamics’ of SGD, since we show that there exists
some iterate of SGD that performs almost as well as the
best linear classifier over the distribution, and we provide an
upper bound on the number of iterations required to reach
this point. One might expect that under more stringent as-
sumptions (on, say, the initialization, learning rate schedule,
and/or network architecture), stronger guarantees for the
classification error could hold in the later stages of training;
we will revisit this question with experimental results in
Section 4.

Li et al. (2019a) considered a handcrafted distribution con-
sisting of noisy clusters and showed that sufficiently wide
one-hidden-layer neural networks trained by GD on the
squared loss with the NTK initialization have favorable prop-
erties in the early training dynamics. A direct comparison
of our results is difficult as they do not provide a guarantee
for the generalization error of the resulting neural network.
But at a high level, their analysis focused on a noise model
akin to Massart noise (a more restrictive setting than the
agnostic noise considered in this paper), and they made a
number of assumptions—a particular (large) initialization,
sufficiently wide network, and the use of the squared loss
for classification—that were not used in this work. The re-
sults of Li et al. (2019a) covered general, smooth activation
functions (but not leaky-ReLU).

Hu et al. (2020a) showed that ultra-wide networks with
NTK scaling and initialization trained by SGD with vari-
ous forms of regularization can generalize when the labels
are corrupted with random classification noise. Their gen-
eralization bound was given in terms of the classification
error on the ‘clean’ data distribution (without any noise) and
allowed for general activation functions (including leaky-
ReLU). In comparison, we assume that the training data
and the test data come from the same distribution, and our
generalization bound is given in terms of the performance
of the best linear classifier over the distribution. Our gen-
eralization guarantee holds without any explicit forms of
regularization, suggesting that the mechanism responsible
for the lack of overfitting is not explicit regularization, but
forms of regularization that are implicit to the SGD algo-
rithm.

3. Proof Outline of the Main Results
We will show that stochastic gradient descent achieves small
classification error by using a proof technique similar to that
of Brutzkus et al. (2018), who showed the convergence and
generalization of gradient descent on the hinge loss for one-
hidden-layer leaky ReLU networks on linearly separable
data.3 Their proof relies upon the fact that both the classifi-
cation error and the hinge loss for the best halfspace are zero.
In our setting—without the assumption of linear separabil-
ity, and with more general loss functions—their strategy for
showing that the empirical risk can be driven to zero will not
work. (We remind the reader that our goal is to show that
the neural network will generalize when it is of arbitrary
width, and when significant noise is present, and thus we
cannot guarantee the smallest empirical or population loss
is arbitrarily close to zero.) Instead, we need to compare
the performance of the neural network with that of the best
linear classifier over the data, which will in general have
error (both classification and loss value) bounded away from
zero. To do so, we use some of the ideas used in Frei et al.
(2021) to derive generalization bounds for the classification
error when the surrogate loss is bounded away from zero.

To begin, let us introduce some notation. Let v∗ ∈ Rd be a
unit norm halfspace that minimizes the halfspace error, so
that

P(x,y)∼D

(
y 6= sgn

(
〈v∗, x〉

))
= OPT.

Denote the matrix V ∈ Rm×d as having rows v>j ∈ Rd
defined by

vj =
1√
m

sgn(aj)v
∗. (5)

The scaling of each row of the matrix V ensures that
‖V ‖F = 1. For γ > 0, denote

ξ̂t(γ) := 1(yt〈v∗, xt〉 ∈ [0, γ))

+ (1 + γ−1|〈v∗, xt〉|)1(yt〈v∗, xt〉 < 0).

The expected value of the above quantity will be an impor-
tant quantity in our proof. To give some idea of how this
quantity will fit in to our analysis, assume for the moment
that ‖x‖ ≤ 1 a.s. Then taking expectations of the above and
using Cauchy–Schwarz, we get

Eξ̂t(γ)

≤ φv∗(γ) + (1 + γ−1)E[|〈v∗, xt〉|1(yt〈v∗, xt〉 < 0)]

≤ φv∗(γ) + (1 + γ−1)OPT. (6)

The above appears (in a more general form) in the bound
for the classification error presented in Theorem 2.6. In par-
ticular, the goal below will be to show that the classification

3This proof technique can be viewed as an extension of the
Perceptron proof presented in Shalev-Shwartz & Ben-David (2014,
Theorem 9.1).
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error can be bounded by a constant multiple of E[ξ̂t(γ)].
Continuing, let us denote

Ĥt := 〈W (t), V 〉, Ĝ2
t = ‖W (t)‖2F . (7)

The quantity Ĥt measures the correlation between the
weights found by SGD and those of the best linear clas-
sifier over the distribution. We define the population-
level versions of each of the random variables above by
replacing the ·̂ with their expectation Esgd(·) over the
randomness of the draws (x1, . . . , xt) of the distribution
used for SGD. That is, we denote Lt := EsgdL̂t(W

(t)),
Et := EsgdÊt(W (t)), Ht := EsgdĤt, G2

t := Esgd[Ĝ2
t ], and

ξ(γ) := E(xt,yt)∼D ξ̂t(γ).

Our proof strategy will be to show that until gradient descent
finds weights with small risk, the correlation HT between
the weights found by SGD and those of the best linear
predictor will grow at least as fast as Ω(T ), whileGT always
grows at a rate of at most O(

√
T ). Since ‖V ‖F = 1, by

Cauchy–Schwarz we have the bound HT ≤ GT , and so the
growth rates HT = Ω(T ) and GT = O(

√
T ) can only be

satisfied for a small number of iterations. In particular, there
can only be a small number of iterations until SGD finds
weights with small risk.

To see how we might be able to show that the correlation
HT is increasing, note that we have the identity

Ĥt+1 − Ĥt = −η`′(ytft(W (t)))yt〈∇ft(W (t)), V 〉.

Since −`′ ≥ 0, the inequality Ĥt+1 > Ĥt holds if we can
show yt〈∇ft(W (t)), V 〉 > 0, i.e. if we can show that the
gradient of the neural network is correlated with the weights
of the best linear predictor. For this reason, the following
technical lemma is a key ingredient in our proof.

Lemma 3.1. For V defined in (5), for any (xt, yt) ∈ Rd ×
{±1}, for any W ∈ Rm×d, and any γ ∈ (0, 1),

yt〈∇ft(W ), V 〉 ≥ aγ
√
m
[
α− ξ̂t(γ)

]
. (8)

The proof of the above lemma is in Appendix B.1. As
alluded to above, with this technical lemma we can show
that until the surrogate risk is as small as a constant factor
of ξ(γ), the correlation of the weights found by SGD and
those of the best linear predictor is increasing.

Lemma 3.2. For any t ∈ N ∪ {0}, for any γ > 0, it holds
that

Ht+1 ≥ Ht + ηaγ
√
m
[
αEt − ξ(γ)

]
.

Proof. We can write

Ĥt+1 = Ĥt − η〈∇L̂t(W (t)), V 〉

= Ĥt − η`′(ytft(W (t)))yt〈∇ft(W (t)), V 〉

≥ Ĥt − η`′(ytft(W (t)))aγ
√
m[α− ξ̂t(γ)]

≥ Ĥt + ηaγ
√
m
[
αÊt(W (t))− ξ̂t(γ)

]
.

In the first inequality we have used Lemma 3.1 and that
−`′ ≥ 0, and in the second inequality we have used that
−`′ ≤ 1. Taking expectations over the draws of the distri-
bution on both sides completes the proof.

Notice that if αEt > ξ(γ), Lemma 3.2 shows that Ht+1 −
Ht > 0. We will later repeat this argument for T iterations
to show that until we find a point with αEt ≤ 2ξ(γ), HT

will grow at least as fast as Ω(T ).

All that remains is to show that GT = O(
√
T ). We will

accomplish this by first demonstrating a bound on G2
t+1 −

G2
t .

Lemma 3.3. For any t ∈ N∪{0}, η > 0, and if E[‖x‖2] ≤
B2
X ,

G2
t+1 ≤ G2

t + 2η + η2ma2B2
X .

The proof of Lemma 3.3 is provided in Appendix B. We
now have all of the ingredients needed to prove Theorem 2.6.
We provide a proof sketch below and leave the complete
proof for Appendix B.3.

Sketch of Proof of Theorem 2.6. For V defined as (5) (sat-
isfying ‖V ‖F = 1), we have by Cauchy–Schwarz,

H2
t = (E[〈W (t), V 〉])2 ≤ E‖W (t)‖2FE ‖V ‖

2
F = G2

t (9)

For a = 1/
√
m, and for η ≤ (ma2B2

X)−1 = B−2
X , Lemma

3.3 becomes

G2
t+1 ≤ G2

t + 2η + η2ma2B2
X ≤ G2

t + 3η.

Summing the above from t = 0, . . . , T − 1, we get

G2
T ≤ G2

0 + 3ηT. (10)

Similarly, Lemma 3.2 becomes Ht+1 ≥ Ht + ηγ[αEt − ξ].
(Note that ξ = ξ(γ) depends on γ, but we have dropped the
notation for simplicity.) Summing this from t = 0 to T − 1,
we get

HT ≥ H0 + ηγ

T−1∑
t=0

[αEt − ξ]. (11)

We can therefore bound

−G0 + ηγ

T−1∑
t=0

[αEt − ξ] ≤ H0 + ηγ

T−1∑
t=0

[αEt − ξ]

≤ HT ≤ GT
≤ G0 +

√
T · 2√η. (12)



Generalization of Neural Networks in the Presence of Adversarial Label Noise

The first inequality uses (9). The second inequality uses (11).
The third inequality again uses (9). The final inequality uses
(10) together with

√
a+ b ≤

√
a+
√
b.

We claim now that this implies that within a polynomial
number of samples, SGD finds weights satisfying Et ≤
2α−1ξ. Suppose that for every iteration t = 1, . . . , T , we
have Et > 2α−1ξ. Then (12) gives

ηαγξ · T − 2
√
η ·
√
T − 2G0 ≤ 0.

This is an equation of the form β2(
√
T )2 − β1

√
T − β0 ≤

0 where βi > 0, which can only be satisfied when T is
smaller than some polynomial function of the βi (see the
appendix for the exact details). In particular, within T =
O(η−1γ−2ξ−2[G0 ∨ 1]) iterations, gradient descent finds a
point satisfying

Et = Esgd

[
− `′

(
yfx(W (t))

)]
≤ 2α−1ξ. (13)

By Markov’s inequality (see (3)) this implies

P(yfx(W (t)) < 0) ≤ 2|`′(0)|−1α−1ξ.

To complete the proof, we want to bound ξ. Recall from the
calculation (6) that

ξ = φv∗(γ) + OPT + γ−1E
[
|〈v∗, x〉|1(y〈v∗, x〉 < 0)

]
.

For simplicity consider the case that ‖x‖ ≤ 1 a.s. (the
sub-exponential case follows using a truncation argument;
details given in Appendix B.3). Then by Cauchy–Schwarz,

E[|〈v∗, x〉|1(y〈v∗, x〉 < 0)] ≤ P(y〈v∗, x〉 < 0) = OPT.

Substituting the above into (13), we get

P(yfx(W (t)) < 0) ≤ 2|`′(0)|−1α−1φv∗(γ)

+ 2|`′(0)|−1α−1(1 + γ−1)OPT.

4. Experiments
In this section, we provide some experimental verification
of our theoretical results. We consider a distribution Db,γ0
that is a mixture of two 2D Gaussians perturbed by both
random classification noise and deterministic (adversarial)
label noise. The distribution is constructed as follows. We
first take two independent Gaussians with independent com-
ponents of unit variance and means (−3, 0) and (3, 0), and
assign the label −1 to the left cluster and +1 to the right
cluster. We remove all samples with first component x1

satisfying |x1| ≤ γ0 = 0.5, so that we have a hard margin
distribution with margin γ0. We then introduce a boundary
factor b > γ0, and for samples with first component sat-
isfying |x1| ≤ b we deterministically flip the label to the

opposite sign. Finally, for samples with |x1| > b, we intro-
duce random classification noise at level 10%, flipping the
labels in those regions with probability 0.1 each. The sym-
metry of the distribution implies that an optimal halfspace
is the vector v∗ = (1, 0).

The boundary factor b can be tweaked to incorporate more
deterministic label noise which will affect the best linear
classifier: if b is larger, OPT is larger as well. We give de-
tails on the precise relationship of b and OPT in Appendix C.
But because this ‘noise’ is deterministic, the best classifier
overDb,γ0 (the Bayes optimal classifier) can always achieve
accuracy of at least 90% by using the decision rule

yBayes =

{
+1, x1 ∈ (−b, 0) ∪ (b,∞),

−1, x1 ∈ (−∞, b] ∪ [0, b].
(14)

Since the error for the Bayes decision rule corresponds to
the region {|x1| > b} with random classification noise, we
can exactly calculate the error for the Bayes classifier as
well as OPT. As b increases, the region with random classi-
fication noise becomes smaller, and thus the Bayes classifier
gets better as the linear classifier becomes worse on Db,γ0 .
This makes Db,γ0 a good candidate for understanding the
performance of SGD-trained one-hidden-layer networks in
comparison to linear classifiers. Further, to our knowledge
no previous work has been able to show that neural networks
can provably generalize if the data distribution is Db,γ0 .4

Since Db,γ0 is a subexponential hard margin distribution,
Corollary 2.7 shows that we can expect an SGD-trained
leaky ReLU network on Db,0.5 to achieve a test set accu-
racy of at least 1− C · OPT log(1/OPT) for some constant
C ≥ 1. We ran experiments on such a neural network
with m = 1000 neurons and learning rate η = 0.01 and
first layer weights initialized as independent normal random
variables with variance 1/m (see Appendix C for more de-
tails on the experiment setup). In Figure 1a we plot the
decision boundary for the SGD-trained neural network on
the distribution D2.04,0.5, where b = 2.04 is chosen so that
OPT = 0.25. We notice that the decision boundary is al-
most exactly linear and is essentially the same as that of
the best linear classifier (x1, x2) 7→ sgn(x1). And in Fig-
ure 1b, we see that the neural network accuracy is almost
exactly equal to 1− OPT when OPT ≤ 0.30 and that the
network slightly outperforms the best linear classifier when
OPT > 0.30.

In Appendix C we conduct additional experiments to bet-
ter understand whether this behavior is consistent across
hyperparameter and architectural modifications to the net-

4There are two reasons that no other work can show generaliza-
tion bounds in the settings we consider. The first is the presence of
adversarial label noise. The second is that our generalization bound
holds for neural networks with finite width and any initialization.
All previous works fail to allow at least one of these conditions.
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Figure 1. (a) Samples from D2.04,0.5 with random classification noise of 10% on {|x1| > 2.04} with the boundary term b = 2.04 chosen
so that OPT = 0.25. Blue plus signs correspond to y = +1 and red circles to y = −1. The contour plot displays the class probability for
the output of a leaky ReLU network trained by online SGD and has dark hues when the neural network is more confident in its predictions.
(b) Test classification accuracy for data coming Db,0.5. The red dashed line is the accuracy of the best linear classifier, and the black solid
line is the average accuracy of the neural network with error bars over ten random initializations of the first layer weights (experimental
details can be found in Appendix C). The blue dash-dotted line is the Bayes optimal classifier accuracy.

work. When using the bias-free networks of the form (2)
we consider in this paper, we found that one-hidden-layer
SGD-trained networks failed to generalize better than a lin-
ear classifier when using tanh activations (Figure 3), using
different learning rates (Figure 4), different initialization
variances (Figure 5), and using multiple-pass SGD rather
than online SGD (Figure 6). On the other hand, we found
that introducing bias terms can lead to decision boundaries
closer to that of the Bayes-optimal classifier (Figure 7). In-
terestingly, this behavior was strongly dependent on the
initialization scheme used: when using an initialization vari-
ance of 1/m4, a linear decision boundary was consistently
learned, while using an initialization variance of 1/m lead
to approximately Bayes-optimal decision boundaries. By
contrast, the result we present in Theorem 2.6 holds for
arbitrary initialization schemes. This suggests that a new
analytical approach would be needed in order to guarantee
neural network generalization performance better than that
of a linear classifier on Dγ0,b.

5. Discussion
We have shown that overparameterized one-hidden-layer
networks can generalize almost as well as the best linear
classifier over the distribution for a broad class of distribu-
tions. Our results imply two related but distinct insights
on SGD-trained neural networks. First, regardless of the
initialization scheme and number of neurons, SGD train-
ing will produce neural networks that are competitive with
the best linear predictor over the data, providing theoreti-
cal support for the hypothesis presented by Nakkiran et al.
(2019) that the performance of SGD-trained networks in
the early stages of training can be explained by that of a

linear classifier. Second, a linearly separable dataset can be
corrupted by adversarial label noise and overparameterized
neural networks will still be able to generalize, despite the
capacity to overfit to the label noise.

A number of extensions and open questions remain. First,
our analysis was specific to one-hidden-layer networks with
the leaky-ReLU activation. We are interested in extending
our results to more general neural network architectures.
Second, a natural question is whether or not there are con-
cept classes that are more expressive than halfspaces for
which overparameterized neural networks can generalize
for noisy data. We are particularly keen on understanding
this question for finite width neural networks that are not
well-approximated by the NTK.
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A. Proof of Corollaries 2.7 and 2.8
Proof of Corollary 2.7. Since |〈v∗, x〉| ≥ γ0 > 0, the soft margin at v∗ satisfies φv∗(γ0) = 0. Since −`′(0) = 1/2, by
Theorem 2.6,

P(x,y)∼D

(
y 6= sgn

(
fx(W (t∗))

))
≤ 4α−1

(
1 + γ−1

0 Cm + γ−1
0 Cm log(1/OPT)

)
OPT.

Proof of Corollary 2.8. By Example 2.5, φv∗(γ) ≤ 2Uγ. Substituting this into Theorem 2.6 and using that −`′(0) = 1/2,
we get

P(x,y)∼D

(
y 6= sgn

(
fx(W (t∗))

))
≤ 4α−1

[
2Uγ + 3γ−1CmOPT log(1/OPT)

]
.

This bound is optimized when γ = OPT1/2, and results in a bound of the form O(OPT1/2 log(1/OPT)).

B. Proofs from Section 3
B.1. Proof of Lemma 3.1

In this section we will prove a stronger version of Lemma 3.1 that holds for any increasing activation.

Lemma B.1. Suppose that σ is non-decreasing. For V defined in (5), for any (x, y) ∈ Rd × {±1}, for any W ∈ Rm×d,
and any γ ∈ (0, 1):

y〈∇fx(W ), V 〉

≥ aγm−1/2
[
1− 1(y〈v∗, x〉 ∈ [0, γ))− (1 + γ−1)|〈v∗, x〉|1(y〈v∗, x〉 < 0)

] m∑
j=1

σ′(〈wj , x〉). (15)

For σ(z) = max(αz, z), we have
∑m
j=1 σ

′(〈wj , x〉) ∈ [αm,m], and hence the above implies Lemma 3.1:

y〈∇fx(W ), V 〉

≥ aγm−1/2
[
αm−m1(y〈v∗, x〉 ∈ [0, γ))−m(1 + γ−1)|〈v∗, x〉|1(y〈v∗, x〉 < 0)

]
= aγ

√
m
[
α− 1(y〈v∗, x〉 ∈ [0, γ))− (1 + γ−1)|〈v∗, x〉|1(y〈v∗, x〉 < 0)

]
.

Proof of Lemma B.1. By the definition of V (see (5)), we have

y〈∇fx(W ), V 〉 =

m∑
j=1

ajσ
′(〈wj , x〉)〈yvj , x〉

= am−1/2
m∑
j=1

σ′(〈wj , x〉)〈yv∗, x〉

= am−1/2
m∑
j=1

σ′(〈wj , x〉)〈yv∗, x〉
[
1(y〈v∗, x〉 ≥ γ) + 1(y〈v∗, x〉 ∈ [0, γ)) + 1(y〈v∗, x〉 < 0)

]
.

The second line uses that ajvj = |aj |v∗ = av∗. Continuing, we have
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y〈∇fx(W ), V 〉

≥ aγm−1/21(y〈v∗, x〉 ≥ γ) ·
m∑
j=1

σ′(〈wj , x〉)

+ am−1/2
m∑
j=1

σ′(〈wj , x〉)〈yv∗, x〉
[
1(y〈v∗, x〉 ∈ [0, γ)) + 1(y〈v∗, x〉 < 0)

]
≥ aγm−1/21(y〈v∗, x〉 ≥ γ) ·

m∑
j=1

σ′(〈wj , x〉) + am−1/2
m∑
j=1

σ′(〈wj , x〉)〈yv∗, x〉1(y〈v∗, x〉 < 0)

= aγm−1/2[1− 1(y〈v∗, x〉 ∈ [0, γ))− 1(y〈v∗, x〉 < 0)]

m∑
j=1

σ′(〈wj , x〉)

+ am−1/2
m∑
j=1

σ′(〈wj , x〉)〈yv∗, x〉1(y〈v∗, x〉 < 0)

≥ aγm−1/2[1− 1(y〈v∗, x〉 ∈ [0, γ))− 1(y〈v∗, x〉 < 0)]

m∑
j=1

σ′(〈wj , x〉)

− am−1/2|〈v∗, x〉|1(y〈v∗, x〉 < 0)

m∑
j=1

σ′(〈wj , x〉)

= am−1/2
[
γ − γ1(y〈v∗, x〉 ∈ [0, γ))− (γ + 1)|〈v∗, x〉|1(y〈v∗, x〉 < 0)

] m∑
j=1

σ′(〈wj , x〉).

The first and second inequalities use that σ′(z) ≥ 0 and that a > 0. The third inequality uses that x ≥ −|x|. This proves
(15).

B.2. Proof of Lemma 3.3

Proof of Lemma 3.3. We begin with the identity

Ĝ2
t+1 =

∥∥∥W (t) − η∇L̂t(W (t))
∥∥∥2

F
=
∥∥∥W (t)

∥∥∥2

F
− 2η

〈
W (t),∇L̂t(W (t))

〉
+ η2

∥∥∥∇L̂t(W (t))
∥∥∥2

F
. (16)

We proceed by analyzing the last two terms. We have

〈W (t),∇L̂t(W (t))〉 = `′(ytft(W
(t)))yt〈W (t),∇fxt

(W (t))〉

= `′(ytft(W
(t)))yt

m∑
j=1

ajσ
′(〈w(t)

j , xt〉)〈w(t)
j , xt〉

= `′(ytft(W
(t)))yt

m∑
j=1

ajσ(〈w(t)
j , xt〉)

= `′(ytft(W
(t)))ytft(W

(t))).

The third equality uses that σ is homogeneous, so σ′(z)z = σ(z). We can therefore bound

− 2η
〈
W (t),∇L̂t(W (t))

〉
= −2η`′(ytft(W

(t)))ytft(W
(t)) ≤ 2η. (17)

To see that the inequality holds, note that −`′(z) · z ≤ 1 if z ≤ 1 since −`′(z) ∈ [0, 1], and if z ≥ 1 then −`′(z) ≤ 1/z by
Assumption 2.1. For the gradient norm term, if we denote ~a ∈ Rm as the vector with j-th entry aj and ΣWt ∈ Rm×m as the
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diagonal matrix with j-th diagonal entry σ′(〈wj , xt〉), then∥∥∥∇L̂t(W )
∥∥∥2

F
=
∥∥`′(ytft(W ))ΣWt ~ax

>
t

∥∥2

F

= `′(ytft(W ))2
∥∥ΣWt ~a

∥∥2

2
‖xt‖2

≤ ma2 ‖xt‖2 . (18)

The second equation uses that
∥∥bd>∥∥

F
= ‖b‖2 ‖d‖2 for vectors b, d. The inequality uses that |`′| ∈ [0, 1].

Substituting (17) and (18) into (16), we get

Ĝ2
t+1 ≤ Ĝ2

t + 2η +ma2η2 ‖xt‖2 .

Taking expectations of both sides over the draws of the distribution we get

G2
t+1 ≤ G2

t + 2η +ma2η2B2
X ,

where we have used that E[‖x‖2] ≤ B2
X .

B.3. Proof of Theorem 2.6

Proof of Theorem 2.6. First, let us note that for V defined as (5) (satisfying ‖V ‖F = 1), we have by Cauchy–Schwarz,

H2
t = (E[〈W (t), V 〉])2 ≤ E‖W (t)‖2FE ‖V ‖

2
F = G2

t ⇐⇒ |Ht| ≤ Gt. (19)

For a = 1/
√
m, and for η ≤ (ma2B2

X)−1 = B−2
X , Lemma 3.3 becomes

G2
t+1 ≤ G2

t + 2η + η2ma2B2
X ≤ G2

t + 3η.

Summing the above from t = 0, . . . , T − 1, we get

G2
T ≤ G2

0 + 3ηT. (20)

Similarly, Lemma 3.2 becomes
Ht+1 ≥ Ht + ηγ[αEt − ξ].

(Note that ξ = ξ(γ) depends on γ, but we have dropped the notation for simplicity.) Summing the above, we get

HT ≥ H0 + ηγ
T−1∑
t=0

[αEt − ξ]. (21)

We can therefore bound

−G0 + ηγ

T−1∑
t=0

[αEt − ξ] ≤ H0 + ηγ

T−1∑
t=0

[αEt − ξ]

≤ HT

≤ GT
≤ G0 +

√
T · 2√η. (22)

The first inequality uses (19). The second inequality uses (21). The third inequality again uses (19). The final inequality
uses (20) together with

√
a+ b ≤

√
a+
√
b.

We claim now that this implies that within a polynomial number of samples, SGD finds weights satisfying Et ≤ 2α−1ξ.
Suppose that for every iteration t = 1, . . . , T , we have Et > 2α−1ξ. Then (22) gives

ηαγξT ≤ 2G0 + 2
√
η ·
√
T ⇐⇒ ηαγξ · T − 2

√
η ·
√
T − 2G0 ≤ 0.
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This is an equation of the form β2x
2 − β1x − β0 ≤ 0, and thus using the quadratic formula, this implies

√
T ≤

(2β2)−1(−β1 +
√
β2

1 − 4β0β2). Squaring both sides and using a bit of algebra, this implies

T ≤ β−2
2 β2

1 + β
−3/2
2 β1β

1/2
0 + β−1

2 β0.

In particular, we have

T ≤ η−2α−2γ−2ξ−2 · 4η + η−3/2α−3/2γ−3/2ξ−3/2 · 2η1/2 ·G1/2
0 + η−1α−1ξ−1 · 2G0

≤ 4η−1α−2γ−2ξ−2(G0 ∨ 1).

That is, within T = O(η−1γ−2ξ−2[G0 ∨ 1]) iterations, gradient descent finds a point satisfying

Et = Esgd

[
− `′

(
yfx(W (t))

)]
≤ 2α−1ξ. (23)

By Markov’s inequality (see (3)) this implies

P(yfx(W (t)) < 0) ≤ 2|`′(0)|−1α−1ξ.

To complete the proof, we want to bound ξ. Recall from the calculation (6) that

ξ = ξ(γ) = φv∗(γ) + OPT + γ−1E
[
|〈v∗, x〉|1(y〈v∗, x〉 < 0)

]
.

Fix ρ > 0 to be chosen later. We can write

E[|〈v∗, x〉|1(y〈v∗, x〉 < 0)] = E[|v̄>x|1(yv̄>x ≤ 0, |v̄>x| > ρ)] + E[|v̄>x|1(yv̄>x ≤ 0, |v̄>x| ≤ ρ)]

≤ ρOPT +

∫ ∞
ρ

P(|v̄>x| > t)dt

≤ ρOPT +

∫ ∞
ρ

exp(−t/Cm)dt

= ρOPT + Cm exp(−ρ/Cm). (24)

The first inequality comes from Cauchy–Schwarz, the second from truncating, and the last from the definition of Cm-sub-
exponential. Taking ρ = Cm log(1/OPT) results in

E[|〈v∗, x〉|1(yv̄>x ≤ 0)] ≤ CmOPT log(1/OPT) + CmOPT.

Substituting the above into (23), we get

P(yfx(W (t)) < 0) ≤ 2|`′(0)|−1α−1
[
φv∗(γ) + (1 + γ−1Cm)OPT + γ−1CmOPT log(1/OPT)

]
.

C. Additional Experiments and Experiment Details
In this section, we give details on the experiments given in Section 4. Let us first describe how we calculate OPT for Db,γ0 .
To remind the reader, we begin by constructing Db,γ0 with a mixture of two independent Gaussians centered at (−3, 0) and
(3, 0) with independent unit variance components and then remove all data that has x1 component in the interval [−γ0, γ0].
We assign initial labels to be −1 if x1 < 0 and 1 if x1 > 0. For boundary factor b > γ0, the deterministic adversarial label
noise then assigns the label 1 if −b < x1 < −γ0, and assigns the label −1 if γ0 < x1 < b. The final labels are determined
by flipping labels for samples with |x1| > b with probability p each.

By construction, an optimal unit-norm halfspace classifier is given by the vector (1, 0), and this classifier is a hard-margin
classifier with margin γ0 > 0. The optimal halfspace classification error is given as the sum of two terms: (1) the random
classification noise for the region |x1| > b, and (2) the deterministic noise in the region |x1| < b. The error introduced from
the deterministic, adversarial noise is the proportion of 2D Gaussian that has x1 coordinate lying between 3− γ0 and 3− b,
conditioned on the fact that x1 is at most 3− γ0. We can directly calculate this as

errdet =
P(3− b < N(0, 1) ≤ 3− γ0)

P(N(0, 1) ≤ 3− γ0)
=

Φ(3− γ0)− Φ(3− b)
Φ(3− γ0)

,
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where Φ is the standard normal cumulative distribution function. Similarly, the error for the best linear classifier introduced
by the random classification noise at rate p is given by p times the proportion of a 2D Gaussian that has x1 coordinate
smaller than 3− b, conditioned on the x1 coordinate being at most 3− γ0. That is,

errrcn = p
P(N(0, 1) ≤ 3− b)
P(N(0, 1) ≤ 3− γ0)

= p
Φ(3− b)
Φ(3− γ0)

. (25)

The total error for the optimal linear classifier is then given by

OPT = errdet + errrcn

=
1

Φ(3− γ0)

(
Φ(3− γ0)− Φ(3− b) + pΦ(3− b)

)
=

1

Φ(3− γ0)

(
Φ(3− γ0)− (1− p)Φ(3− b)

)
.

Solving for the boundary term in terms of OPT results in

b = 3− Φ−1

(
1− OPT

1− p
Φ(3− γ0)

))
.

We then consider OPT in a grid and take the corresponding values of the boundary term b to produce a distribution with
hard margin γ0 = 0.5 where the best population risk achieved by a linear classifier is OPT. We note that the Bayes-optimal
classifier has decision rule given by (14) with the Bayes risk equal to errrcn.

The baseline neural network model we use, and the neural network used for Figure 1b, is as follows. We use a bias-free
one-hidden-layer network (2) with leaky ReLU activations (with α = 0.1) and m = 1000 neurons with outer layer fixed at
initialization with half of the aj equal to +1/

√
m and the other half equal to−1/

√
m. We initialize the hidden layer weights

independently with normal random variables with variance 1/m, so that G2
0 = ‖W (0)‖2F = O(1) with high probability

(ignoring d = 2 as a small constant). We use online SGD (i.e. batch size one with a new sample used at each iteration)
with T = 20,000 samples5 trained on the cross-entropy loss with fixed learning rate η = 0.01. We use a validation set
of size 10,000 and evaluate performance on the validation set every 100 SGD iterations, and we take the model with the
smallest validation error over the T samples and evaluate its performance on a fresh test set (sampled independently from
the training and validation sets) of 100,000 samples to produce the final test set accuracy. We then repeat this experiment ten
times for each level of OPT considered with the ten trials using different seeds for both the initialization of the first layer
weights and for the sequence of data observed in online SGD (i.e. for fixed data {xt}T1 , we use a permutation π : [T ]→ [T ]
to permute the data {xt}T1 7→ {xπ(t)}T1 ). We plot the average across the ten trials with error bars corresponding to one
standard deviation in Figure 1b; in all subsequent modifications to this baseline neural network model, we will always plot
the mean and error bars over the ten trials considered. We calculate the Bayes-optimal classification error by using the
boundary term corresponding to each value of OPT and plotting errrcn as the blue dash-dotted line in Figure 1b. Code for
our experiments is available on Github.6

In Figure 2, we show the decision boundary of the baseline neural network for OPT ∈ {0.1, 0.25, 0.40} for four independent
initializations of the first layer weights. For each level of OPT, the neural network classifier has a nearly linear decision
boundary.

In Figure 3, we modify the baseline neural network by having tanh activations instead of leaky ReLU. Although tanh is
highly nonlinear, the performance of tanh networks is essentially the same as the leaky ReLU network, and the decision
boundaries are approximately linear even for large OPT.

In Figure 4, we consider variations of the learning rate from the baseline η = 0.01 to η ∈ {0.1, 0.001}. Overall, the test
accuracy is essentially the same, albeit of smaller variance across initializations when the learning rate is smaller. When
the learning rate is smaller, the decision boundary is almost perfectly linear, even when OPT = 0.4. When η = 0.1, the
decision boundary changes significantly for different initializations of the first layer weights, resulting in a higher variance
for the test accuracy, but the decision boundary is still a rough perturbation of the best linear classifier decision boundary.

5In ablation studies with T = 100,000 samples, we observed no discernible difference in the classification accuracy, unless otherwise
stated.

6https://github.com/spencerfrei/nn generalization agnostic noise

https://github.com/spencerfrei/nn_generalization_agnostic_noise
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Figure 2. Decision boundary of an SGD-trained neural network on Db,γ0 , where b is chosen so that OPT ∈ {0.1, 0.25, 0.40}, across four
different random initializations. The decision boundary is the line where the region changes from light red to light blue, and the dark
regions are areas where the neural network classifier has the highest confidence. Even in the presence of substantial, adversarial noise, the
decision boundary is close to linear.
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Figure 3. (a) Decision boundary for the same setup as the baseline neural network except with tanh activations. Columns correspond to
different random initializations. Compare with Figure 2. Even for nonlinear activations we still see an almost perfectly linear decision
boundary for OPT = 0.25. (b) Test classification accuracy. The performance of leaky ReLU and tanh networks are almost exactly the
same and match the performance of the best linear predictor until extreme levels of noise.

In Figure 5, we examine the effect of modifying the initialization of the first layer weights from the baseline variance of
1/m to Var(w

(0)
i,j ) ∈ {m−2, 1}. The overall accuracy is essentially the same across initialization variances. The decision

boundary becomes more smooth and linear when the variance is smaller. When the variance is larger, the decision boundary
is more disjointed and nonsmooth, but is still roughly a perturbation of the best linear classifier decision boundary.

In Figure 6, we consider the modification of using 100 epochs of multiple-pass SGD with batch size 32. All other
architectural and optimization hyperparameters from the baseline case are the same. We see that the decision boundary
and test accuracy has less variance across random initializations, which we interpret as being due to the averaging effect of
increasing the batch size from 1 to 32. The test classification accuracy is virtually indistinguishable from the online SGD
case.

In Figure 7, we consider two modifications to the neural network: (1) increasing the width from the baseline of m = 103

to m = 105, and (2) introducing trainable bias terms and training the second layer weights. The difference in (1) is
imperceptible and so we do not plot the decision boundary in this case. On the other hand, we observed that with trainable
biases and second layer weights, the neural network can come close to Bayes-optimal classifier accuracy provided the
initialization variance is chosen appropriately. In particular, with an initialization variance of 1/m, the network is able to
learn a nonlinear decision boundary, but with an initialization variance of 1/m4, the network only learns a linear decision
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boundary.7 We note that our result in Theorem 2.6 holds for any initialization, and thus these experiments suggest that
we would need to introduce new analyses in order to get generalization performance much better than a linear classifier.
Additionally, these experiments suggest that the ability of an SGD-trained network to generalize better than a linear classifier
on Dγ0,b is strongly dependent upon the initialization scheme used and the usage of bias terms.

As a final study on Db,γ0 , we consider a three-hidden-layer fully connected network of the form

x(1) = σ(W (1)x), x(l) = σ(W (l)x(l−1)), l = 2, 3, fx( ~W,~b) = a>x(3), (26)

where W (1) ∈ Rm×d, W (l) ∈ Rm×m for l = 2, 3, a ∈ Rm×1 are all trainable weights, and σ is again the leaky ReLU with
α = 0.1. In Figure 8, we plot the decision boundary and accuracy for this four layer network (with m = 100) with each
layer’s weights initialized with variance 1/m and the final layer weights initialized at ±1/

√
m and the same learning rate of

0.01. This network is able to learn a better partition of the input space and is able to generalize almost as well as the Bayes
optimal classifier, enjoying the same trend of increase in performance as OPT increases that holds for the Bayes optimal
classifier. This experiment suggests that although there is evidence that bias-free one-hidden-layer networks fail to learn
Db,γ0 up to an accuracy better than a linear classifier, bias-free networks with multiple hidden layers can.

We also conducted a series of experiments to emphasize that although it seems that bias-free SGD-trained one-hidden-layer
networks cannot learn Db,γ0 to an accuracy better than a linear classifier, there are simple distributions for which such
networks easily outperform linear predictors. We construct a distribution D̃b as follows. We introduce a boundary factor
b > 0 and sample an isotropic 2D Gaussian, and then assign the label +1 if x2 < b|x1|, and the label −1 otherwise. Every
(bias-free) halfspace for the marginal distribution of a 2D Gaussian partitions any circle centered at the origin into two
equal-sized halves. By symmetry of the isotropic Gaussian, this means the best halfspace will have error exactly equal to the
proportion of +1 lying in the region with 0 < x2 ≤ b|x1|. If we denote the angle corresponding to the region {x2 ≥ b|x1|}
where y = −1 as 2θ, then this means the error of the best linear classifier is given by OPT = π−2θ

2π = 1/2− θ/π (see Figure
9). The angle θ ∈ [0, π/2] is given by θ = arctan(1/b), and thus we can solve for OPT in terms of b. When b → 0, the
error for the best halfspace converges to 0, while as b→∞ we have OPT→ 1/2. The Bayes classifier achieves accuracy
100% with the decision rule yBayes = 1 if x2 < b|x1| and −1 otherwise.

The 2D Gaussian satisfies 1-anti-concentration and Corollary 2.8 guarantees that an SGD-trained neural network will achieve
a test set accuracy of at least 1− Ω̃(

√
OPT). We see in Figure 10 that the neural network performs quite a bit better than the

best linear classifier (and significantly better than 1−
√
OPT), with the decision boundary notably nonlinear and attuned

to the distribution of the data. In summary, one-hidden-layer bias-free leaky ReLU networks trained by SGD can learn
nonlinear decision boundaries, but apparently not the type of decision boundary necessary to outperform linear classifiers on
Db,γ0 .

7For the experiments involving trainable biases and second layer weights, we increased the sample size from T = 20,000 to T =
100,000 since the validation accuracy was still continuing to increase with T = 20,000 for the initialization variance of 1/m. This was
the only set of experiments where we noticed such behavior.
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Figure 4. (a) Test classification accuracy for learning rates η = 0.1 and η = 0.001 compared to baseline η = 0.01. Large learning rates
lead to a larger variance in performance. (b) Decision boundary for η = 0.001 is consistently linear. (c) Decision boundary for η = 0.1
varies over initializations but is roughly a perturbation of the linear classifier decision boundary.
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Figure 5. (a) Test classification accuracy for different values of the variance of the first layer weight initialization. The baseline neural
network has variance 1/m. (b) Decision boundary for the smaller variance 1/m2 is more consistently linear. (c) Decision boundary for
variance 1 has more variation across random initializations, but are roughly perturbations of the linear classifier decision boundary.
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Figure 6. (a) Test classification accuracy. The differences with online SGD are essentially indistinguishable. (b) Decision boundary when
using 100 epochs multiple-pass SGD of batch size 32. Columns correspond to different random initializations. The decision boundary is
more consistent across randomizations than the baseline online SGD algorithm.
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Figure 7. (a) Test classification accuracy when introducing bias terms and trainable second layer weights (pink and coral dashed lines) as
well as when increasing the width from m = 1,000 to m = 100,000 (green line). The pink dashed line uses an initialization variance
of 1/m while the coral dashed line uses an initialization variance of 1/m4. Note that the performance of a neural network with width
m = 1,000 and width m = 100,000 is imperceptible. With trainable bias and second layer weights, the accuracy of the network varies
significantly based on the initialization scheme. Note that our result (Theorem 2.6) holds for an arbitrary initialization. (b) Decision
boundary when using trainable biases and second layer weights with an initialization variance of 1/m4. The boundary is almost exactly
linear. (c) Same as (b) but using an initialization variance of 1/m. Here, the network can learn the appropriate nonlinear decision
boundary.
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Figure 8. (a) Decision boundary for four layer network given in (26). Columns correspond to different random initializations. Compare
with Figure 2. With four layers, the network is able to appropriately partition the input space and generalize well. (b) Test classification
accuracy using the four layer network. The four layer network accuracy is larger for OPT = 0.4 than it is for OPT = 0.15, a behavior
closer to that of the Bayes classifier.
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Figure 9. Calculation of the angle 2θ for the distribution D̃b corresponding to the region {x2 > b|x1|}.
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Figure 10. (a) Decision boundary for the same setup as the baseline neural network for data coming from D̃b for four random initializations
(across columns) and for OPT ∈ {0.08, 0.26, 0.40} (across rows). Compare with Figure 2. The decision boundaries are noticeably
nonlinear. (b) Test classification accuracy for data coming D̃b. Corollary 2.8 guarantees performance of at least 1− Ω(

√
OPT), but the

neural network performs significantly better due to the ability to produce a nonlinear decision boundary. Note that the variance over ten
initializations of the first layer weights are so small that the error bars are not visible.


