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A. Technical Appendix on HSIC and HSIC-Lasso
A.1. Measuring Dependence with HSIC

The main incentive to develop advanced techniques to describe dependence relations between two random variables X and
Y arises from the fact that the covariance

cov (X,Y ) = E [XY ]− E [X] E [Y ] ,

is designed for linear relationships only. If the dependence structure, however, is of non-linear nature, the covariance
can only partly capture the relationship between X and Y or completely fails to do so. Nevertheless, general, or rather
model-free, independence can be expressed in terms of the covariance as follows, cf. (Gretton et al., 2005b).

Proposition 11. The random variables X and Y are independent if and only if cov (f(X), g(Y )) = 0 for each pair (f, g)
of bounded, continuous functions.

There are two lines of thought leading to the Hilbert-Schmidt independence criterion: one presented by Gretton et al. (2005a)
regarding HSIC as the Hilbert-Schmidt norm of a cross-covariance operator and one thinking of HSIC as maximum mean
discrepancy on a product space according to Zhang et al. (2018). In this work, we follow the latter derivation and link it with
the first approach and Proposition 11 at the end.
First, we introduce the concept of reproducing kernel Hilbert spaces.

Definition 12. Let H be a Hilbert space of real-valued functions defined on D with scalar product 〈·, ·〉H. A function
k : D ×D → R is called a reproducing kernel ofH if

1. k(·, x) ∈ H ∀x ∈ D,
2. 〈f, k(·, x)〉H = f(x) ∀x ∈ D ∀f ∈ H.

IfH has a reproducing kernel, it is called a reproducing kernel Hilbert space (RKHS).

Remark 1. As an immediate consequence of the upper definition, we get

k(x, y) = 〈k(·, x), k(·, y)〉H ∀x, y ∈ D.

The following theorem, proved by Aronszajn (1950), provides sufficient conditions for a function k to be a reproducing
kernel.

Theorem 13 (Moore-Aronszajn). Let k : D ×D → R, be symmetric and positive definite, that is

n∑
i=1

n∑
j=1

aiajk(xi, xj) ≥ 0, ∀n ≥ 1 ∀a ∈ Rn ∀x ∈ Dn.

Then there is a unique RKHSHk with reproducing kernel k.

Against this backdrop, we may ask how properties of the kernel k translate into characteristics of Hk. The notion of a
universal kernel, introduced by Steinwart (2002), helps to shed light on this issue.

Definition 14. A continuous kernel k on a compact metric space (D, d) is called universal if Hk is dense in C(D), the
space of continuous functions on D, with respect to ‖·‖∞.
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It is shown that both the Gaussian and exponential kernel, defined by

k(x, y) = exp

(
−‖x− y‖

2
2

2σ2

)
, σ2 > 0, k(x, y) = exp

(
−‖x− y‖2

2σ

)
, σ > 0,

respectively, are universal.
Second, we introduce the particularly useful framework of embedding distributions into Hilbert spaces according to Smola
et al. (2007).
Definition 15. Let k be a bounded kernel on D and P a probability measure on D. The kernel embedding of P into the
RKHSHk is µk(P) ∈ Hk such that

E [f(X)] =

∫
D

f(x) dP(x) = 〈f, µk(P)〉Hk , X ∼ P, ∀f ∈ Hk.

Remark 2. Alternatively, µk(P) can be defined by

µk(P) =

∫
D

k(·, x) dP(x).

Definition 15 allows us to use Hilbert space theory on distributions which gives rise to the definition of maximum mean
discrepancy (MMD), see for example (Borgwardt et al., 2006) and (Gretton et al., 2012), which measures the distance
between probability measures.
Definition 16. Let k be a bounded kernel and P and Q probability measures on D. The maximum mean discrepancy (MMD)
between P and Q with respect to k is defined as

MMDk(P,Q) = ‖µk(P)− µk(Q)‖2Hk .

Lemma 17. In the setting of Definition 16, MMDk is a metric on probability measures if k is a universal kernel.

Proof. Theorem 1 of (Smola et al., 2007) states that P 7→ µk(P) is injective for universal k. Hence, any two different
measures have two distinct embeddings. The statement directly follows from the norm properties of ‖·‖Hk .

The maximum mean discrepancy can be used to test whether two given data samples stem from the same distribution. Since
our goal is to find a measure for the dependence between two random variables X and Y , we use MMD to compare the joint
distribution PX,Y and the product of the marginals PXPY .
To this end, consider any two kernels k and l on the domains DX and DY . It is easy to verify that K = k ⊗ l, given by

K
(
(x, y), (x′, y′)

)
= k(x, x′) l(y, y′), x, x′ ∈ DX , y, y

′ ∈ DY ,

is a valid kernel on the product space DX ×DY . Employing Remark 2, we can define a dependence measure between X
and Y based on RKHSs.
Definition 18. Let X and Y be random variables and k and l be bounded kernels on the domains DX and DY , respectively.
The Hilbert-Schmidt independence criterion HSICk,l(X,Y ) for X and Y based on the kernels k and l is given by

HSICk,l(X,Y ) = MMDk⊗l(PX,Y ,PXPY )

=
∥∥EXY [k(·, X)⊗ l(·, Y )]− EX[k(·, X)] EY [l(·, Y )]

∥∥2

Hk⊗l
. (1)

The name of HSIC stems from the point of view, held by Gretton et al. (2005a). The term within the norm in (1) can be
identified with the cross-covariance operator CXY : Hk → Hl for which

〈f, CXY g〉Hk = cov (f(X), g(Y )) ∀f ∈ Hk ∀g ∈ Hl (2)

holds. Consequently, HSIC is the squared Hilbert-Schmidt norm ‖CXY ‖2HS.
Coming full circle, we see that using universal kernels k and l, which causes k⊗ l to be universal as well, has two important
implications. First, Lemma 17 states that HSIC is indeed a valid metric to measure dependence between random variables.
Second, Definition 14 yields thatHk andHl are dense in C(DX) and C(DY ), respectively. Hence, (2) directly reflects the
characterisation of independence given in Proposition 11.
Moreover, it can be shown that Definition 4 and Definition 18 are equivalent; yet, the former is more convenient to develop
estimators.



Post-Selection Inference with HSIC-Lasso

A.2. HSIC-Estimation

Since the introduction of the Hilbert-Schmidt independence criterion several estimators have been proposed. We assume
that a data sample {(xj , yj)}nj=1 is given and that the kernels k and l are universal and w.l.o.g. bounded by 1. Gretton et al.
(2005a) proposed a simple estimator, which, however, exhibits a bias of order O(n−1), whereas Song et al. (2012) corrected
this unfavourable trait putting forward an unbiased estimator.

Definition 19. LetK and L be defined byKij = k(xi, xj) and Lij = l(xi, xj) for 1 ≤ i, j ≤ n and set K̃ = K−diag(K),
L̃ = L− diag(L) and Γ = Id− 1

n11T , where 1 ∈ Rn has one at every entry. The biased and unbiased HSIC-estimators
ĤSICb(X,Y ) and ĤSICu(X,Y ) are defined as

ĤSICb(X,Y ) =
1

(n− 1)2
tr(KΓLΓ),

ĤSICu(X,Y ) =
1

n(n− 3)

(
tr(K̃L̃) +

1T K̃1 1T L̃1

(n− 1)(n− 2)
− 2

n− 2
1T K̃L̃1

)
.

In order to develop and establish properties of estimators, it proves advantageous to use the theory of U-statistics (1948).
This broad class of estimators was pioneered by Hoeffding and provides a versatile framework to establish useful properties
for a multitude of estimators. We use the definition of (Lee, 1990).

Definition 20. Let X1, . . . , Xn be i.i.d. random variables, which take values in a measurable space (A,A) and share the
same distribution, and let h : Ak → R be a symmetric function. We denote Sn,k as the set of all k-subsets of {1, . . . , n}.
For n ≥ k,

Un =

(
n

k

)−1 ∑
(i1,...,ik)∈Sn,k

h(Xi1 , . . . , Xik)

is a U-statistic of degree k with kernel h.

Song et al. (2012) proved that ĤSICu indeed has an according representation.

Theorem 21. Using the notation of Definition 19, ĤSICu is a U-statistic of degree 4 with kernel

h(i, j, q, r) =
1

24

(i,j,q,r)∑
(s,t,u,v)

Kst(Lst + Luv − 2Lsu).

The sum is taken over all 24 quadruples (s, t, u, v) that can be selected without replacement from (i, j, q, r) and the notation
of h was reduced to only contain the indices.

A.3. Lasso Formulation of Normal Weighted HSIC-Lasso

We consider a normal weighted HSIC-Lasso selection with associated estimate

β̂ = argmin
β∈Rp+

−βTH +
1

2
βTMβ + λβTw, (3)

according to Definition 8.
Assuming that M is positive definite, we can reformulate (3) in terms of a Lasso-problem as follows

β̂ = argmin
β∈Rp+

1

2
‖Y − Uβ‖22 + λβTw.

U is determined by the Cholesky decompositionM = UTU and Y is the solution toH = UTY . This formulation facilitates
the computation of the estimate as there is a variety of efficient algorithms and software packages for Lasso problems
available. These are tailored to optimise expressions with a regularisation term and, therefore, yield sparse solutions.
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B. Hypothesis Testing
We assume that the response Y follows a normal distribution N (µ,Σ), where µ is unknown and Σ is given, and that the
selection event can be represented as a polyhedron, i.e. {Ŝ = S} = {AY ≤ b}. Furthermore, the quantity of interest can
be expressed as ηTSµ, but we drop the dependence on S in the following. Tibshirani et al. (2016) described how one- and
two-sided hypothesis testing and confidence interval calculation can be done in this setting. Suppose we want to test

H0 : ηTSµ = 0 against H1 : ηTSµ > 0.

Then the statistic
T1 = 1− F [V−(Z),V+(Z)]

0,ηTΣη
(ηTY )

is a valid p-value for H0 conditional on {AY ≤ b}. Further, defining δα for 0 ≤ α ≤ 1 such that

1− F [V−(Z),V+(Z)]

δα,ηTΣη
(ηTY ) = α

yields a valid one-sided confidence interval [δα,∞) conditional on {AY ≤ b}.
Likewise, we consider the two-sided hypothesis testing problem

H0 : ηTSµ = 0 against H1 : ηTSµ 6= 0

and use the statistic
T2 = 2 min

{
F

[V−(Z),V+(Z)]

0,ηTΣη
(ηTY ), 1− F [V−(Z),V+(Z)]

0,ηTΣη
(ηTY )

}
.

Again, T2 is a valid conditional p-value and defining δα/2 and δ1−α/2 such that

1− F [V−(Z),V+(Z)]

δα/2,ηTΣη
(ηTY ) = α/2,

1− F [V−(Z),V+(Z)]

δ1−α/2,ηTΣη
(ηTY ) = 1− α/2

yields a valid confidence interval [δα/2, δ1−α/2] conditional on {AY ≤ b}.

C. Proofs
C.1. Intermediary Results

This subsection collects technical results that will be used in the proofs of the following subsections. First, we state an
auxiliary lemma that corresponds to Lemma A in Section 4.3.3 of (Lee, 1990).
Lemma 22. Let the random variables Z1, . . . , ZN have a multinomial distribution Mult(m;N−1, . . . , N−1) and let
(ai)i∈N be a sequence having the properties limN→∞N−1

∑N
i=1 ai = 0 and limN→∞N−1

∑N
i=1 a

2
i = σ2. Then,

m−
1
2

N∑
i=1

ai(Zi −m/N)
D−→ N (0, σ2), as m,N →∞.

Korolyuk & Borovskikh presented a multidimensional version of the central limit theorem for U-statistics (1994).

Theorem 23. Let U (1)
n , . . . , U

(m)
n be U-statistics according to Definition 20 and let X(i)

1 , . . . , X
(i)
n , i ∈ {1, . . . ,m}, be the

corresponding i.i.d. random variables. The respective kernels, degrees and expectations are denoted by h(i), k(i) and θ(i).
We introduce the definitions

ψ(i)(x) := E
[
h(i)(x,X

(i)
2 , . . . , X

(i)

k(i)
)− θ(i)

]
, σ(i,j) := E

[
ψ(i)(X

(i)
1 ) ψ(j)(X

(j)
1 )
]
, i, j ∈ {1, . . . ,m}.

If σ(i,i) > 0 and E
[(
h(i)(X

(i)
1 , . . . , X

(i)

k(i)
)
)2]

<∞ hold for all i ∈ {1, . . . ,m}, then

√
n


(U

(1)
n − θ(1))/k(1)

...
(U

(m)
n − θ(m))/k(m)

 D−→ N (0,Σ), as n→∞,

where the elements of Σ are given by Σij = σ(i,j), i, j ∈ {1, . . . ,m}.
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C.2. Proof of Theorem 6

The statement for Hblock is a direct consequence of the multidimensional central limit theorem. The expression√
n/B

(
Hblock −H0

)
can be written as

√
n/B

 1

n/B

n/B∑
b=1


ĤSICu(Xb,(1), Y b)

...
ĤSICu(Xb,(p), Y b)

−
HSIC(X(1), Y )

...
HSIC(X(p), Y )


 .

The n/B random variables in the sum are independent and identically distributed due to the i.i.d. assumption and data
subdivision. Moreover, the involved estimators are unbiased and n/B →∞.

In order to prove the second statement of Theorem 6, we use an adaptation of the one-dimensional proof of
asymptotic normality for an incomplete U-statistics estimator using random subset selection, cf. Theorem 1 in Section
4.3.3 of (Lee, 1990). We prove multidimensional convergence with the Cramér-Wold device, see e.g. Theorem 11.2.3 of
(Lehmann & Romano, 2005). That is it suffices to show that

√
mνT

(
Hinc −H

)
converges to a one-dimensional Gaussian

distribution as m→∞ for any ν ∈ Rp.
We introduce the independent random vectors Z(j), j ∈ {1, . . . , p} and index their entries with Sn,4; hence, their elements
are {Z(j)

S : S ∈ Sn,4}. All of them follow a multinomial distribution Mult(m;N−1, . . . , N−1), where N =
(
n
4

)
. Hence,

we can write
m

1
2 νT

(
Hinc −H

)
= m−

1
2 νT

∑
S∈Sn,4

ZS
(
h(S)−H

)
, (4)

where the sum as well as the product within is to be understood componentwise, and Z = (Z(1), . . . , Z(p)) as well as h are
used in a vectorised way, slightly abusing notation. In order to derive the asymptotic distribution of (4), we consider its
characteristic function φn. In the following manipulations we drop the indices for the summation

∑
S∈Sn,4 , introduce the

notation X(j) = (X
(j)
1 , . . . , X

(j)
n ), j ∈ {1, . . . , p}, and Y accordingly, and denote the p-dimensional vector of (complete)

U-statistics by Un, that is the vector of unbiased HSIC-estimators. Then:

φn(t) = E
[
exp

(
itm−

1
2 νT

∑
ZS
(
h(S)−H

))]
= E

[
E
[
exp

(
itm−

1
2 νT

∑
ZS
(
h(S)−H

))∣∣∣X(1), . . . , X(p), Y
]]

= E

exp

(
itm

1
2

p∑
j=1

νj(U
(j)
n −Hj)

)
E

exp

(
itm−

1
2

p∑
j=1

νj
∑(

Z
(j)
S −

m

N

)(
hj(S)−Hj

))∣∣∣∣∣∣X(1), . . ., X(p), Y


= E

exp

(
itm

1
2

p∑
j=1

νj(U
(j)
n −Hj)

)
E
[
exp

(
itm−

1
2 νj

∑(
Z

(j)
S −

m

N

)(
hj(S)−Hj

))∣∣∣X(1), . . ., X(p), Y
] .

In the manipulations above we used the tower law of conditional expectation and the independence of the
Z

(j)
S , j ∈ {1, . . . , p}. Moreover, we inserted ±m(Un −H) = m/N

∑
(h(S)−H).

Having separated the randomness coming from the data and the subset selection, we treat the second factor in the product
above. Standard U-statistics theory implies that

lim
N→∞

N−1
∑

S∈Sn,4

(hj(S)−Hj) = 0 and lim
N→∞

N−1
∑

S∈Sn,4

(hj(S)−Hj)
2 = σ2

j

almost surely, where Song et al. (2012) stated a formula for σ2
j . Ergo, the requirements of Lemma 22 are fulfilled and

applying it together with the dominated convergence theorem yields

lim
n→∞

φn(t) = lim
n→∞

E
[
exp

(
itm

1
2

∑p

j=1
νj(U

(j)
n −Hj)

)] p∏
j=1

exp
(
− (σjνj)

2t2/2
)

= lim
n→∞

E
[
exp

(
it
√
m/nνT

√
n (Un −H)

)] p∏
j=1

exp
(
− (σjνj)

2t2/2
)
.
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Lim et al. (2020) pointed out that σ(i,i) = 0, according Theorem 23, holds for Y ⊥⊥ X(i), whereas σ(i,i) > 0 is true if the
response and the i-th covariate are dependent. Therefore, we define the index set I := {i : HSIC(X(i), Y ) > 0} and the
positive definite matrix Ξ by Ξij = 16σ(i,j), i, j ∈ I . Using Theorem 23 and Slutsky’s theorem, we arrive at

lim
n→∞

φn(t) = exp
(
− (
√
l νTI Ξ νI) t

2/2
) p∏
j=1

exp
(
− (σjνj)

2t2/2
)
.

The limit of φn is clearly a Gaussian characteristic function which proves asymptotic normality.

C.3. Proof of Theorem 9

We prove Theorem 9 in two steps: First, we establish (Hn,Mn, Σ̂n)|{AnHn ≤ bn} → (H,M,Σ)|{AH ≤ b} in
distribution; second, we apply the continuous mapping theorem (CMT), see for example Theorem 2.3 (i) in (van der Vaart,
1998), to the cdf of a truncated Gaussian. The ideas of this proof are heavily influenced by (Tibshirani et al., 2018).

Let S be a set of selected covariates and S̃ ⊆ S. In the following, we use the abbreviations ηn = ηS̃(Mn),
An = AS̃(Mn) and bn = bS̃(Mn). Applying Theorem 2.7 (v) of (van der Vaart, 1998), we get (Hn,Mn) → (H,M) in
distribution, where H has the law N (µ,Σ). Furthermore, due to the independence of Σ̂n from (Hn,Mn) we can easily
extend the convergence to (Hn,Mn, Σ̂n)→ (H,M,Σ). Ultimately, since A and b are almost surely continuous, the CMT
yields (Hn,Mn, Σ̂n, AnHn− bn)→ (H,M,Σ, AH − b) in distribution and we define Γn := (Hn,Mn, Σ̂n).
We arrange the components of Γn in a vector, fix an arbitrary x ∈ Rp+2p2 and analyse the asymptotics of the conditional
distribution (Γn|AnHn ≤ bn)

P
(
Γn ≤ x |AnHn− bn ≤ 0

)
=

P
(
Γn ≤ x,AnHn− bn ≤ 0

)
P
(
AnHn− bn ≤ 0

)
→

P
(
Γ ≤ x,AH − b ≤ 0

)
P
(
AH − b ≤ 0

) = P
(
Γ ≤ x |AH − b ≤ 0

)
, as n→∞.

This is true because both the numerator and denominator converge to the respective probabilities and the denominator is
bounded away from zero as the interior of {AH ≤ b} is not empty. Thus, we have shown that

(Hn,Mn, Σ̂n)|{AnHn ≤ bn}
D−→ (H,M,Σ)|{AH ≤ b}, as n→∞. (5)

In order to use this convergence result for

F
[V−(Zn),V+(Zn)]

ηTnµ,η
T
n Σ̂nηn

(ηTnHn)|{AnHn ≤ bn}, (6)

where Zn is defined according to Lemma 1, we have to verify that this expression is an a.s. continuous function of
(Hn,Mn, Σ̂n). The cdf of a truncated Gaussian random variable F [x4,x5]

x1,x2 (x3) has five arguments and is continuous, if
x4 < x5 holds.
In (6), we plug in ηTnµ, ηTn Σ̂nηn and ηTnHn for x1, x2 and x3, respectively, which are, by assumption, a.s. continuous with
respect to Γn. The truncation points V−(Zn) and V+(Zn) are the maximum and minimum of finite sets of continuous
functions. We denote these two sets G− and G+. Hence, all discontinuity points of V−(Zn) and V+(Zn) are contained in
E =

⋃p
j=1{eTj AnCn = 0}, i.e. the set of points where the functions contained in G− and/or G+ change. As a finite union

of lower-dimensional subspaces, E is a null set. Therefore, V−(Zn) and V+(Zn) are almost surely continuous functions of
Γn. Moreover, we deduce from the definition of the truncation points that

V−(Z) = V+(Z) ⇔ ηTH =
bj − (AZ)j

(AC)j
∀j ∈ J,

where J is defined as {j : (AC)j 6= 0}. Rearranging these equations, we arrive at {V−(Z) = V+(Z)} =
{(AH)j = bj ∀j ∈ J}. As a lower-dimensional subspace this set has measure zero and, consequently, V−(Z) < V+(Z)

holds almost surely. In summary, (6) depends on (Hn,Mn, Σ̂n) in an a.s. continuous fashion. Using (5), the CMT and
Theorem 3, we obtain

F
[V−(Zn),V+(Zn)]

ηTnµ,η
T
n Σ̂nηn

(ηTnHn)|{AnHn ≤ bn}
D−→ F

[V−(Z),V+(Z)]

ηTµ,ηTΣη
(ηTH)|{AH ≤ b} ∼ Unif (0, 1).
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C.4. Proof of Theorem 10

In order to characterise the selection event {Ŝ = S}, we assume w.l.o.g. that the first |S| covariates of {X1, . . . , Xp} were
included into the model. We rely on the Karush-Kuhn-Tucker (KKT) conditions, cf. Section 5.5.3 of (Boyd & Vandenberghe,
2004), that identify the solution of an optimisation problem by a set of equations and inequalities. Since the function to be
minimised is convex due to the positive definiteness ofM and Slater’s condition, cf. Section 5.2.3 of (Boyd & Vandenberghe,
2004), the KKT conditions provide an equivalent characterisation of the solution of the HSIC-Lasso problem. We obtain

0 = −H +Mβ̂ + λw − u,
βj ≥ 0, uj ≥ 0, βjuj = 0, ∀j ∈ {1, . . . , p}.

(7)

We partition the upper inequalities along S and Sc and get

β̂S = M−1
SS (HS − λwS), (8)

0 ≤ HSc + (Mβ̂)Sc − λwSc . (9)

These results translate into two set of inequalities. First, all entries of β̂ must be non-negative which implies

0 ≤M−1
SS (HS − λwS) ⇔ −λ−1

(
M−1
SS | 0

)
H ≤ −M−1

SS wS .

Second, Mβ̂ = MS β̂S holds by definition of Ŝ. Hence, we can plug (8) into (9) and obtain

0 ≤ HSc +MSSc
(
M−1
SS (HS − λwS)

)
− λwSc

⇔ − λ−1
(
MSScM

−1
SS | Id

)
H ≤ wSc −MSScM

−1
SS wS .

Both these set of inequalities describe the selection in an affine linear fashion. In this setting, we can use the polyhedral
lemma to compute the truncation points V− and V+.

For the selection event {j ∈ Ŝ}, we again use the KKT conditions (7). For any j ∈ S, uj equals zero and we
can express Hj as follows

Hj = eTj

(
Mβ̂ + λw

)
= eTj

(
Mβ̂−j + λw

)
+Mjj β̂j > eTj

(
Mβ̂−j + λw

)
,

where β̂−j denotes β̂ with the j-th entry set to zero. This estimation holds true as β̂j is positive by definition of Ŝ and
Mjj = eTjMej > 0 because M is positive definite. Rearranging the inequality, we obtain

−eTj H < − eTj Mβ̂−j− λwj .

Remark 3. Since the selection event {j ∈ Ŝ} is less complex than {Ŝ = S}, it is possible to directly derive the truncation
points without the need for the polyhedral lemma.
To this end, we decompose H into a component in direction of η and one perpendicular to η

H = (ηTH) · C + Z.

Again, we apply the KKT conditions (7) and obtain

0 = (ηTH) · C − Z +Mβ̂ + λw − u,

with u ∈ Rp+. Since j /∈ Ŝ ⇔ β̂j = 0 holds by definition of Ŝ, the inequality

0 ≤ eTj

[
(ηTH) · C − Z +Mβ̂−j + λw

]
, (10)

ensues for this case. Rearranging (10), we find

ηTH ≤ 1

eTj C

[
eTj Mβ̂−j − eTj Z + λwj

]
. (11)

Consequently, for the event {j ∈ Ŝ} the lower truncation point V−(Z) is the RHS of (11) and V+(Z) =∞.
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D. Pseudocode of the Algorithm
Along with the description of the algorithm in Section 3.3.4, we give a more detailed account on the different steps of our
PSI-procedure for HSIC-Lasso in the following.

Algorithm 1 Post-selection inference for HSIC-Lasso selection with HSIC- or partial target

Input: data (Xn,Yn); level α; inference target t; split ratio s; number of screened variables P ; screen-, M - and
H-estimators es, eM , eH
Output: significant variables Isig
(Xn,1,Yn,1), (Xn,2,Yn,2)← split((Xn,Yn), s)

{1st fold}
H(1) ← estimateH(Xn,1,Yn,1, es)
Isc ← screening(H(1), P )
M (1) ← estimateM (Xn,1

Isc
, es)

M̃ (1) ← positive-definite-approximation(M (1))

U1 ← cholesky(M̃ (1)); Y1 ← U−T1 H
(1)
Isc

λ← cross-validation(U1, Y1) {or AIC}
w ← weights(U1, Y1)

{2nd fold}
H(2) ← estimateH(Xn,2

Isc
,Yn,2

Isc
, eH)

M (2) ← estimateM (Xn,2
Isc
, eM )

M̃ (2) ← positive-definite-approximation(M (2))
Σ̂← estimateΣ(H(2))
U2 ← cholesky(M̃ (2)); Y2 ← U−T2 H(2)

β̂ ← lasso-opimisation(Y2, U2, λ, w)

S ← non-zero-indices(β̂)
Isig ← ∅
if t is partial target then

A← −λ−1

(
(M̃

(2)
SS )−1 | 0

M̃
(2)
ScS(M̃

(2)
SS )−1 | Id

)
; b←

(
−(M̃

(2)
SS )−1 wS

wSc − M̃ (2)
ScS(M̃

(2)
SS )−1 wS

)
end if
for all j ∈ S do

if t is HSIC-target then
η ← ej
C ← (ηT Σ̂η)−1Σ̂ η; Z ← (Id− CηT )H(2)

V−j ← (eTj C)−1
[
eTj M̃

(2)β̂−j − eTj Z + λwj

]
; V+

j ←∞
else if t is partial target then
η ← eTj ((M̃

(2)
SS )−1 | 0)

V−,V+ ← truncation-points(A, b, η, Σ̂)
end if
p← 1− F [V−,V+]

0,ηT Σ̂η
(ηTH)

if p ≤ α then
Isig ← Isig ∪ {j}

end if
end for
return Isig



Post-Selection Inference with HSIC-Lasso

E. Additional Experiment
We analyse the Communities and Crime datset from the UCI Repository, cf. (Dua & Graff, 2017), which was created by
(Redmond & Baveja, 2002) and combines socio-economic (1990), law enforcement (1990) and crime data (1995) from
1 994 different US communities.1 The authors provide 122 (numerical) features to predict the total number of violent crimes
per 100 000 inhabitants. Since the law enforcement data is complete for only 319 communities, we carry out two different
analyses: First, we examine the subset of 319 datapoints with complete features; then, we consider the whole dataset but
only use covariates without missing data. (Moreover, we delete one data point with a missing value in a feature that is not
part of the law enforcement data.)
We highlight that our approach does not target causal relationships; instead, it merely concerns the associations between a
feature and the absence or presence of violent crimes. Moreover, as we rely on the Hilbert-Schmidt independence criterion,
the existence of a relationship only but not its strength or direction is captured. Lastly, we emphasise that our analysis of the
dataset focuses on the characteristics of the proposed methods, rather than on drawing sociological conclusions. To the latter
end, a more in-depth analysis is necessary.
Since the number of covariates is manageable, we do not screen features but use 25 % and 20 % of the data, respectively,
to determine the regularisation parameter of the non-adaptive HSIC-Lasso via 10-fold cross-validation. We employ the
Gaussian kernel throughout as the data is continuous and use the unbiased HSIC-estimator for the matrix M . Both the block
and the incomplete estimators are examined, each with different sizes, the number of selected variables for Multi is set to
k = 10 and we use the confidence level α = 0.05.
We depict the findings of the two different analyses in Table 1 and 2, respectively. First, we notice that selection via
HSIC-Lasso effectively reduces the number of highly correlated features among the selected covariates compared to
HSIC-ordering. For instance, the latter chooses the features racePctBlack and racePctWhite, which describe the percentage
of the population which is African American and Caucasian, respectively, and are presumably highly correlated, for every
applied HSIC-estimator in both analyses. On the contrary, HSIC-Lasso almost always only selects racePctWhite. This
behaviour becomes even more evident when we consider the features pctFam2Par, pctKids2Par, pctYoungKids2Par and
pctTeen2Par which denote the percentage of two parent families with children and children, young children and teenagers in
family housing with two parents, respectively. Due to the strong association of these covariates, HSIC-ordering regularly
selects all four of them whereas HSIC-Lasso mostly chooses only one of them as they are highly dependent.
In both analyses, we notice that there is only moderate disagreement among the different HSIC-estimators in terms of the
selected features; though, it is more pronounced in the first analysis as the sample size is lower and the number of covariates
higher. Moreover, we observe that the incomplete HSIC-estimator, in particular with larger sizes, yields a higher number
of accepted covariates than the block estimator. We attribute this behaviour to the fact that the accuracy of the estimates
grows with the sizes l and B, respectively; however, we cannot choose the block size too large in order to preserve the
normality assumption whereas there exists no such restriction for the incomplete HSCI-estimator. For this reason, we argue
to particularly focus on the results in the I20 columns.
Furthermore, the Communities and Crime dataset highlights the utility of the partial target and thus the benefits of using
post-selection inference with HSIC-Lasso instead of HSIC-ordering. Contrary to the HSIC-target which only considers the
association between a feature and the outcome, the partial target adjusts for the dependence structure among all selected
covariates. In both analyses, this leads to a small set of accepted features that presumably are not dependent on each
other to a large degree. Hence, researchers obtain a clearer and more interpretable view on the data compared to using the
HSIC-target.
Lastly, we compare the findings of the two different analyses mostly focusing on the results of the partial target for the
incomplete HSIC-estimator with size l = 20. Some features like racePctWhite, pctKids2Par and pctIlleg, the percent of
children born to never married, are agreed upon by both studies. On the other hand, numStreet, the number of homeless
people counted in the street, PctVacantBoarded, the percentage of vacant housing that is boarded up, and PolicCars, the
number of police cars, are only found significant in the first analysis whereas pctWInvInc, the percentage of households with
investment/rent income in 1989, FemalePctDiv, the percentage of divorced females, PctHousLess3BR, the percentage of
housing units with less than 3 bedrooms, and LemasPctOfficDrugUn, the percentage of officers assigned to drug units, are
only signficant in the second analysis. This hints that there might be correlation between features and the presence/absence
of missing data stemming from the data collection and/or assimilation giving rise to the discrepancies between the two
analyses. Yet, a more in-depth analysis is necessary to dissolve this uncertainty.

1The sources of the dataset are (U. S. Department of Commerce, Bureau of the Census), (U.S. Department Of Commerce, Bureau Of
The Census Producer, Washington, DC & Inter-university Consortium for Political and Social Research Ann Arbor, Michigan, 1992),
(U.S. Department of Justice, Bureau of Justice Statistics, 1992) and (U.S. Department of Justice, Federal Bureau of Investigation, 1995).
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Table 1. Acceptance of the HSIC- and partial target for the subset of data points without missing values (n = 319, p = 122). We denote
the feature names according to their abbreviation in the UCI Repository and the column names describe the different HSIC estimators and
their sizes, e.g. I10 is the shorthand notation for the incomplete HSIC-estimator of size 10. Grey rectangles denote that a feature was
selected but rejected to be significant at level α = 0.05, whereas a black rectangle means acceptance and significance.

FEATURE PROPOSAL - PARTIAL PROPOSAL - HSIC MULTI - HSIC
B5 B10 I5 I10 I20 B5 B10 I5 I10 I20 B5 B10 I5 I10 I20

RACEPCTBLACK

RACEPCTWHITE

MEDINCOME

PCTWWAGE

PCTWFARMSELF

PCTWINVINC

PCTWPUBASST

PERCAPINC

BLACKPERCAP

INDIANPERCAP

NUMUNDERPOV

PCTPOPUNDERPOV

MALEPCTDIVORCE

FEMALEPCTDIV

TOTALPCTDIV

PCTFAM2PAR

PCTKIDS2PAR

PCTYOUNGKIDS2PAR

PCTTEEN2PAR

PCTWORKMOM

NUMILLEG

PCTILLEG

MEDNUMBR
HOUSVACANT

PCTVACANTBOARDED

MEDYRHOUSBUILT

RENTHIGHQ
NUMINSHELTERS

NUMSTREET

PCTBORNSAMESTATE

LEMASTOTALREQ

LEMASTOTREQPERPOP

POLICREQPEROFFIC

RACIALMATCHCOMMPOL

PCTPOLICWHITE

PCTPOLICBLACK

PCTPOLICHISP

PCTPOLICMINOR

NUMKINDSDRUGSSEIZ

POLICAVEOTWORKED

PCTUSEPUBTRANS

POLICCARS

LEMASPCTPOLICONPATR

LEMASGANGUNITDEPLOY

LEMASPCTOFFICDRUGUN
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Table 2. Acceptance of the HSIC- and partial target for the subset of data that only contains features without missing data (n = 1993, p =
100). We denote the feature names according to their abbreviation in the UCI Repository and the column names describe the different
HSIC estimators and their sizes, e.g. I10 is the shorthand notation for the incomplete HSIC-estimator of size 10. Grey rectangles denote
that a feature was selected but rejected to be significant at level α = 0.05, whereas a black rectangle means acceptance and significance.

FEATURE PROPOSAL - PARTIAL PROPOSAL - HSIC MULTI - HSIC
B5 B10 B20 I5 I10 I20 B5 B10 B20 I5 I10 I20 B5 B10 B20 I5 I10 I20

RACEPCTBLACK

RACEPCTWHITE

RACEPCTHISP

PCTWFARMSELF

PCTWINVINC

PCTWPUBASST

BLACKPERCAP

INDIANPERCAP

HISPPERCAP

PCTPOPUNDERPOV

PCTEMPLOY

PCTEMPLPROFSERV

FEMALEPCTDIV

PCTFAM2PAR

PCTKIDS2PAR

PCTYOUNG2PAR

PCTTEEN2PAR

PCTWORKMOM

PCTILLEG

PCTIMMIGREC5
PCTIMMIGREC10

PERSPERRENTOCCHOUS

PCTPERSOWNOCCUP

PCTPERSDENSEHOUS

PCTHOUSLESS3BR
MEDNUMBR
HOUSVACANT

PCTHOUSOCCUP

PCTVACANTBOARDED

PCTVACMORE6MOS

PCTHOUSNOPHONE

MEDRENTPCTHOUSINC

MEDOWNCOSTPCTINCNOMTG

NUMSTREET

PCTBORNSAMESTATE

PCTSAMEHOUSE85
PCTSAMECITY85

POPDENS

LEMASPCTOFFICDRUGUN
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