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Abstract

Variational data assimilation optimizes for an ini-
tial state of a dynamical system such that its evo-
lution fits observational data. The physical model
can subsequently be evolved into the future to
make predictions. This principle is a cornerstone
of large scale forecasting applications such as nu-
merical weather prediction. As such, it is imple-
mented in current operational systems of weather
forecasting agencies across the globe. However,
finding a good initial state poses a difficult opti-
mization problem in part due to the non-invertible
relationship between physical states and their cor-
responding observations. We learn a mapping
from observational data to physical states and
show how it can be used to improve optimizability.
We employ this mapping in two ways: to better
initialize the non-convex optimization problem,
and to reformulate the objective function in bet-
ter behaved physics space instead of observation
space. Our experimental results for the Lorenz96
model and a two-dimensional turbulent fluid flow
demonstrate that this procedure significantly im-
proves forecast quality for chaotic systems.

1. Introduction
Variational data assimilation provides the basis for numer-
ical weather prediction (ECMWF, 2019), integrating the
non-linear partial differential equations describing the atmo-
sphere. The core algorithm is an optimization problem for
the initial state of the system, such that when the equations
of motion are evolved over time, the resulting trajectories
are close to the measurements. Continuing to evolve the
physical system into the future then yields a forecast (Fig-
ure 1a). Over the last decades, these algorithms have led
to a steady improvement in forecast quality, though further
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Figure 1. Overview of the proposed method. (a) The principle
of variational data assimilation. The goal is to optimize for an
initial state (large blue dot) of a physical system such that the
evolution over an assimilation window (solid line) is close to
measurements (small gray dots). The model is subsequently used
to make predictions into the future (dashed line). (b) Improving
optimizability of variational data assimilation. We use a learned
inverse observation operator to better initialize the optimization
problem (red dots) and to transform the non-convex objective
function to be better behaved. (c) Data assimilation results of the
proposed method compared with a traditional algorithm. Depicted
is a vorticity prediction of a two-dimensional turbulent fluid flow.
The proposed method more accurately captures vorticity features
(yellow squares).

improvements are limited by computational resources. Data
assimilation accounts for a significant fraction of the compu-
tational cost for numerical weather prediction. This restricts
the amount of data that can be assimilated and only a small
volume of available satellite data is utilized for operational
forecasts (Bauer et al., 2015; Gustafsson et al., 2018).
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Weather forecasting systems are complex algorithmic
pipelines (Bauer et al., 2015). Recent work has shown that
in some cases forecasts can be improved by replacing the
entire system with a machine learned prediction (see, e.g.,
(Sønderby et al., 2020; Ham et al., 2019)). This approach is
very powerful, but physical models remain more accurate
for global weather forecasting (Rasp et al., 2020). More-
over, they offer guarantees of generalization, interpretability
and physical consistency because they are built upon well-
known physical principles. In fact, some of the best pure
machine learning approaches rely upon pre-training with
simulation data due to insuf�cient historical observations
(Rasp & Thuerey, 2020; Ham et al., 2019). Additionally,
physical modeling facilitates the principled coupling of pro-
cesses on different characteristic spatial and time scales, e.g.,
the atmosphere, ocean, and land surfaces, which is critical
for complex forecasting applications (Bauer et al., 2015).
Consequently, a more promising approach may be toaug-
mentphysical models with machine learning (Watt-Meyer
et al., 2021; Kochkov et al., 2021).

In this paper, we augment a traditional variational data as-
similation algorithm with machine learning. We use the
equations of motion to evolve the dynamical system, while
machine learning is used only to improve the optimization
problem for calculating the initial state. To this end, we
learn an approximate inverse to the observation operator.
Using this mapping, we provide an effective initialization
scheme for the non-convex optimization problem and trans-
form the objective function for the variational data assimila-
tion problem to be better behaved (Figure 1b). We generate
observational data from two model problems, a classical
model for data assimilation introduced by Lorenz (Lorenz,
1995), and a turbulent �uid �ow in two spatial dimensions.
We demonstrate that the algorithm enhanced with machine
learning leads to a substantial performance improvements
over the baseline. Figure 1c shows an example of an im-
proved forecast.

2. Related Work

Data assimilation is a suitable formalism for combining
physical modeling with machine learning since large scale
applications are characterized by rich physics and large
amounts of data. Both approaches can be viewed in the
framework of Bayesian inference (Geer, 2020). Machine
learning approaches to modify the physical model for data
assimilation include a learned correction to an approximate
model (Farchi et al., 2020; Brajard et al., 2020a), training a
machine learning model to completely emulate the physics
(Brajard et al., 2020b), and learning a forcing term within
the weak-constraint 4D-Var formulation (Bonavita & Laloy-
aux, 2020). In contrast, we use an exact physical model
and modify the representation of observations using ma-

chine learning. Mack et al. (2020) formulate variational
data assimilation in a latent space derived by training an
autoeconder. The dimensionality reduction allows for sig-
ni�cantly faster optimization. However, this approach loses
physical guarantees for decoded states.

Integration of dynamical systems is a central component
of data assimilation. However, simulating high-resolution
dynamics quickly becomes computationally intractable. To
ameliorate this issue, several recent works combine tradi-
tional numerical solvers with machine learning to obtain
high-resolution physics from coarser simulations. Mesh-
freeFlowNet (Jiang et al., 2020) continuously parameterizes
the spatial domain by learning an interpolation function for
each grid cell. Um et al. (2020) incorporate a correction op-
erator directly into the numerical solver and train this func-
tion to nudge an inaccurate solution towards a more accurate
one. The authors of (Bar-Sinai et al., 2019; Zhuang et al.,
2020) learn a discretization scheme for PDEs that better
captures the unresolved physics, leading to improvements
over ad hoc �nite difference discretization methods. Using
a fully differentiable computational �uid solver, Kochkov
et al. (2021) demonstrate that with this approach the grid
resolution can be reduced by an order of magnitude without
sacri�cing accuracy. Similarly, we use a fully differentiable
solver for our model systems and our approach may there-
fore be complemented by such ideas.

Variational data assimilation requires solving a dif�cult op-
timization problem. Our approach of improving optimiz-
ability of this problem with machine learning can be con-
textualized with other works that employ machine learning
to transform a physics constrained optimization problem.
In the context of simulating mechanical materials, Beatson
et al. (2020) approximate the inner problem of a bi-level
optimization problem by a learned function, thus crucially
reducing the the computation cost. To optimize photonic de-
vice designs, Kudyshev et al. (2021) train for a compressed
design space with an adversarial autoencoder. This space is
then explored using an evolutionary algorithm. Ackmann
et al. (2020) learn a preconditioner to improve the solu-
tion of a linear system arising during the integration of a
shallow-water model. As with our approach, the precondi-
tioned system does not suffer from generalization issues of
the machine learning model. We can guarantee a certain per-
formance level by defaulting to a classical method. Various
works improve optimization problems not with a compo-
nent learned from training data, but by reparameterizing
the objective function with a neural network architecture.
The neural network here acts as an overparameterization
with a speci�c inductive bias, e.g., convolutional neural net-
works for building hierarchical, multi-scale representations
(Hoyer et al., 2019; Ulyanov et al., 2018) or fully-connected
networks for continuous representations (Mildenhall et al.,
2020).
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3. Variational Data Assimilation

The state of the art variational data assimilation algorithm is
called 4D-Var (Bannister, 2017). It minimizes an objective
function of the form

J (x0) =( x0 � xb)T B � 1(x0 � xb)

+
TX

t =0

(H (x t ) � yt )T R � 1(H (x t ) � yt )

x t +1 = M (x t ): (1)

The goal is to produce a maximum likelihood estimate of the
initial statex0 of a trajectory(x1; : : : ; xT ) that is evolved
through a physics modelM , given a sequence of obser-
vations(y1; : : : ; yT ). The observation operatorH , maps
physical states into the space of observations. As an ex-
ample, the physics model could be the Navier Stokes equa-
tions for evolving a weather system, and the observation
operator could measure the state of the atmosphere at dis-
crete weather stations. The lossJ (x0) models the initial
condition and conditional distribution of observations as
a multi-variate normal distribution. The �rst term incor-
porates a guess for the initial statex0 (the so-called back-
ground statexb), whereB is the background covariance
matrix, representing the uncertainty about this assumption,
i.e., x0 � N (xb; B ). Similarly, the matrixR models the
observation error covariance, i.e.,yt � N (H(x t ); R ). The
simplifying assumption of Gaussian background and obser-
vation errors may suffer from model misspeci�cation when
applied to real-world data (Bocquet et al., 2010). Altogether,
this amounts to solving a non-linear least squares problem.
We denote the initialization of this optimization problem by
initial conditionand refer to aninitial stateto describe the
�rst statex0 of a physics trajectory.

4D-Var minimizes objective functions of the form(1)
via gradient based optimization. To forecast a trajectory
(x1; : : : ; xT 0), the objective(1) is minimized to estimatex0

over a �xed-length window of observations, the so-called
assimilation window, which is shifted in time. The fore-
cast state from a previous assimilation window becomes the
background state for the next assimilation window. Mini-
mizing (1) is a dif�cult optimization problem for various
reasons (Andersson et al., 2005): First, the physics model
M is in general non-linear or even chaotic, so that small
changes in the initial state can lead to large changes in an
integrated state. Secondly, the observation operatorH that
reduces information from physics trajectories to observa-
tions is usually non-invertible and possibly non-linear.

In what follows, we focus on the dif�culty posed by the
observation operatorH , and learn an approximate inverse to
H that maps the observational data to the space of physical
states. For simplicity, we focus our analysis on a �xed time
horizon without a shifting assimilation window. Moreover,

we neglect prior modeling of the initial state, so that we
omit the �rst term in (1). Finally, we neglect an explicit
observation noise model, i.e., we setR to be the identity
matrix. This amounts to studying the following simpli�ed
version of the 4D-Var model:

J (x0) =
TX

t =0

jjH (x t ) � yt jj2
2; x t +1 = M (x t ) (2)

The method presented in this paper is not restricted to this
setting, but equally applies to the general 4D-Var problem.
However, to study the effect of the observation operator
H on the optimization problem, additional aspects of the
problem are not necessary.

4. Learning an Inverse Observation Operator

To be precise, we distinguish the spaceP of physical states
or physics spaceand the spaceO of observations orobserva-
tion space. The observation operatorH : P ! O maps the
physics spaceP to the observation spaceO. The variational
data assimilation objective(2) is formulated in observation
space. However, the non-invertibility (and potential non-
linearity) of H makes minimizing this objective dif�cult.
The key idea of this paper is to parameterize an approximate
inverseh� : O ! P and to use machine learning to train
the parameters� . The training target is to map observations
to corresponding physical states, in our notation to obtain
h� (yt ) � x t . While in practice there is ample training
data from historical observations, in this work we revert to
simulations for generating training data.

In order to exploit both spatial and temporal correlations,
we construct a fully-convolutional architecture in space and
time. Fully-convolutional architectures are natural for sev-
eral reasons: they use local �lters and therefore enforce the
locality of the underlying equations of motion. Addition-
ally, the number of parameters in a convolutional layer does
not increase with input size. This is vital because typical
physics modelsM are discretized over large grids.

We implement our models for the approximate inverse in
JAX (Bradbury et al., 2018) and use Flax as neural network
library, with the Adam optimizer (Kingma & Ba, 2015) and
learning rate of10� 3 for training1. We also use JAX to im-
plement differentiable simulators for the physics modelM
that arises inside the objective function(2) (Kochkov et al.,
2021). Operational numerical weather prediction models
similarly make use of differentiable simulators, where they
are known as adjoint models. All models can be trained and
optimized on a single NVIDIA V100 GPU.

We use the trained inverse observation operator for two
aspects of the optimization problem. First, we map the

1https://github.com/googleinterns/
invobs-data-assimilation
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Figure 2.Variational data assimilation with a learned inverse ob-
servation operator. The learned inverse observation mapping is
denoted by red, hollow arrows. We approximately invert an ob-
servation trajectory and choose its �rst state as aninitialization of
the non-convex optimization problem. Thehybrid optimization
approach �rst minimizes(3) in physics space and subsequently
uses the optimization result to initialize re�nement minimization
of (2) in observation space.

earliest trajectory of observations to a trajectory in physics
space and then use its �rst state as an initialization to the
optimization problem. Secondly, we substitute(2) with a
reformulated objective function in physics space:

~J (x0) =
TX

t =0

jj x t � h� (yt )jj2
2; x t +1 = M (x t ) (3)

An overview of this method is depicted in Figure 2. The ob-
jective functions(2) and(3) are not equivalent, rather we use
(3) as a proxy for(2). As we will show in Section 5, mini-
mizing(3) is a more benign optimization problem compared
to minimizing(2). However, the caveat with minimizing(3)
is that we can only expecth� to be an approximation that
does not even guarantee to map to a physical state, i.e., a
state that one could encounter under the statistically station-
ary dynamics of the model. As a consequence, we adopt a
hybrid approach where we �rst minimize(3) and use the
optimization result to initialize minimizing(2) for further
re�nement.

5. Results

We demonstrate this approach on two chaotic dynamical sys-
tems, the Lorenz96 model (Lorenz, 1995) and Kolmogorov
�ow (Chandler & Kerswell, 2013). As our baseline, we
follow a common approach (Bannister, 2008) and assimilate
in observation space over a set of uncorrelated variables,
i.e., we minimize(2) after a whitening transformation to
� = C � 1=2x, whereC is the empirical covariance matrix

over a set of106 independent samples from the stationary
distribution of the respective dynamical systems. The em-
pirical covariance matrix might not be positive de�nite, an
issue that is often encountered in applications (Tabeart et al.,
2020). To ensure positive de�niteness, we threshold the
spectrum ofC at10� 6. To be precise, we solve

min
� 0

TX

t =0

jjH (C1=2� t ) � yt jj2
2; � t +1 = C � 1=2M (C1=2� t ) :

(4)

We use L-BFGS (Nocedal & Wright, 2006) as an optimizer
for assimilation, retaining a history of10 vectors for the
Hessian approximation. An optimization step in physics
and observation space incurs a comparable computational
cost, since the inverse observation operator is appliedprior
to optimization to modify the �tting targets.

We measure the quality of forecasts by anL 1 point-wise
error metric" between two statesz1; z2:

" (z1; z2) := kz1 � z2k1=
 ; (5)

where we scale this metric to arelativeerror by dividing
by a mean error
 of random independent states sampled
from the stationary distribution of the dynamical system.
This metric can be easily interpreted: an order unity error
implies the average performance of a random evolution of
the system. We compare the optimized forecasts with the
evolution from a ground truth initial state on a set of100
test trajectories.

5.1. Lorenz96 Model

The single-level Lorenz96 model (Lorenz, 1995) is a pe-
riodic, one-dimensional model where each grid point is
evolved according to the equation of motion

dX k

dt
= � X k � 1(X k � 2 � X k+1 ) � X k + F : (6)

Here, the �rst term models advection, the second term rep-
resents a linear damping, andF is an external forcing. We
choose a grid of sizeK = 40 and an external forcingF = 8 ,
parameters where the system is chaotic with a Lyapunov
time of approximately0:6 time units. For an observation
operator, we use subsampling. We integrate trajectories over
an assimilation window ofT = 10 time steps with a time
increment of� t = 0 :1 time units starting from an initial
condition in the statistically stationary regime, i.e., whereP

k X 2
k �uctuates around a constant mean value.

We now demonstrate how a learned inverse observation oper-
ator signi�cantly improves forecast results by providing an
effective initialization scheme for the non-convex optimiza-
tion problem and by formulating a more benign objective
function in physics spaceP instead of observation spaceO.
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LAYER (T, X, C)

INPUT (10, 10, 1)
CONV2D + BN + SILU (10, 10, 128)
UPSAMPLE+ CONV2D + BN + SILU (10, 20, 64)
UPSAMPLE+ CONV2D + BN + SILU (10, 40, 32)
CONV2D + BN + SILU (10, 40, 16)
CONV2D (10, 40, 1)

Table 1.Fully-convolutional network for training the inverse ob-
servation operator for the Lorenz96 model. The table shows a
layer with its respective output array dimensions time (T), space
(X), and channel (C). TheCONV2D layer applies periodic con-
volution in the space dimension and zero-padded convolution in
the time dimension. The �lter size for all convolutional layers is
(3; 3). BN denotes batch normalization. To upscale the grid by a
factor of2 in layers two and three, we use cubic interpolation. As
a non-linearity we use the sigmoid-weighted linear unit (SILU),
silu(x) = x=(1 + exp( � x)) .

As an observation operator for the following experiments,
we observe every4th grid point. To approximate the inverse
observation operator, we train a fully-convolutional network
as described in Table 1. We train on a dataset of32000
independent observation trajectories with batch size8 for
500epochs.

For data assimilation, we compare two initialization
schemes. The baselineaveraging initializationscheme ini-
tializes the optimizer with the observed grid points and uses
the average over a data set of independent states as an es-
timate of the unobserved grid points. This is equivalent
to a least-squares �t of the unobserved grid points. The
inverse initializationscheme uses the learned inverse ob-
servation operator to create the initialization. To this end,
we map a sequence of observations to a physical trajectory
and use its �rst state for initialization as depicted in Fig-
ure 2. Figure 3 shows a qualitative comparison of these
two initialization schemes, demonstrating that the learned
inverse mapping leads to a much more accurate initializa-
tion. We found that �rst optimizing for an initial condition
from a previous assimilation window, as in 4D-Var, does
not improve baseline initialization. We compare optimizing
in observation space (baseline) with the hybrid approach
of �rst optimizing in physics space and then re�ning the
results in observation space. For a fair comparison, both
optimization methods are limited to500optimization steps
with the hybrid method assigning100of these steps to op-
timization in physics space and the remaining400steps to
re�nement in observation space. The forecast results are
shown in Figure 4. Inverse initialization improves forecasts
for observation space optimization compared with average
initialization. For the inaccurate averaging initialization,
hybrid optimization signi�cantly improves forecast quality
compared with observation space optimization. This sug-

Figure 3.Comparison of initialization (solid red) with the ground
truth initial state (dashed blue). The observed grid points are
marked as yellow dots. The learned inverse observation mapping
takes a trajectory of such subsampled states as input and gener-
ates the inverse initialization. Inverse initialization is much more
accurate than averaging initialization.

Figure 4.Forecast quality with a learned inverse observation oper-
ator for the Lorenz96 model. Quality measure is theL 1 forecast
error relative to a random evolution of the system. Depicted is
the mean error based on a sample of100 trajectories. The vertical
dashed line separates the assimilation window from the forecast
window. Inverse initialization improves forecasts for observation
space optimization compared with average initialization. For the
inaccurate averaging initialization, hybrid optimization signi�-
cantly improves forecast quality compared with observation space
optimization. Adding inverse initialization to the hybrid optimiza-
tion approach leads to a small additional improvement, which is
signi�cant with a p-value ofp < 10� 4 .

gests that by �rst optimizing in physics space, we obtain
an initialization for re�nement in observation space that is
located at a favorable basin of attraction. Adding inverse
initialization to the hybrid optimization approach leads to a
small additional improvement.

Figure 5 shows an example forecast of the system. The
hybrid method initialized with the learned inverse mapping
is able to capture the ground truth evolution of the system.
In contrast, for the baseline method a visible approximation
error remains throughout the system integration.


