Abstract
Task-specific fine-tuning on pre-trained transformers has achieved performance breakthroughs in multiple NLP tasks. Yet, as both computation and parameter size grows linearly with the number of sub-tasks, it is increasingly difficult to adopt such methods to the real world due to unrealistic memory and computation overhead on computing devices. Previous works on fine-tuning focus on reducing the growing parameter size to save storage cost by parameter sharing. However, compared to storage, the constraint of computation is a more critical issue with the fine-tuning models in modern computing environments. In this work, we propose LeTS, a framework that leverages both computation and parameter sharing across multiple tasks. Compared to traditional fine-tuning, LeTS proposes a novel neural architecture that contains a fixed pre-trained transformer model, plus learnable additive components for sub-tasks. The learnable components reuse the intermediate activations in the fixed pre-trained model, decoupling computation dependency. Differentiable neural architecture search is used to determine a task-specific computation sharing scheme, and a novel early stage pruning is applied to additive components for sparsity to achieve parameter sharing. Extensive experiments show that with 1.4% of extra parameters per task, LeTS reduces the computation by 49.5% on GLUE benchmarks with only 0.2% accuracy loss compared to full fine-tuning.

1. Introduction
Fine-tuning from pre-trained transformers (Vaswani et al., 2017) has become the de-facto method for many NLP tasks,

Figure 2: (a) Zoom-in of a single self-attention layer. (b) An example searched model on BERT-base. $x_j^p$ can be reused by all the sub-tasks. (c) Traditional fine-tuning paradigm on the sub-tasks. (d) Baseline models, i.e., freezing bottom 6 layers / Appending 1 layer on top of the pre-trained model.

Recently, Adapter (Houlsby et al., 2019) considers the new tasks in the fashion of arriving in stream which is more scalable compared to MTL. It proposes to add a task-specific building block between each attention layer and freeze the other parameters during fine-tuning. Recent works propose a differentiable pruning method (Guo et al., 2020) that achieves better results than Adapter.

Unfortunately, all the aforementioned parameter-efficient efforts do not address computation bottleneck in multi-task inference, because tuning the bottom layers will influence the computation results in the downstream layers. As such, re-computation is required.

To mitigate both the computation and storage burdens in multi-task evaluation, we propose Learn-to-Share (LeTS), a new transfer-learning framework that exploits both computation- and parameter-sharing to reduce computation and storage demands, while keeping high performances on sub-tasks. The key contributions are as follows:

(i) We propose a new fine-tuning architecture design space (Figure 4). The output of each self-attention layer will be aggregated at the end using a pooling layer and a bidirectional LSTM (Huang et al., 2015) (Bi-LSTM) to obtain the final classification result. In this way, modifications on the bottom layers do not influence the downstream computation. This enables concurrent execution inside the transformer. Many computations can be bypassed when the Bi-LSTM uses the attentions that are already computed as input. Also, we identify that even more computations can be reduced through converting matrix-matrix multiplications to matrix-vector multiplications (Sec. 3.2).

(ii) We design a differentiable neural architecture search (NAS) algorithm to find an optimal fine-tuning architecture for a sub-task. Specifically, NAS selects the input to each attention layer and the final pooling layer. When a computed result is selected as the layers’ input, we can bypass many computations to achieve computation sharing. A new computation-aware loss function for our search space is proposed to search models that can reduce computation and preserve task accuracy.

(iii) We treat the obtained fine-tuning model weights as the sum of pre-trained weights and weight difference ($\delta$): $W_f = W^p + W^\delta$, and propose a novel early-stage pruning method to obtain $W^\delta$. A weight mask to represent pruning is generated for $W^\delta$ at the beginning of the fine-tuning. Rather than randomly initialized, $W^\delta$ is initialized with task-specific gradient accumulation to get a robust weight mask.

(iv) We systematically integrate (ii) and (iii) to produce fine-tuning models with high task performance and low computation and storage cost. During NAS, a generated mask from (ii) on the trainable parameters can better characterize the model performance. Also, during the online prototyping, when the input and output of a given linear layer is already
computed, the computation can be reduced into a sparse-matrix multiplication by leveraging the sparsity produced from (iii).

Our framework produces efficient fine-tuning language models for different computing environments. Extensive experiments show that LeTS reduces computation cost by a large margin while achieving a competitive sub-task accuracy. More specifically, for computing and storage restricted platforms, LeTS yields 49.5% computation reduction by adding only 1.4% extra parameters per task while preserving a high task accuracy of the fine-tuned BERT (Devlin et al., 2019) on GLUE benchmarks. For a computing environment with a low-cost storage budget, LeTS can achieve 40.2% computation reduction with no accuracy loss. Moreover, LeTS saves more computation per task with more sub-tasks. For BERTBASE, LeTS requires 7.2 GFLOPs\(^1\) for every newly added task compared to 22.5 GFLOPs of a fine-tuned BERTBASE.

LeTS is the first framework that considers both computation and storage efficiency in fine-tuning for multi-task NLP. Our work can be combined with model compression techniques (Lan et al., 2020; Sanh et al., 2019) to enable agile and efficient NLP evaluation.

2. Overview

In this section, we discuss the key design components in LeTS. The detailed design flow is shown in Algorithm 1.

**Motivation.** In a real-time multi-task evaluation, an input query is evaluated by many fine-tuned transformers at the same time. Each one focuses on one specific sub-task and some tasks may depend on the computation result from others. For instance, multiple tasks exist in document editing software (e.g., Google Doc or Microsoft Word), such as analyzing tone, checking grammar, and then generating editing suggestions. Yet, the traditional fine-tuning method is extremely inefficient as the required computation and parameters grow linearly to the number of sub-tasks, which incurs the degraded quality of service and user experience. In this work, we aim to yield speedup through computation reuse for multi-task evaluation. Different from previous works (Xin et al., 2020; Bapna et al., 2020) that bypass computation in real-time, LeTS can generate a guaranteed speedup that is not input-dependent.

**Limitation of traditional fine-tuning procedures.** We observe three limitations that hinge the parallelization and computation sharing in traditional fine-tuned procedures: (1) The computation of an attention layer can only start execution when all its previous layers yield the results. (2) Any modification of the bottom layers change the subsequent computation, thus re-computation is required. (3) Although previous parameter-sharing work (Guo et al., 2020) can make \( W^\delta \) sparse to reduce parameter growth in a sub-task, this sparsity cannot be exploited to reduce computation.

**LeTS design.** Motivated by these observations, we propose a novel fine-tuning architecture that can reduce computation by reusing computed results. Also, the new architecture decouples the data dependency of different layers to enable speedup.

Given input query \( x_{in} \) (Figure 2(b)), LeTS first caches all \( N \) attention layers’ output (\( x^f_j, j \in \{0, 1, \ldots, N - 1\} \)) computed from input query \( x_{in} \) and pre-trained model \( W^P \). For a given layer \( j \) in sub-task \( s \), the input to the trainable layer \( W^f_j \) can be chosen from cached result \( x^f_{j-1} \) or the computed result \( x^f_{j-1} \) from the previous trainable layer. The attention output to the pooling layer can be chosen from (i) \( x^p_j \) or (ii) \( x^f_j \). LeTS uses pooling and Bi-LSTM to aggregate the outputs from attention layers to generate the final result. For each trainable layer \( W^f_j \), we treat \( W^f_j \) as \( W^p_j + W^\delta_j \) and make \( W^\delta_j \) sparse using our proposed delta pruning algorithm.

We use an example architecture in Figure 2(b) to illustrate the advantages of the new architecture:

(i) **Bypass self-attention layers.** When the cached result \( x^p_j \) is used by the final pooling layer and next trainable layer, the computation and parameters of the entire layer can be saved. This can be applied at layer \( W^p_j \) where \( j \in \{0, 1, 2, 6\} \).

(ii) **Exploit the sparsity of \( W^\delta \).** LeTS can leverage the sparsity feature of \( W^\delta \). More specifically, when the input to the trainable attention layer is \( x^p_{j-1} \), LeTS computes \( x^p_{j-1} \cdot W^\delta_j \) and adds it to a cached result. In Figure 2(b), when \( j \in \{3, 4, 5, 7, 9\} \), the computation between \( x^p_{j-1} \) and \( W^f_j \) can be reduced through exploiting this unstructured sparsity. Note that this sparse matrix multiplication can be easily implemented under many popular machine learning libraries (Pytorch-Sparse; Tensorflow-Sparse).

(iii) **Bypass linear layers in self-attention.** The pooling layer extracts the first hidden vector of each layer’s output as the aggregate representation. For \( W^f_j \) where \( j \in \{3, 5, 8, 11\} \), only the first hidden vector of the output is used in the downstream computation; in this scenario, we move the pooling operation between \( n_3 \) and \( n_4 \) in Figure 2(a). As such, \( n_4 \) and \( n_5 \) in the self-attention layer can be reduced to a matrix-vector multiplication. The normalization layer (\( n_6 \)) would be applied to only the pooling vector instead of the original layer output.

(iv) **Enable concurrent execution inside each transformer.** When the sub-tasks are dependent on each other and must be executed sequentially, the execution of our

\(^1\) 1 GFLOPs = 1 billion floating-point operations
model can be paralleled across computing devices inside each transformer. This is because the parameter tuning on the bottom layers does not necessarily influence the downstream computation anymore. In Figure 2(b), assuming all nine GLUE tasks share the same architecture, the execution time is determined by the critical path \((W_0^p + W_1^p + 9 \times W_2^p\) to-\(W_T^p\)), which will be \(9T + 3T \times 9\) (3.0× max speedup) compared to \(12T \times 9\) of traditional BERT\(_{BASE}\) fine-tuning (Figure 1(c)), assuming executing each attention layer takes time \(T\).

A breakdown of the extra computation and parameter per task by leveraging (i)(ii)(iii) is shown in Figure 3. The computation and parameter overheads of the extra linear layers and Bi-LSTM are 0.01%/0.75% (Figure 3).

![Figure 3: Extra computation and parameter breakdown leveraging (i) (ii) and (iii) for the example in Figure 2(b).](image)

**Neural architecture search for computation sharing.**

All possible fine-tuning architectures of LeTS can be formulated into a search space as shown in Figure 4. Two NAS selectors are used in each layer to search (i) the input of the next layer (ii) the output to the final pooling layers.

The obtained architecture should achieve competitive sub-task accuracy with low extra computation operations. To address the problem, we leverage a differentiable NAS algorithm with a computation-aware loss to reflect both computation cost and accuracy of a sub-task. Detailed searching algorithm is given in Sec. 3.

**W\(^\delta\) pruning.** Recent parameter-sharing approaches either add a new module between attention layers (Pfeiffer et al., 2020; Housby et al., 2019) or generate a weight mask simultaneously during fine-tuning using \(l_0\) normalization (Guo et al., 2020). Yet, many works (Gale et al., 2019) have shown that \(l_0\) regularization output is inconsistent for large-scale tasks. Also, the training parameters (i.e., weight mask and parameters) double during fine-tuning.

In this work, we treat the final fine-tuning weight \(W_f\) as the addition between pre-trained weight \(W^p\) and a weight difference (\(W^\delta\)). By proposing an early-stage pruning approach, called Delta-Pruning, we compute the connection sensitivity of \(W^\delta\), which reveals the important connections in the \(W^\delta\) for a given task (See Sec. 3.1). In this way, we can obtain the deterministic task-specific mask at the beginning of fine-tuning and use the generated mask to guide NAS.

**Algorithm 1 LeTS Design Flow.**

input : Pre-trained model \(W^p\); Preserving parameter number \(k\); Group restriction \(G\) (Detailed in Sec. 4);

Sub-task datasets \(S = \{s_0,s_1,...,s_q\}\).

output : Fine-tuning Policies \(P_{out}\) and Models \(M_{out}\).

1: \(M_{out} \leftarrow \emptyset, P_{out} \leftarrow \emptyset\)
2: for \(s_i\) in \(S\) do
3: \(W^\tau \leftarrow \text{Generate\_Search\_Space}(W^p, G)\)
4: \(c^\tau \leftarrow \text{Delta\_Pruning}(W^\tau, k, s_i)\) // \(c^\tau\) is weight mask
5: \(M_i, P_i \leftarrow \text{Computation\_Aware\_Searching}(W^\tau, c^\tau, s_i)\)
6: \(c_i \leftarrow \text{Delta\_Pruning}(W^p, M_i, k, s_i)\)
7: \(M_{out} \leftarrow M_{out} \cup \{M_i\}, P_{out} \leftarrow P_{out} \cup \{P_i\}\)
8: end for
9: return \(M_{out}, P_{out}\)

**3. Method**

In this section, we detail the Delta-Pruning and Computation-aware neural architecture search algorithms in Algorithm 1.

**3.1. Delta-Pruning in Early Stage**

Delta-Pruning is motivated by SNIP (Lee et al., 2019) which targets to generate weight sparsity before training. We decompose the final fine-tuned weight \((W_f)\) into two parts as shown in Eq. (1).

\[
W_f = W^p + \epsilon \odot W^\delta
\]

Here, \(W^\delta \in \mathbb{R}^d\) is the fine-tuning weight difference, \(\epsilon \in \{0,1\}^d\) is the generated mask for \(W^\delta\), \(\odot\) is an element-wise product. Given a task dataset \(D\), the goal of Delta-Pruning is to find mask \(\epsilon\) at the beginning of fine-tuning without interfering with the searching and final fine-tuning phase. Assuming the \(k\) parameters in \(W^\delta\) is preserved, the constrained optimization problem can be described as Eq. (2):
\[
\min_{\mathbf{W}^c, \mathbf{W}^d} L(\mathbf{W}_p + c \odot \mathbf{W}^d; \mathcal{D}) = \min_{\mathbf{W}^c, \mathbf{W}^d} \frac{1}{N} \sum_{i=1}^N \ell(\mathbf{W}_p + c \odot \mathbf{W}^d; (x_i, y_i)) \\
\text{s.t. } \mathbf{W}^d \in \mathbb{R}^d, c \in \{0, 1\}^d, ||c||_0 \leq k
\]

Directly optimizing Eq. (2) using \(l_0\) normalization will double the learnable parameters (Louizos et al., 2018) and is unstable for large-scale tasks (Gale et al., 2019). It is even more difficult to search \(l_0\) masks together with architecture parameters in the DNAS algorithm (Sec 3.2). In this work, we intend to measure the effect of a connection \(e\) in \(\mathbf{W}^d\) on the loss function. Specifically, if removing \(\mathbf{W}^d_e\) does not show enough loss variation (\(\Delta L_e\)), we set \(c_e = 0\) to mask the gradient \(\mathbf{W}^d_e\) during training. Two challenges exist in computing \(\Delta L_e\): (i) Removing each connection in \(\mathbf{W}^d\) and check the variation in loss is computation-consuming. (ii) \(\mathbf{W}^d_e\) is unknown at the beginning of fine-tuning. A random initialization method cannot reflect the fully fine-tuned \(\mathbf{W}^d\).

To resolve (i), we relax the binary constrain on \(c\) to a continuous space and compute the gradient of \(L\) with respect to \(c_e\) as \(g_e\) (Eq. (3)). Based on the intuition that the magnitude of derivative of \(c_e\) shows whether the parameter \(\mathbf{W}^d_e\) has a considerable effect on \(L\) or not, we use \(g_e\) to approximate \(\Delta L_e\) when removing connection \(e\) in \(\mathbf{W}^d\). As such, we define the connection sensitivity \(s_e\) for \(\mathbf{W}^d\) to be the \(g_e\) normalized by the sum of \(g_e\) in the network (Eq. (4)).

\[
\Delta L_e(W^f; \mathcal{D}) \approx g_e(W^f; \mathcal{D}) = \frac{\partial L(W_p + c \odot W^d; \mathcal{D})}{\partial c_e} \bigg|_{c_e=1} \\
s_e = \frac{|g_e(W^f; \mathcal{D})|}{\sum_{e=1}^d |g_e(W^f; \mathcal{D})|} 
\]

Then, assuming \(k\) parameters are pruned in \(\mathbf{W}^d\), we generate mask \(c\) using a salient criterion computed from connection sensitivity \(s\) as Eq. (5):

\[
c_e = 1[s_e - \tilde{s}_k \geq 0], \quad \forall e \in \{1...d\}
\]

Here, \(\tilde{s}_k\) is the \(k\)-th largest element in the vector \(s\) and \(1[\cdot]\) is the indicator function.

To resolve (ii), we first learn the weight difference initialization by warm-up the fine-tuning using \(\mathcal{D}\) for steps \(N_{steps}\) and get \(W^f\). We then approximate \(W^d\) using a task-specific initialization as \(\bar{W}^d = W^f - W_p\). Our ablation study shows that using task-specific warm-up shows better results compared to random initialization as this accumulation of gradients can better reflect the final weight difference distribution.

### 3.2. Differentiable Neural Architecture Search for Computation Sharing

As discussed in Sec. 2, a promising task-specific fine-tuning architecture should yield low extra computation cost and high task accuracy. We formulate the selection of fine-tuning model as a bi-level non-convex optimization problem as shown in Eq. (6).

\[
\min_{a \in \mathcal{A}} \min_{w_a} \mathcal{L}(a, w_a)
\]

Here, \(\mathcal{A}\) is a new search space proposed in LeTS, \(a \in \mathcal{A}\) is a set of continuous variables in the NAS selectors that specifies a possible architecture, \(w_a\) is the selected fine-tuning architectures from the search space \(\mathcal{A}\) given \(a\). The loss function \(\mathcal{L}\) penalizes both accuracy degradation as well as the increase of extra computations.

- **Search space.** As shown in Figure 4, we decouple data dependency across layers by using a pooling layer, a linear layer, and a Bi-LSTM to aggregate all layers’ output for final classification. The pooling layer uses the first hidden vector corresponding to the first token (i.e., [CLS] token) (Devlin et al., 2019) as the layer presentation. The pooling output vectors are then fed into a linear layer and a Bi-LSTM.

LeTS first builds up a stochastic super network \(W^s\) for the searching phase. Before searching, we copy the weights from \(W^p\) to \(W^s\) trainable layers and disable the gradient computation based on \(c^T\) which is the weight difference mask obtained from the Delta-Pruning. Two decisions should be made in each attention layer \(W^f\): (i) the input to the trainable layer. It can be either the cached result \((x^f_{j-1})\) or the output from the previous trainable layer \((x^f_j)\) (ii) the output to the pooling layer from layer \(j\). It can be either \(x_j^f\) or \(x_j^f\). The total size of the search space would be \(4^N\) where \(N\) is the layer number in the pre-training mode (~1015 for BERT_large).

Two architecture selectors \((s_{ij}, i \in \{0, 1\})\) are used to decide (i) and (ii) in layer \(j\) respectively \((j \in 1...N)\) as shown in Figure 4). Each \(s_{ij}\) is associated with an architecture vector \(a_{ij}\) (1-by-2). We relax the choice of the architecture selection to a Gumbel Softmax (Jang et al., 2016) over the two possible sources:

\[
\bar{x}_f^j = [x^f_{j-1}; x^f_j] \cdot \text{Gumbel}(a_{ij})
\]

Here, \(\bar{x}_f^j\) is the input to the \(j\)th trainable layer in \(W^s\). \([;]\) is a concatenation operation. \(\text{Gumbel}\) converts \(a_{ij}\) into a probability vector which is used to approximate discrete categorical selection (Detailed in Appendix B). A temperature parameter \(T\) is associated with the \(\text{Gumbel}\) function to control its distribution. When \(T\) is high, \(\text{Gumbel}(a_{ij})\) becomes a continuous random variable and when \(T\) is low, \(\text{Gumbel}(a_{ij})\) is close to a discrete selection. During the search, we gradually lower \(T\) in \(\text{Gumbel}\) to guide NAS.

- **Search algorithm and final fine-tuning architecture.** We alternatively update the two variables, i.e., \(a\) and \(w_a\) under mask \(c^T\), to solve the bi-level optimization problem in Eq. (6). More specifically, we leverage second-order approximation (Liu et al., 2019a) (Equations in Appendix B) to update \(a\) since: (i) The total parameters in \(a\) is not large (~100). As such, it is feasible to use the second-order approximation although it requires more the computation;
When searching ends, we choose the final connectivity using a in j-th layer. Precisely, the input connectivity is chosen as $x_j^{p-1} = \arg \max_{x_j^{p-1} \in \{y_j\}} a_{ij}$ and the output to the pooling layer is $s_j^{p-1} = \arg \max_{s_j^{p-1} \in \{y_j\}} a_{ij}$. Then, we apply an optimization on attention layers where $s_j$ chooses $x_j^{p-1}$ and $s_0$ chooses $x_0$ to reduce even more computation. We move the final pooling operation between $n_1$ and $n_4$ in Figure 2(a). In this way, the computation of the following linear layers is differentiable to the architecture. The normalization layer ($n_6$) will be applied to the output vector from $n_5$.

**Computation-aware loss function.** To consider both the task accuracy and computation cost, we define the loss function of LeTS’s online searching phase as follows:

$$\mathcal{L} = CE(\mathbf{a}, W^\tau) \cdot \alpha \log(\text{ops}(\mathbf{a}, W^\tau))^\beta$$  \hspace{1cm} (8)

$CE(\mathbf{a}, W^\tau)$ is the cross-entropy loss given the architecture parameter $\mathbf{a}$ and the super net $W^\tau$. $\alpha, \beta$ is the exponential factor that controls the magnitude of the operation terms. For the $\text{ops}$, we compute the expectation of operation over the architecture parameters $\mathbf{a}$:

$$\text{ops}(W_j^\tau) = \sum_j \sum_a \left[ \text{Gumbel}(a_{ij}) \cdot \text{Gumbel}(a_{ij})^T \right] \circ \text{ops}(W_j^\tau)$$  \hspace{1cm} (9)

$\text{ops}(W_j^\tau)$ returns the number of operations in layer $j$ based on the selected combination of $s_{ij}$ and $s_{ij}$, into a 2-by-2 matrix. More specifically (See Figure 2(b)), (i) if both $s_{ij}$ and $s_{ij}$ select $x_j^{p-1}$ as their input, then the computation of the entire layer $j$ can be bypassed. (ii) If $s_{ij}$ selects $x_j^{p-1}$ and $s_{ij}$ selects $x_j^{p-1}$ as its input, then the computation between $x_j^{p-1}$ and $W_j^{\delta}$, $W_j^{\delta}$, $W_j^{\delta}$ would become sparse-matrix multiplication by leveraging the sparse feature of $W_j^{\delta}$. The number of operations is computed according to the sparsity ratio of $W_j^\tau$. Beyond the above two cases, the computation operations of a traditional self-attention layer is returned. Note the that $\text{ops}$ return a matrix of constant values given $W_j^\tau$. As such, the $\text{ops}$ is differentiable to the architecture parameters $a_{ij}$ and $a_{ij}$ to search for computation-efficient models.

4. Evaluation

4.1. Experiment setup


**Metrics.** We report Matthew’s correlation for CoLA, Spearman for STS-B, H1 score for MRPC/QQP, and accuracy for MNLI/QNLI/SST-2/RTE, respectively. For computation efficiency, we report new FLOPs per task over the FLOPs of a fine-tuned BERT and total operations that are required to compute the nine subtasks. For parameter efficiency, we report total parameters and new parameters per task. The equations for metrics are given in Appendix A.

**Baselines.** All previous parameter-sharing works are tested on BERTLARGE model (Devlin et al., 2019). We compare LeTS with the following baselines: (i) Full fine-tuning on BERTLARGE in a traditional way; (ii) Adapter (Houlsby et al., 2019). (iv) DiffPruning (Guo et al., 2020). (v) BitFit (Ravfogel & Goldberg), which fine-tunes only the bias parameters using a large learning rate. (See Sec. 5)

Also, we compare LeTS with model compression works, such as DistilBERT, MobileBERT (Sun et al., 2020) and TinyBERT (Jiao et al., 2020) which compressed the BERT BASE through knowledge distillation (Sec. 5). This comparison is conducted on BERT BASE.

Note that all previous parameter-sharing works cannot reduce the computation overhead for multi-task evaluation. Thus, we build two extra baselines: (vi) We freeze bottom k self-attention layers and fine-tune the top layers. (vii) We append k new layers at the top of the pre-trained model and freeze the pre-trained weights (Figure 2(d)).

**LeTS design settings.** We leverage LeTS to design fine-tuning models for platforms with different computing/storage budgets: (i) We search task-specific architectures for each task in GLUE and fine-tuning it with the generated sparse mask (denoted as LeTS-(p,c))^2. (ii) During the final fine-tuning, we also conduct an ablation study by removing the weight mask to achieve better accuracy (denoted as LeTS-(c)). This is suitable for computing platforms with a low-cost storage budget. (ii) To maximize the parallelism in a searched model, we decouple the attention layers into g groups (denoted as LeTS-G-g) and require the first layer in each group to use the cached inputs ($x_j^{p-1}$); thus the evaluation of different groups can be executed concurrently. Inside each group, we still apply DNAS to decide the connections.

**Hyperparameters.** The DNAS method takes 1 day on 4
Our pre-trained models and code base are from (Wolf et al., 2020). We use $N_{\text{steps}} = 100$ to initialize $W^0$ (Sec. 3.1). Inspired by (Ravfogel & Goldberg) that the bias terms require a larger learning rate to achieve better fine-tuning results, we apply two optimizers with different learning rate scheduler to update the bias terms ($lr_b \in \{1e^{-3}, 5e^{-4}\}$) and other parts ($lr_w \in \{2e^{-5}, 1e^{-5}\}$) separately during the final fine-tuning. Details of other hyperparameters are shown in Appendix A. Training time and overheads are reported in Appendix B.

4.2. Results

**Comparison to baselines on GLUE dataset.** Our comparison with the baseline methods is shown in Table 1. LeTS-(c)-(p,c) can achieve similar performance (+0.2%/-0.2% on average) to a fully fine-tuned BERT$\text{LARGE}$ model while saving 40.2%/49.5% computation. With a more aggressive setting, LeTS-G-4 can reduce 57.0% computation (3.84× speedup) while matching the task performance of Adapters. In the meantime, LeTS-(p,c)/G-4 only adds 1.4% parameters per task (including the Linear and Bi-LSTM layers), which is more parameter-efficient than Adapters. LeTS illustrates a trade-off between concurrent execution speedup and multi-task performance which is not done by previous works.

Compared to DistilBERT$\text{6}$, MobileBERT, and TinyBERT$\text{6}$, that reduce the total computation by 50.4%/28.3%/50.4% on BERT$\text{BASE}$. LeTS-G-3/G-4 shows 56%/62% computation reduction while preserving a high task performance (-0.5%/0.8%) compared to the fine-tuned model. For fiercely compressed models (e.g., TinyBERT-4, MobileBERT$\text{TINY}$, DistilBERT$\text{4}$), they show large performance degradation (-2.3%/-2.6%/-7.7%) compared to the full fine-tuning model although saving more computations than LeTS. Also, LeTS shows the lowest parameter overhead (1.15×) compared to all compression models.

Compared to ‘Freezing Bot-12’ and ‘Appending Top-1’, LeTS also achieves better task performance (+1.3%/+8.3%) on average. That is because we relax the fine-tuning constraints on all the layers and aggregate the results for final classification. Also, when the number of sub-tasks increases, LeTS can save even more computations compared to Freezing Bot-12 (42.6% new FLOPs per task compared to 50%).

**Comparison of Delta-Pruning with other parameter-sharing methods.** Table 2 shows the performance of Delta-Pruning compared to previous parameter-sharing works. To make a fair comparison, the result is tested using the original fine-tuning architecture. With the sparsity ratios restriction as 0.1%/0.25%/0.5% per task, LeTS achieves 2.4%/0.8/0.6% average performance increase compared to DiffPruning. This shows Delta-Pruning is effective to preserve task accuracy compared to the $l_0$ regularization method.

4.3. Sensitivity and Ablation study.

- **Varying the sparsity constraint on BERT$\text{LARGE}$ model / Weight mask distribution.** We also conduct a sensitivity analysis using Delta-Pruning with various sparsity ratios (0.1%/0.25%/0.5%) across GLUE benchmarks (Table 2). Different tasks show different sensitivity with the growth of sparsity ratio. A better trade-off between accuracy v.s. sparsity ratio can be achieved through grid-search for each given task. Also, we show the distribution of weight masks for each layer varies across benchmarks (Figure 6). We hypothesize that when the tasks’ inputs or outputs are related (e.g., QQP and QNLI both encode questions / MPRC and STS-B both generate similarity), they reveal similar mask distribution. This indicates that adding a uniform module (e.g., Adapter) between each layer for a task is sub-optimal.

- **Sensitivity to computation sharing ratio / Ablation to computation-aware loss function.** To shows the capability of LeTS in reducing computation while maintaining a high task accuracy, we perform NAS for 2 tasks multiple times (with different $\alpha$, $\beta$ in the loss function) and samples different architectures from the distribution. Figure 5 shows the results between extra operations v.s. task accuracy (on GLUE dev set). Freezing bot-$k$ layers cannot preserve task accuracy with the increasing of $k$, while the architecture searched from LeTS does not show a large performance drop. LeTS also presents better task accuracy compared to the random sampled architectures, which shows that our DNAS algorithm can improve the quality of the searched model. When removing the computation-aware loss function, DNAS tends to select more trainable matrices to preserve task performance and the searched model cannot fully exploit computation sharing.

![Figure 5: Sensitivity to computation sharing ratio](image)

5. Related Work

Fine-tuning for transfer learning. Transfer a pre-trained model to a task of interest can be achieved by fine-tuning all the weights on that single task (Howard & Ruder, 2018). Recent advances in text classification (Dai et al., 2019; Liu...
et al., 2019c; Joshi et al., 2020; Yang et al., 2019) have been achieved by fine-tuning a pre-trained transformed transformer (Vaswani et al., 2017). However, it modifies all the weights of the network which is parameter inefficient for downstream tasks.

Multi-task learning. Multi-task learning (MTL) learns models on multiple tasks simultaneously and utilizes them across a diverse range of tasks (Caruana, 1997). MTL has been widely exploited using BERT and shows good performance on multiple text classification tasks (Liu et al., 2019b; Clark et al., 2019). In this work, we assume multiple tasks arrive in stream (i.e., online setting) and thus jointly training is not available as discussed in Sec. 1. Moreover, it is challenging to balance multiple tasks and solve them equally well in training (Stickland & Murray, 2019). LeTS can be potentially combined with MTL. This will change our assumption of online settings (task arrives one-by-one) to ‘n tasks arrive at the same time’. The n tasks will be searched and fine-tuned together. We leave this combination as a future work.

Parameter sharing for fine-tuning. Adapter is an alternation for parameter-efficient BERT models for online settings (Houlsby et al., 2019). It works well on machine translation (Bapna & Firat, 2019), cross-lingual transfer (Üstün et al., 2020), and task composition for transfer learning (Pfeiffer et al., 2020). These task-specific adapters are inserted between layers and cannot exploit the computation sharing because of the modification on the bottom layers. Recent work (Guo et al., 2020) use $l_0$ normalization to train a mask during fine-tuning for multi-task NLP. In this paper, we propose a novel method to prune weight difference based on SNIP (Lee et al., 2019) to condense the task-specific knowledge which achieves better parameter efficiency.

Hardware-aware NAS. Recent advances in NAS leverage differentiable methods by relaxing the selection of architectures in a continuous space to reduce the high search cost of RL-based NAS (Zoph & Le, 2016; Tan et al., 2019; Tan & Le, 2019). Previous differentiable NAS work (Wu et al., 2019; Liu et al., 2019a; Wan et al., 2020; Fu et al., 2020)
mainly focus on computer vision tasks. In LeTS, we combine the searching algorithm of (Wu et al., 2019) and (Liu et al., 2019a) to resolve a unique problem in NLP. LeTS also presents a novel search space with a computation-aware loss to search model with high task accuracy and computation sharing ratio.

**Model compression.** Model pruning is another way to reduce a single model size and computation. (Gordon et al., 2020) prune weights in BERT based on magnitude, (Guo et al., 2019) use iteratively reweighted $l_1$ minimization, and (Lan et al., 2019) leverage cross-layer parameter sharing. Other works distill knowledge from a pre-trained model down to a smaller student model (Sanh et al., 2019; Sun et al., 2020; Jiao et al., 2020). Note that LeTS is orthogonal to all these methods, as we did not modify the pre-trained parameters. we leave this combination as future work.

6. Conclusion

We propose LeTS, a transfer learning framework that achieves computation and parameter sharing when multiple tasks arriving in stream. LeTS proposes a novel architecture space that can reuse computed results to reduce computation. By leveraging NAS with a computation-aware loss function, LeTS can find models with high task performance and low computation overhead. By treating the fine-tuned weight as the sum of pre-trained weight and weight difference, we present a early-stage pruning algorithm to compress weight difference without task performance decrease. The integration of the above novelty enables even more computation reduction by exploiting the sparsity of the weight difference. LeTS achieves better task performance compared to previous parameter-sharing only methods. Also, by leveraging computation sharing, LeTS engenders large computation reduction to enable scalable transfer learning. LeTS can be combined with multi-task transfer learning to achieve better task performance and we leave it as a future work.

**References**


