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Abstract

While maximizing deep neural networks’
(DNNs’) acceleration efficiency requires a joint
search/design of three different yet highly cou-
pled aspects, including the networks, bitwidths,
and accelerators, the challenges associated with
such a joint search have not yet been fully
understood and addressed. The key challenges
include (1) the dilemma of whether to explode
the memory consumption due to the huge joint
space or achieve sub-optimal designs, (2) the
discrete nature of the accelerator design space
that is coupled yet different from that of the
networks and bitwidths, and (3) the chicken and
egg problem associated with network-accelerator
co-search, i.e., co-search requires operation-wise
hardware cost, which is lacking during search as
the optimal accelerator depending on the whole
network is still unknown during search. To tackle
these daunting challenges towards optimal and
fast development of DNN accelerators, we pro-
pose a framework dubbed Auto-NBA to enable
jointly searching for the Networks, Bitwidths, and
Accelerators, by efficiently localizing the optimal
design within the huge joint design space for each
target dataset and acceleration specification. Our
Auto-NBA integrates a heterogeneous sampling
strategy to achieve unbiased search with constant
memory consumption, and a novel joint-search
pipeline equipped with a generic differentiable
accelerator search engine. Extensive experiments
and ablation studies validate that both Auto-NBA
generated networks and accelerators consistently
outperform state-of-the-art designs (including
co-search/exploration techniques, hardware-
aware NAS methods, and DNN accelerators),
in terms of search time, task accuracy, and
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accelerator efficiency. Our codes are available at:
https://github.com/RICE-EIC/Auto-NBA.

1. Introduction
The prohibitive complexity of deep neural networks (DNNs)
have fueled a tremendous demand for efficient DNN ac-
celerators which could boost the acceleration efficiency by
orders-of-magnitude. In response, extensive research efforts
have been devoted to developing DNN accelerators. Early
works decouple the design of efficient DNN algorithms
(Liu et al., 2018b; Wu et al., 2018b; You et al., 2020) and
their accelerators (Du et al., 2015; Chen et al., 2017; Li
et al., 2020a; Zhao et al., 2020). On the algorithms level,
pruning, quantization, or neural architecture search (NAS)
have been adopted; On the hardware level, various FPGA-
/ASIC-based accelerators customize the micro-architectures
(e.g., memory hierarchies/size and network-on-chip design)
and algorithm-to-hardware mapping methods (e.g., loop
tiling strategies and loop orders) to optimize the acceler-
ation efficiency for given DNNs. Later, hardware-aware
NAS (HA-NAS) was proposed to further improve DNNs’
acceleration efficiency (Tan et al., 2019; Fu et al.).

It has been recently recognized that (1) optimal DNN accel-
erators require a joint consideration for three different yet
coupled aspects: the network structure, network precision,
and their accelerators, and (2) merely exploring a subset of
these aspects will lead to sub-optimal hardware efficiency
or task accuracy. For example, the optimal accelerators for
DNNs with different structures (e.g., width/depth/kernel-
size) can be very different; while the optimal networks and
their bitwidths for different accelerators can differ a lot (Wu
et al., 2019). However, the direction of jointly designing or
searching for all three aspects has only been slightly touched
on. For example, (Chen et al., 2018; Gong et al., 2019; Wang
et al., 2020) proposed to jointly search for DNNs’ structure
and precision for a fixed target hardware; (Abdelfattah et al.,
2020; Yang et al., 2020; Jiang et al., 2020a;c) proposed to
jointly search for the networks and their accelerators, yet
either their network or accelerator choices are limited, due
to the prohibitive time cost required by their adopted rein-
forcement learning (RL) based methods; and EDD (Li et al.,
2020b) formulated a differentiable joint search framework,
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which however only consider one accelerator parameter (i.e.,
parallel factor) and more importantly, has not yet solved the
key challenges of efficient joint search.

Although differentiable search is promising in terms of
search efficiency to explore the huge joint search space
(see Sec. 4.2), plethora of challenges exist to achieve an
effective, generic joint search for the above three aspects.
First (Challenge 1), to co-search for a DNN and its preci-
sion, there exists a dilemma whether to activate all the paths
during search. On one hand, the required memory can easily
explode and thus constrain the search scalability to more
complex tasks if all paths are activated; on the other hand,
partially activating a subset of the paths require a sequential
training of different precisions on the same weights, causing
inaccurate accuracy ranking among different precisions (Jin
et al., 2020). Second (Challenge 2), DNN accelerators’ de-
sign factors are not differentiable, and it is non-trivial to
abstract generic accelerator design spaces integrating all
important factors, e.g., the number of memory hierarchies,
loop orders/sizes, and processing array size/shape. Third
(Challenge 3), there exists the chicken and egg problem as-
sociated with network-accelerator co-search, i.e., co-search
requires operation-wise hardware costs, which is lacking
during search as the optimal accelerator depending on the
whole network is still unknown during search.

We aim to enable efficient and effective joint search for the
mentioned three aspects, and make contributions as follows:

• We propose Auto-NBA that for the first time enables
Automated joint search for the Networks, Bitwidths,
and Accelerators for efficiently exploring the huge joint
design space which cannot be afforded by previous
RL-based methods due to their required prohibitive
search cost. Auto-NBA identifies and tackles the above
Challenges 1-3 towards scalable joint search of the
three for maximizing both the accuracy and efficiency.

• We propose a heterogeneous sampling strategy inte-
grated by Auto-NBA for simultaneous updating the
weights and network structures to (1) avoid sequen-
tially training different precisions and (2) achieve unbi-
ased search with constant memory consumptions, i.e.,
solving the above Challenge 1. We further develop a
novel joint-search pipeline integrating a differentiable
accelerator search engine to address Challenges 2-3.

• Extensive experiments and ablation studies validate the
effectiveness and advantages of our Auto-NBA frame-
work in terms of the resulting search time, task accu-
racy, and accelerator efficiency, when benchmarked
over state-of-the-art (SOTA) co-search/exploration
techniques, HA-NAS methods, and DNN accelerators,
respectively. Furthermore, we visualize the searched
accelerators by Auto-NBA to discuss insights towards
efficient DNN accelerator design.

• Auto-NBA’s searched algorithms and accelerators out-
perform both SOTA automatically searched and expert-
designed DNNs and accelerators. Additionally, our
Auto-NBA is general and allows users to easily plug-
in both their own DNN search space and/or accelera-
tor search space. Hence, we believe that Auto-NBA
has made a nontrivial step to provide automated tools
for expediting the development of DNN accelerators
which falls far behind DNN algorithm advances.

2. Related works
Hardware-aware NAS. Hardware-aware NAS (HW-NAS)
automates the design of efficient DNNs. Early works (Tan
et al., 2019; Howard et al., 2019; Tan & Le, 2019) utilize
RL-based NAS that requires a massive search time/cost,
while recent works (Wu et al., 2019; Wan et al., 2020; Cai
et al., 2018; Stamoulis et al., 2019) adopt differentiable
search (Liu et al., 2018a) with much improved searching
efficiency. Along another direction, one-shot NAS meth-
ods (Cai et al., 2019; Guo et al., 2020; Yu et al., 2020)
pretrain the supernet and directly evaluate the performances
of the sub-networks in a weight sharing manner as a proxy
of their independently trained performances at the cost of a
longer pretrain time. Additionally, NAS has been adopted
to search for quantization strategies (Wang et al., 2019; Wu
et al., 2018a; Cai & Vasconcelos, 2020; Elthakeb et al.,
2020) to trimming down the complexity of DNNs. However,
these works leave the hardware design space unexplored,
which is a crucial enabler for DNN’s acceleration efficiency.

DNN accelerators. Motivated by customized accelera-
tors’ large potential gains, SOTA accelerators (Du et al.,
2015; Chen et al., 2017) innovate micro-architectures and
mapping methods to optimize the acceleration efficiency,
given a DNN and the hardware specifications. However,
it is non-trivial to design an optimal accelerator as it re-
quires cross-disciplinary knowledge in algorithm, micro-
architecture, and circuit design. SOTA accelerator design
relies on either experts’ time-consuming manual design
or design flow (Chen et al., 2005; 2009; Rupnow et al.,
2011) and DNN accelerator design automation (Wang et al.,
2016; Zhang et al., 2018a; Guan et al., 2017; Venkatesan
et al., 2019; Wang et al., 2018a; Gao et al., 2017; Xu et al.,
2020). As they merely explore the accelerator space, they
can result in sub-optimal solutions as compared to SOTA
co-search/exploration methods and our Auto-NBA.

Co-exploration/search techniques. Pioneering efforts
have been made towards jointly searching of DNNs and
their accelerators to some extent. For joint searching for
DNNs and their precision, (Chen et al., 2018; Gong et al.,
2019; Wang et al., 2020) adopt either differentiable or evo-
lutionary algorithms yet without exploring their hardware
accelerators. For joint searching for DNNs and their acceler-
ators, (Abdelfattah et al., 2020; Yang et al., 2020; Jiang et al.,
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Figure 1. Illustrating our Auto-NBA framework: The middle part shows (1) an high-level view of Auto-NBA and (2) the technical
challenges that Auto-NBA tackles for enabling a scalable, generic joint-search for the networks, bitwidths, and accelerators.

2020a;c;b) conduct RL-based search for the networks and
some accelerator parameters/templates, where they strictly
constrain the search space of the network or accelerator to
achieve a practical RL search time, limiting their scalabil-
ity and achievable efficiency. (Lin et al., 2020) attempts
to co-design the newtork and accelerator in a sequential
manner based on the fact that the accelerator’s design cycle
is longer than the networks. EDD (Li et al., 2020b) extends
differentiable NAS to search for layer-wise precision and
the accelerators’ parallel factor, which is most relevant to
our Auto-NBA. However, it has not yet solved the joint
search challenges. First, it does not discuss or address the
potentially explosive memory consumption issue of such a
joint search; second, EDD’s accelerator search space only in-
cludes one design parameter (i.e., the parallel factor), which
is strictly limited to their accelerator template and cannot
generalize to include common accelerator parameters such
as the memory hierarchies and tiling strategies.

Auto-NBA targets a scalable, generic joint-search frame-
work for boosting the search efficiency and effectiveness.

3. The Proposed Auto-NBA Framework
In this section, we describe our proposed techniques for
enabling Auto-NBA. Sec. 3.1 introduces Auto-NBA’s for-
mulation, while Sec. 3.2 and Sec. 3.3 present Auto-NBA’s
technical enablers that address the key challenges of scalable
joint search for the networks, bitwidths, and accelerators,
and Sec. 3.4 unifies the enablers to realize Auto-NBA.

3.1. Auto-NBA: Problem Formulation

Fig. 1 shows an overview of Auto-NBA, which jointly
searches for the networks (e.g., kernel-size/channel-
expansion/group-number), precision (e.g., 4-/6-/8-/12-/16-
bit), and the accelerators (e.g., memory size and tiling strate-
gies of each memory) in a differentiable manner. Auto-NBA
targets a scalable yet generic joint search framework, which
we formulate as a bi-level optimization problem:

min
α,β

Lval(ω∗, net(α), prec(β)) (1)

s.t. Lcost(hw(γ∗), net(α), prec(β)) ≤ Etarget, (2)

s.t. ω
∗
= arg min

ω
Ltrain(ω, net(α), prec(β)), (3)

s.t. γ
∗
= arg min

γ
Lcost(hw(γ), net(α), prec(β)) (4)

where α, β, and γ are continuous variables parameterizing
the probability of different choices for the network oper-
ators, precision bitwidths, and accelerator parameters as
in (Liu et al., 2018a), respectively; ω is the supernet weights;
Ltrain, Lval, and Lcost are the loss during training and val-
idation, and the hardware-cost loss, respectively; Etarget
is the target hardware cost (e.g., energy or latency); and
net(α), prec(β), and hw(γ) denote the network, precision,
and accelerator characterized by α, β, and γ, respectively.

3.2. Auto-NBA Enabler 1: Heterogeneous Sampling for
Scalable Network-Precision Joint-Search

As discussed in Sec. 1, there exists a dilemma (i.e., either
memory explosion or biased search) whether to activate
all the paths during precision search, for tackling which
we propose a simple yet effective heterogeneous sampling
strategy. Here we first use real experiments to illustrate the
joint-search dilemma, and then introduce our heterogeneous
sampling which effectively address the challenge.

Activating all choices → memory explosion and entan-
gled correlation among choices. During precision search,
activating all the precision choices as (Wu et al., 2018a;
Gong et al., 2019) can easily explode the memory consump-
tion especially when the precision is co-searched with the
network structures. While composite convolutions (Cai &
Vasconcelos, 2020) for mixed-precision search can poten-
tially mitigate this memory explosion issue during search by
shrinking the required computation, yet the large memory
consumption issue would still exist during training when
updating the precision parameters, i.e., β in Eq. (1). For
example, as shown in Fig. 2 (a), the measured GPU memory
consumption of co-searching for the network and preci-
sion on ImageNet grows linearly with the number of pre-
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Figure 2. (a) GPU memory consumption comparison between soft Gumbel Softmax (GS) and hard GS sampling, which are two activating
approaches for co-search for the network and precision; and the probability evolution of each precision choice during the search process
in the 4-th block when searching with: (b) hard GS sampling for updating both the weights ω and precision choices β, which results in the
lowest 4-bit, and (c) the proposed heterogeneous sampling for updating ω and β, which results in the highest 12-bit (desired).

Table 1. Comparing the accuracy when training a fixed network
using different precision schedules, where high2low and low2high
denote progressive training from high precision to low precision
and the inverse case, respectively, following (Jin et al., 2020).

Strategy Resulting Accuracy
4-bit (%) 8-bit (%) 12-bit (%) 16-bit (%) 32-bit (%)

Independent Train 63.52 67.44 67.56 67.65 68.21

high2low Train 59.29 45.09 45.45 45.15 65
low2high Train 4.36 26.55 43.58 63.3 63.5

joint Train 63.28 66.98 67.21 67.23 67.36

cision choices if activating all precision choices during
search. Furthermore, the entangled correlation (e.g., co-
adaptation (Hong et al., 2020), correlation (Li et al., 2019),
and cooperation (Tian et al., 2020)) among different preci-
sion choices can lead to a large gap between the supernet
during search and the final derived network, thus failing the
joint search.

Activating only a subset of choices - Biased search. For
addressing the above issues of memory explosion and cor-
relation among choices, one natural approach is to adopt
hard Gumbel Softmax (i.e., activating only one or a subset
of paths as (Dong & Yang, 2019)) to constrain the memory
consumption, which however can lead to a biased search and
thus poor performance. Specifically, activating only a sub-
set of the precision choices implies a sequential training of
different precisions that can lead to inaccurate performance
ranking. This is because a sequential training means differ-
ent precision choices are applied on top of the same weights
and activations. As a result, different precision choices can
interfere with each other, and different training order would
lead to a different result. For a better understanding, we
next show two concrete experiments.

Co-search network and precision using hard Gumbel Soft-
max: Fig. 2 (b) shows the resulting precision probability
evolution when co-searching for the network and precision
on CIFAR-100 using hard Gumbel Softmax, which activates
two precision choices, without imposing any hardware-cost
constraints, thus the desired and effective precision choice
would be the highest precision. However, as shown in Fig. 2
(b), the block co-searched using hard Gumbel Softmax col-

lapses to the lowest precision (i.e., the highest probability
towards the end of the search is the lowest precision choice 4-
bit), indicating an ineffective search direction. Note that the
fluctuation in the probability of different precision choices
is caused by the intermittent activation of the block due to
the hard Gumbel Softmax sampling.

Sequential training of a fixed network with multiple preci-
sion choices: As observed in (Jin et al., 2020), when training
a fixed network with multiple precision choices, either as-
cending or descending the precision will incur an inferior
convergence and thus chaotic accuracy ranking among dif-
ferent precision choices. For example, as shown in Tab. 1,
we compare the accuracy of a fixed network (all blocks adopt
the k3e1 (kernel size 3 and channel expansion 1) structure
in (Wu et al., 2019)) under different precision choices, when
being trained with different precision schedule strategies.
We can see that only jointly training all the precision choices
can maintain the ranking consistent with that of indepen-
dently trained ones, while sequential training leads to both
inferior accuracy and ranking.

Proposed solution - Heterogeneous sampling. To tackle
both aspects of the aforementioned dilemma, we propose a
heterogeneous sampling strategy as formulated below:

A
l+1

= W̄
l
∗ σ(Āl) =

J

∑
j=1

β̄ljW
l
j ∗ σ(

J

∑
j=1

β̄ljA
l
j)

where β̄lj = {GS(β
l
j) if updating weights

GShard(βlj) if updating β
(5)

where W̄ l / Āl are the composite weights / activations of
the l-th layer as in (Cai & Vasconcelos, 2020) which are
the weighted sum of weights / activations under different
precision choices, e.g., W l

j is the weights quantized to the
j-th precision among the total J options for the l-th layer,
and σ is the activation function.

Our heterogeneous sampling updates the weights in Eq. (3)
by jointly updating the weights under all the precision
choices weighted by their corresponding soft Gumbel Soft-
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max GS(βlj), where βlj parameterizes the probability of the
j-th precision in the l-th layer, and the gradients is estimated
by the straight through estimator (STE) (Zhou et al., 2016)
as ∂Ltrain/∂Al ≈ ∂Ltrain/∂Āl so that no extra interme-
diate feature maps need to be stored during backward. For
updating β, we adopt hard Gumbel Softmax (Jang et al.,
2016) with one-hot outputs GShard(βlj) to save memory
computation while reducing the correlation among preci-
sion choices. Under the same co-search setting as Fig. 2
(b), all the blocks searched using our heterogeneous sam-
pling converge to the highest precision towards the end of
the search (see Fig. 2 (c)), indicating an effective search as
further validated in Sec. 4.

3.3. Auto-NBA Enabler 2: Differentiable Accelerator
Search Engine

Motivation. Although EDD (Li et al., 2020b) also co-
searches the accelerator with the network, their search space
is limited to include merely one accelerator parameter (i.e.,
the parallel factor within their template) which can be fused
into their computational cost, whereas this is not always
applicable to other naturally non-differentiable accelerator
design parameters such as memory hierarchies and tiling
strategies. Hence, a more general and efficient search engine
is needed towards generic differentiable accelerator search.

Search algorithm. We propose a differentiable search en-
gine to efficiently search for the optimal accelerator (includ-
ing the micro-architectures and mapping methods) given a
DNN and its precision using single-path sampling as dis-
cussed in Sec. 3.4. Specifically, we solve Eq. (4) as follows:

arg min
γ

M

∑
m=1

GShard(γm)Lcost(hw({GShard(γm)}),

net({Olfw}), prec({Blfw}))
(6)

where M is the total number of accelerator design pa-
rameters. Given the network net({Olfw}) and precision
prec({Blfw}), where Olfw ∈ α and Blfw ∈ β are the acti-
vated forward operator and precision for each layer as dis-
cussed in Sec. 3.4. Our search engine utilizes hard Gumbel
Softmax GShard sampling on each design parameter γm to
build an accelerator hw({GShard(γm)}) and penalize each
sampled accelerator parameter with the overall hardware-
cost Lcost through relaxation in a gradient manner.

Hardware template. We adopt a unified template for both
the FPGA and ASIC accelerators, which is a parameterized
chunk-based pipeline micro-architecture inspired by (Shen
et al., 2017). As elaborated in Sec. 4.1, the hardware/micro-
architecture template comprises multiple sub-accelerators
(i.e., chunks) and executes DNNs in a pipeline fashion. Each
chunk is assigned with multiple but not necessarily con-
secutive layers which are executed sequentially within the

chunk. Similar to Eyeriss, each chunk consists of several
levels of memories (e.g., on-chip buffer and local register
files) and processing elements (PEs) to facilitate data reuses
and parallelism with searchable design knobs, such as PE
interconnections (i.e., Network-on-chip), allocated buffer
sizes, multiply-and-accumulate (MAC) operations’ schedul-
ing and tiling (i.e., dataflows), and so on.

General applicability. As shown in Eq. (6), our accelerator
search engine is general and does not hold any prior assump-
tions about the adopted accelerators. Hence, it is applicable
to different accelerator architectures and mapping methods.
Specifically, for a given target accelerator architecture or
template, such as TPU-like (Jouppi et al., 2017) or other
accelerators (Chen et al., 2016; Li et al., 2020a; Zhao et al.,
2020), our search engine can be directly applied once given
(1) a simulator to estimate the hardware cost, and (2) a set of
user-defined searchable accelerator design knobs abstracted
from the target accelerator template.

3.4. Auto-NBA: The Overall Joint-Search Framework

Objective and challenges. The key objective of Auto-
NBA is formulated in Eq. (1) involving all the
three major aspects towards efficient DNN accelerators.
The key challenges for joint-search of the three include (1)
the prohibitively large joint space (e.g., 2.3E+21 in this
work) which, if not addressed, will limit the search scala-
bility to practical yet complex tasks; (2) the entangled co-
adaptation (Hong et al., 2020), correlation (Li et al., 2019),
and cooperation (Tian et al., 2020) issues among different
network and precision choices can enlarge the gap between
the supernet during search and the final derived network,
thus failing the joint search; and (3) the chicken and egg
problem associated with network-accelerator co-search, i.e.,
co-search requires operation-wise hardware cost, which is
lacking during search as the optimal accelerator depending
on the whole network is still unknown during search.

Auto-NBA implementation. Auto-NBA integrates the two
enablers in Sec. 3.2 and Sec. 3.3 to develop a unified joint-
search pipeline. Specifically, Auto-NBA search starts from
updating both the supernet weights ω and accelerator pa-
rameters γ (based on Enablers 1-2 in Sec. 3.2 and Sec. 3.3,
respectively), given the current network net(α) quantized
using precision prec(β), and then updates α and β based
on the derived optimal weights ω∗ and accelerator hw(γ∗)
resulting from the previous step.

During joint-search, Auto-NBA updates α and β as follows
(see Eq. (7)-Eq. (9)) to solve Eq. (1), where only the update
for α is shown for simplicity as it is similarly applicable
to update β. Note that here we define path to be one of
the parallelled candidate operators between the layer input
and layer output within one searchable layer, which can be
viewed as a coarse-grained (layer-wise) version of the path
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Table 2. Benchmark Auto-NBA’s Search efficiency over SOTA co-search/exploration works and one-shot NAS methods.
Method Dataset Network Space Accelerator Space Precision Space Joint Space Search Time (GPU hours)

HS-Co-Opt (Jiang et al., 2020c) CIFAR-10 1.15E+18 - - 1.15E+18 103.9
Auto-NBA CIFAR-10 9.85E+20 2.24E+27 2.40E+15 5.30E+63 6

BSW (Abdelfattah et al., 2020) CIFAR-100 4.20E+05 8.64E+03 - 3.63E+09 5184
Auto-NBA CIFAR-100 9.85E+20 2.24E+27 2.40E+15 5.30E+63 12

HS-Co-Opt (Jiang et al., 2020c) ImageNet 2.22E+18 - - 2.22E+18 266.8
Once-For-All (Cai et al., 2019) ImageNet 2.00E+19 - - 2.00E+19 1200

APQ (Wang et al., 2020) ImageNet 1.00E+35 - 1.00E+10 1.00E+45 2400
Single One-shot (Guo et al., 2020) ImageNet 7.00E+21 - - 7.00E+21 288

Auto-NBA ImageNet 9.85E+20 2.24E+27 2.40E+15 5.30E+63 80

definition in (Wang et al., 2018b; Qiu et al., 2019).

Single-path forward: For updating both α (see Eq. (7)) and
β during forward, Auto-NBA adopts hard Gumbel Softmax
sampling (Hu et al., 2020a), i.e., only the choice with the
highest probability will be activated to narrow the gap be-
tween the search and evaluation, leveraging the single-path
property of hard Gumbel Softmax sampling. In Eq. (7), Al

and Al+1 denote the feature maps of the l-th and (l + 1)-th
layer, respectively,N is the total number of operator choices,
O
l
i is the i-th operator in the l-th layer parameterized by αli,

and Olfw is the activated operator during forward.

Forward ∶ A
l+1

=

N

∑
i=1

GShard(αli)Oi(Al) = Olfw(Al) (7)

Backward ∶
∂Lval

∂αli
=

K

∑
k=1

∂Lval

∂GS(αlk)
∂GS(αlk)
∂αli

=
∂Lval

∂Al+1

K

∑
k=1

O
l
k(Al)

∂GS(αlk)
∂αli

(8)

∂Lcost

∂αli
= 1(GShard(αli) = 1)Lα

l
i
cost(hw(γ∗), net(αli), prec(β))

(9)
Multi-path backward: For updating both α (see Eq. (8)) and
β during backward, Auto-NBA activates multiple paths to
calculate the gradients of α and β through Gumbel Softmax
relaxation in order to balance the search efficiency and sta-
bility inspired by (Cai et al., 2018; Hu et al., 2020b), where
α
l
i’s gradients are calculated using Eq. (8), withK ∈ (1, N)

being the number of activated choices with the top K Gum-
bel Softmax probability and controlling the search cost.

Hardware-cost penalty: The network search in Eq. (1)
is performed in a layer/block-wise manner as in (Liu
et al., 2018a), thus requiring layer/block-wise hardware-
cost penalty which is determined by both the layer/block-
to-accelerator mapping method and the corresponding
layer/block execution cost on the optimal accelerator
hw(γ∗). The optimal mapping method is yet determined
by the whole network. To handle this gap, we derive the
layer/block-wise hardware-cost assuming that the single-
path network derived from the current forward would be
the final derived network, as this single-path network has a
higher if not the highest probability to be finally derived. In

Eq. (9), 1(⋅) is an indicator denoting whether αli (i.e., the
i-th operator in the l-th layer) is activated during forward.

4. Experiment Results
4.1. Experiment Setup

Software settings. Search space and hyper-params. We
adopt the same search space as (Wu et al., 2019) for the
ImageNet experiments, from which we disable the first two
down sampling operations for the CIFAR-10/100 experi-
ments. We use [4, 6, 8, 12, 16] as the candidate precision
set, where the precisions of the first and last blocks are fixed
to 8-bit, and each block shares the same precision for both
the weights and activations for more hardware friendly im-
plementation. We activate two paths during backward, i.e.,
K = 2 in Eq. (8), for search efficiency. For Lcost in Eq.
( 4), we use the acceleration latency, i.e., Frame-Per-Second
(FPS), and Energy-Delay-Product (EDP) for FPGA- and
ASIC-based accelerators, respectively.

Search settings. We adopt standard search settings used in
SOTA hardware-aware NAS works (Wu et al., 2019). Specif-
ically, for searching on the CIFAR-10/100 datasets, we use
half of the dataset for updating supernet weights ω and the
other half for updating the network and precision parameter
α and β, and search for 90 epochs with an initial gumbel
softmax temperature of 5 decayed by a factor of 0.975 every
epoch; For searching on ImageNet, we randomly sample
100 classes as a proxy search dataset from which we use
80% for updating ω and the other 20% for updating α and
β, pretrain the supernet for 30 epochs without updating the
network architecture and precision, and then search for 90
epochs with an initial temperature of 5 decayed by a factor
of 0.956 every epoch, following (Wu et al., 2019). For both
CIFAR-10/100 and ImageNet, we use an initial learning rate
of 0.1 and an annealing cosine learning rate.

Training settings. For CIFAR-10/100, we train the derived
networks for 600 epochs using a batch size of 256 with an
initial learning rate of 0.1 and an annealing cosine learning
rate on a single NVIDIA RTX-2080Ti GPU following (Liu
et al., 2018a). For ImageNet, we follow the training recipe
in (Wu et al., 2019) on four NVIDIA Tesla V100 GPUs.
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Baselines. We benchmark against four kinds of SOTA base-
lines: (1) the most relevant baseline EDD (Li et al., 2020b)
which co-searches for networks, precisions, and one ac-
celerator paremeters, (2) SOTA methods co-exploring net-
works and accelerators including HS-Co-Opt (Jiang et al.,
2020c), NASAIC (Yang et al., 2020), BSW (Abdelfattah
et al., 2020), and NHAS (Lin et al., 2020), (3) SOTA meth-
ods co-searching for the network and precision including
APQ (Wang et al., 2020) and MP-NAS (Gong et al., 2019),
and (4) hardware-aware NAS with uniform precision, in-
cluding FBNet (Wu et al., 2019), ProxylessNAS (Cai et al.,
2018), and Single-Path NAS (Stamoulis et al., 2019).
Hardware settings. Search space. Our accelerator search
space is inspired by a SOTA accelerator architecture (Shen
et al., 2017; Zhang et al., 2018b) and adopts a chunk-wise
pipelined architecture, aiming to more efficiently accelerate
more recent networks which have diverse network structures.
Specifically, our accelerator search space is a parameterized
chunk-wise pipelined architecture (Shen et al., 2017; Zhang
et al., 2018b), in which the following parameters are search-
able: (1) the parallel PE array, i.e., the number and the
inter-connections of the PEs, (2) the on-chip buffers, i.e.,
allocated lower-level memories for the inputs, weights, and
outputs, (3) the tiling and scheduling for the MAC compu-
tations, and (4) the network layer allocation, i.e., how to
assign each layer to be processed by different chunks within
the chunk-wise pipelined architecture, with all being critical
accelerator parameters as pointed out by SOTA accelerator
works (Chen et al., 2017; Zhang et al., 2015; Yang et al.,
2016). To facilitate automated search, all the choices for
the aforementioned accelerator parameters are formatted
and maintained using vectors so that they can be compatible
with the optimization formulation in Sec. 3.3. Note that
users of our proposed Auto-NBA can easily plug in their
preferred accelerator search space as discussed in Sec. 3.3.

Platforms. To evaluate the generated network and accelera-
tor designs, for FPGA accelerators, we adopt the standard
Vivado HLS (Xilinx Inc., a) design flow on the target Xilinx
ZC706 development board (Xilinx Inc., b), which has a total
900 DSPs (Digital Signal Processors) and 19.1Mb BRAM
(Block RAM); for ASIC accelerators, we use the SOTA
energy estimation tool Timeloop (Parashar et al., 2019) and
Accelergy, (Wu et al., 2019), to validate our generated de-
sign’s performance, with CACTI7 (Balasubramonian et al.,
2017) and Aladdin (Shao et al., 2014) at a 32nm CMOS
technology as unit energy and timing cost plugins.

4.2. Auto-NBA vs. SOTA in Search Efficiency

To evaluate the superiority of Auto-NBA in terms of search
efficiency, we compare the search space size and search time
of Auto-NBA with both RL-based co-search/exploration
works and one-shot NAS methods using the reported data
from the baselines’ original papers as shown in Tab. 2. We

FPS

A
C

C
 (%

)

Auto-NBA

2.52x FPS

1.59x FPS
+ 1.59% ACC

+ 2.18% ACC

1.17x FPS

+ 3.82% ACC

Figure 3. Accuracy vs. FPS trade-off of Auto-NBA against SOTA
efficient DNN solutions on ImageNet.

can see that Auto-NBA consistently require a notably less
search time while handling the largest joint search space
on all the considered tasks. In particular, compared with
the one-shot NAS methods (Guo et al., 2020; Cai et al.,
2019) which can be potentially extended to implement co-
search yet can suffer from a large pretraining cost, Auto-
NBA achieves a 3.6× ∼ 30× less search time on ImageNet,
justifying our choice of differentiable co-search.

4.3. Auto-NBA vs. SOTA in Searched Accelerators

Co-exploration of networks, precision, and accelerators.
Here we benchmark Auto-NBA with SOTA automatically
searched, expert designed, and co-searched/co-explored
DNN algorithms/accelerators on ImageNet, considering
FPGA-based accelerators as shown in Fig. 3 which in-
clude four Auto-NBA searched results for a fair compar-
ison. We can observe that (1) the searched networks by
our Auto-NBA consistently push forward the frontier of
accuracy-FPS trade-offs, compared to all SOTA baselines,
and (2) compared with the most relevant baseline EDD, we
achieve a +1.3% higher accuracy together with a 1.59× bet-
ter FPS. The consistently large improvement of Auto-NBA
over SOTA methods in co-design/co-exploration validate
the necessity and effectiveness of Auto-NBA joint-search
for all the three aspects towards efficient DNN accelerators.

Note that we use EDD’s reported results, and search for the
optimal accelerator based on our accelerator space for APQ,
MP-NAS, and SOTA hardware-aware NAS methods; the
ProxylessNAS-8bit result is reported in APQ (Wang et al.,
2020); and the other baselines are all quantized to 8-bit for
hardware measurement and the accuracies are from the orig-
inal papers without considering their accuracy degradation
due to quantization effects. All methods consider a 450 DSP
limit in FPGA for a fair comparison.

Co-exploration of networks and accelerators. Software-
Hardware co-design is a significant property of our Auto-
NBA framework, so we further benchmark Auto-NBA with
both searched precision and fixed-precision over SOTA net-
work/accelerator co-search/exploration works.
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Figure 4. Benchmark Auto-NBA w/ and w/o precision search (denoted as Auto-NBA-Mixed and Auto-NBA-16bit, respectively) with
SOTA network/accelerator co-exploration methods (Jiang et al., 2020c; Abdelfattah et al., 2020) on CIFAR-10/100/ImageNet.

Table 3. Comparing the accuracy and ASIC efficiency (i.e.,
EDP and area) of Auto-NBA and SOTA co-exploration ASIC
works (Yang et al., 2020).

Optimization Accuracy EDP Area
Methods (%) (J*clock-cycle) (um2)

NAS → ASIC 94.17 3.30E+06 4.83E+09
ASIC → HW-NAS 92.53 2.81E+06 3.86E+09

NASAIC 92.62 1.62E+06 3.34E+09

Auto-NBA 94.34 4.36E+03 5.92E+05

Co-search on FPGA. We benchmark with HS-Co-
Opt (Jiang et al., 2020c) and BSW (Abdelfattah et al., 2020)
on ZC706, under the same DSP limits as the baselines on
CIFAR-10/100/ImageNet. Since all the baselines adopt
a 16-bit fixed-point design, here we provide Auto-NBA
with both fixed 16-bit and searched precision for a fair
comparison. From Fig. 4, we can see that (1) on both
CIFAR-10/100, Auto-NBA with fixed 16-bit consistently
achieves a better accuracy (up to 10.91% and 5.15%,
respectively) and a higher FPS (up to 2.21× and 2.15×,
respectively) under the same DSP constraint, and (2)
when co-searching for the precision, Auto-NBA can more
aggressively push forward the FPS improvement (up to
6.79× and 6.54×, respectively on CIFAR-10/100), implying
the importance of co-exploring the precision dimension
in addition to network and accelerator co-explorations.
Specifically, Auto-NBA with searched precision achieves
a +5.96% higher accuracy and 4.4× FPS improvement on
ImageNet over (Jiang et al., 2020c).

Co-search on ASIC. Here we evaluate Auto-NBA against
three SOTA co-search methods for ASIC-based accelerators.
In Tab. 3, we benchmark Auto-NBA with NASAIC (Yang
et al., 2020) on CIFAR-10, which is the first exploration
towards network/accelerator co-search targeting ASIC accel-
erators, considering both their reported co-search, sequential

Table 4. Benchmark Auto-NBA over NHAS (Lin et al., 2020) un-
der the same precision setting.

Co-search Accuracy Latency Area
Methods (%) (ms) (mm

2)
NHAS (Lin et al., 2020) 70.74 1.58 5.87

Auto-NBA 71.70 1.25 5.50

A
C

C
 (%

)
FPS

1.11x FPS

1.75x FPS

+ 1.55% Acc. + 1.95% 
Acc.

1.67x FPS

Auto-NBA
Auto-NBA w/o heter-sampling

Sequential Opt.

Figure 5. Accuracy vs. FPS trade-off of Auto-NBA, Auto-NBA
w/o heterogeneous sampling, and the sequential optimization base-
line on CIFAR-100, under an FPGA DSP limit of 512.

optimization, and hardware-aware optimization results. We
can observe that compared with both co-search, sequential
optimization, and hardware-aware optimization methods
for exploring the ASIC-based accelerator design space, our
Auto-NBA consistently achieves notably improved trade-
offs between accuracy and EDP, which is equal to the accel-
eration energy cost multiplied with the acceleration latency
(a commonly used metric for ASIC-based accelerators). In
particular, Auto-NBA achieves a +0.17% ∼ +1.81% higher
accuracy together with a 371.56× ∼ 756.88× reduction in
EDP. In the baseline implementations (Yang et al., 2020),
most of the area is occupied by the support for heteroge-
neous functionalities, which leads to a severely low utiliza-
tion of the PE arrays when executing one task, thus leading
to the surprisingly higher area and energy consumption.

We further benchmark Auto-NBA over another co-search
baseline for ASIC-based accelerators, i.e., NHAS (Lin et al.,
2020). In particular, we fix the precision of Auto-NBA to be
4-bit for a fair comparison. As shown in Tab. 4, Auto-NBA
achieves a 0.96% higher accuracy and a 20.9% reduction
in latency under a comparable area consumption compared
with NHAS, verifying the superiority of our Auto-NBA.

4.4. Auto-NBA: Ablation Studies

Scalability under the same DSP. Fig. 5 shows the pareto
frontier achieved by Auto-NBA under the same DSP con-
straint with different accuracy and FPS trade-offs on CIFAR-
100, which indicates that Auto-NBA can handle and is scal-
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Figure 6. Visualization of the searched network, precision, and accelerator that achieves a 72.2% top -1 accuracy on ImageNet and an FPS
of 110 on ZC706 FPGA, where the block definition follows (Wu et al., 2019).

able to a large range of required acceleration efficiency.

Effectiveness of heterogeneous sampling. In addition to
the example and analysis in Sec. 3.2, we further validate
the effectiveness of the proposed heterogeneous sampling
strategy by benchmarking Auto-NBA w/ and w/o homoge-
neous sampling that adopts hard GS sampling (K = 2) for
updating both the weights ω and precision choices β as that
in Fig. 2 (b), the latter of which is termed as Auto-NBA
w/o h-sampling. The achieved trade-offs between the task
accuracy and acceleration FPS in Fig. 5 show that Auto-
NBA w/o h-sampling tends to select lower precision choices
which hurt the achieved accuracy, and is consistently infe-
rior than Auto-NBA with heterogeneous sampling, due to
its inaccurate estimation for different precision ranking.

Comparison with sequential optimization. Considering
the great flexibility on both DNNs’ structure and accelerator
sides, a natural baseline of Auto-NBA is to search the net-
work and precision based on theoretical efficiency metrics
(e.g., total bit operations), and then search for the optimal
accelerator given the searched network and precision from
the first search. We benchmark Auto-NBA over the afore-
mentioned sequential search in Fig. 5 on CIFAR-100, which
shows that Auto-NBA consistently outperforms the sequen-
tial optimization baseline, e.g., a 1.95% higher accuracy
with a 1.75× better FPS, indicating the poor correlation
between theoretical efficiency and real hardware efficiency
and thus motivating the necessity of joint-search.

4.5. Visualization of the searched network, precision,
and accelerator

Fig. 6 visualizes Auto-NBA’ searched network, precision,
and accelerator, from which we discuss our extracted in-
sights below.

Insights for the searched networks of Auto-NBA. The
automatically searched network of Auto-NBA is shown in
Fig. 6 and we can find that wide-shallow networks tend
to better favor real-device efficiency on the ZC706 FPGA
board while achieving a similar accuracy. We conjecture the
reason is that wider networks offer more opportunities for

making use of feature/channel-wise parallelism for a given
batch size, thus leading to a higher resource utilization rate
and thus an overall higher throughput.

Insights for the searched accelerators of Auto-NBA. As
shown in Fig. 6, we can observe that the whole network
is partitioned into multiple pipelined chunks to maximize
the acceleration throughput, with each chunk being high-
lighted using a different color. As (Shen et al., 2017) points
out, such multi-chunk accelerator architectures can boost the
overall utilization of the PE arrays via 1) optimizing each ac-
celerator chunk (i.e., sub-accelerator) for a cluster of layers
which have similar patterns/workloads and 2) pipelining all
the chunks to process different network inputs and process
non-consecutive layers. Additionally, the chunks which are
assigned with the early layers of the network prefer spatially
tiling the feature map height and width as this offers more
parallelism, while the chunks handling the deeper layers
of the network tend to tile the channel dimension as the
parallelism opportunity is more prominent along channel
dimensions at the deeper layers.

An ablation study for Auto-NBA’s accelerator search engine
is provided in the Appendix.

5. Conclusion
In this work, we present Auto-NBA, which is the first to
identify and tackle the prohibitive challenges of jointly
search for the networks, bitwidths, and accelerators for max-
imizing the task accuracy and acceleration efficiency. When
benchmarking with a comprehensive set of SOTA efficient
DNN algorithms, accelerators, and co-explored/co-searched
works, Auto-NBA consistently achieves large improve-
ments, outperforming both SOTA automatically searched
and expert-designed DNNs and accelerators. Auto-NBA
promises to expedite the development of DNN accelerators
which falls far behind DNN algorithm advances.
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