
Maximum Mean Discrepancy Test is Aware of Adversarial Attacks

A. Related Works
In this section, we briefly review related works used in our paper.

A.1. Adversarial attacks

A growing body of research shows that neural networks are vulnerable to adversarial attacks, i.e., test inputs that are
modified slightly yet strategically to cause misclassification (Carlini & Wagner, 2017a; Kurakin et al., 2017; Wang et al.,
2019; Zhang et al., 2020d), which seriously threaten the security-critical computer vision systems, such as autonomous
driving and medical diagnostics (Chen et al., 2015; Ma et al., 2021; Nguyen et al., 2015; Szegedy et al., 2013). Thus, it
is crucial to defend against adversarial attacks (Chen et al., 2020b; Wang et al., 2020a; Zhu et al., 2021), for example, by
injecting adversarial examples into training data, adversarial training methods have been proposed in recent years (Madry
et al., 2018; Bai et al., 2019; Wang et al., 2020b; Zhang et al., 2020a). However, these defenses can generally be evaded by
optimization-based (Opt) attacks, either wholly or partially (Carlini & Wagner, 2017a; He et al., 2018; Li & Vorobeychik,
2014)

A.2. Adversarial data detection

For the adversarial defense, in addition to improving models’ robustness by more effective adversarial training (Chen et al.,
2020a; Wang et al., 2019; Wu et al., 2020; Zhang et al., 2021), recent studies have instead focused on detecting adversarial
data. Based on features extracted from DNNs, most works train classifiers to discriminate adversarial data from both
natural and adversarial data. Recent studies include, a cascade detector based on the PCA projection of activations (Li &
Li, 2017), detection subnetworks based on activations (Metzen et al., 2017), a logistic regression detector based on Kernel
Density KD, and Bayesian Uncertainty (BU) features (Grosse et al., 2017), an augmented neural network detector based on
statistical measures, a learning framework that covers unexplored space invulnerable models (Rouhani et al., 2017), a local
intrinsic dimensionality (LID) based characterization of adversarial data (Ma et al., 2018), a generative classifier based on
Mahalanobis distance-based score (Lee et al., 2018).

A.3. Statistical adversarial data detection

In the safety-critical system, it is important to find reliable data (i.e., natural data) and eliminate adversarial data that is
statistically different from natural data distribution. Thus, statistical detection methods are also proposed to detect if the
upcoming data contains adversarial data (or saying that if upcoming data is from natural data distribution in the view of
statistics). A number of these methods have been introduced, including the use of the Maximum Mean Discrepancy (MMD)
(Gretton et al., 2012b; Borgwardt et al., 2006) with a simple polynomial-time approximation to test whether the upcoming
data are all adversarial data, or all natural images (Grosse et al., 2017), and a kernel density estimation defense used a
Gaussian Mixture Model to model outputs from the final hidden layer of a neural network, to test whether the upcoming
data belongs to a different distribution than that of natural data (Feinman et al., 2017). However, recent studies have shown
these statistical detection failed to work under attack evaluations (Carlini & Wagner, 2017a).

A.4. Two-sample Tests

Two-sample tests aim to check whether two datasets come from the same distribution. Traditional tests such as t-test and
Kolmogorov-Smirnov test are the mainstream of statistical applications, but require strong assumptions on the distributions
being studied. Researchers in statistics and machine learning have been focusing on relaxing these assumptions, with
methods specific to various real-world domains (Sugiyama et al., 2011; Yamada et al., 2011; Kanamori et al., 2012; Gretton
et al., 2012b; Jitkrittum et al., 2016; Sutherland et al., 2017; Chen & Friedman, 2017; Ghoshdastidar et al., 2017; Lopez-Paz
& Oquab, 2017; Li & Wang, 2018; Kirchler et al., 2020; Liu et al., 2020b). In order to involve distributions with complex
structure such as images, deep kernel approaches has been proposed (Sutherland et al., 2017; Wenliang et al., 2019; Jean
et al., 2018), the foremost study has shown that kernels parameterized by deep neural nets, can be trained to maximize
test power in high-dimensional distribution such as images (Liu et al., 2020b). They propose statistical tests of the null
hypothesis that the two distributions are equal against the alternative hypothesis that the two distributions are different. Such
tests have applications in a variety of machine learning problems such as domain adaptation, covariate shift, label-noise
learning, generative modeling, fairness and causal discovery (Binkowski et al., 2018; Zhang et al., 2020c; Fang et al., 2020a;
Gong et al., 2016; Fang et al., 2020b; Liu et al., 2019; Zhang et al., 2020e;b; Liu et al., 2020a; Zhong et al., 2021; Yu et al.,
2020; Stojanov et al., 2019; Lopez-Paz & Oquab, 2017; Oneto et al., 2020).
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Figure 6. Adversarial data on CIFAR-10. We output adversarial examples on a pre-trained ResNet-18, which are attacked by different
methods or under different bounded perturbation ε.

B. Real-world Scenarios regarding SADD
Scenario 1. As an artificial-intelligence service provider, we need to acquire a client by modeling his/her task well, such as
modeling the risk level of manufacturing factory. To finish this task, we need to hire distributed annotators to obtain labeled
natural data regarding the risk level in the factory. However, our competitors may conspire with several annotators against us,
poisoning this training data by injecting malicious adversarial data (Barreno et al., 2010; Kloft & Laskov, 2012). If training
data contains adversarial ones, the test accuracy will drop (Zhang et al., 2019), which makes us lose the client unexpectedly.
To beware of such adversarial attacks, we can use the MMD test to find reliable annotators providing natural training data.

Scenario 2. As a client, we need to purchase artificial-intelligence services to model our task well, such as modeling the
risk level of manufacturing factory mentioned above. Given a variety of models offered by many providers, we should select
the optimal one and need to hire distributed annotators to obtain labeled natural data regarding the risk level in our factory.
However, some artificial-intelligence service providers may conspire with several our annotators, poisoning our testing data
by injecting malicious adversarial data (Barreno et al., 2010; Kloft & Laskov, 2012). If the testing data contains adversarial
ones which are only in the training set of those conspired providers, the test accuracy of conspired providers’ models will
surpass that of their competitors (Madry et al., 2018), which makes us fail to select the optimal provider. To beware of such
adversarial attacks, we can use the MMD test to find reliable annotators providing natural test data.

C. Hilbert-Schmidt Independence Criteria
The HSIC (Gretton et al., 2008; 2005) is a test statistic to work on independence testing (Gretton et al., 2005). HSIC can be
interpreted as the distance between embeddings of the joint distribution and the product of the marginals in a RKHS. More
importantly, HSIC between two random variables is zero if and only if the two variables are independent (Sriperumbudur
et al., 2010). Under the null hypothesis of independence, PXY = PXPY , the minimum variance estimate of HSIC is a
degenerate U-statistic. The formulation of the HSIC is as follows (more details can be found in (Gretton et al., 2005)). Given
two sets of data SX and SY (with size n), the HSIC can be computed using

HSIC(SX , SY ) = E(x1,y1)∼p(x,y),(x2,y2)∼p(x,y)[κX(x1, x2)κY (y1, y2)]

+ Ex1∼p(x),x2∼p(x),y1∼p(y),y2∼p(y)[κX(x1, x2)κY (y1, y2)]

− 2E(x1,y1)∼p(x,y),x2∼p(x),y2∼p(y)[κX(x1, x2)κY (y1, y2)],

(12)
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where κX and κY are two Gaussian kernel functions whose bandwidths are set to two constants, and

E(x1,y1)∼p(x,y),(x2,y2)∼p(x,y)[κX(x1, x2)κY (y1, y2)] =
1

n2

n∑
i=1

n∑
j=1

[κX(xi, xj)κY (yi, yj)]. (13)

D. Asymptotics of the SAMMD
In this section, we will first prove the asymptotics of the SAMMD by assuming that the adversarial data {Yi}i∈Z+ are an
absolutely regular process with mixing coefficients {βk}k>0 defined in the following.
Definition 1 (Absolutely regular process). (i) Let (Ω,A,Q) be a probability space, and let A1,A2 be sub-σ-field of A. We
define

β(A1,A2) = sup
A1,...,An,B1,...,Bm

n∑
i=1

m∑
j=1

|Q(Ai ∩Bj)−Q(Ai)Q(Bj)|, (14)

where the supremum is taken over all partitions A1, . . . , An and B1, . . . , Bm of Ω into elements ofA1 andA2, respectively.
(ii) Given a stochastic process {Yi}i∈Z+ and integers 1 ≤ a ≤ b, we denote by Aba the σ-field generated by the random
variables Ya+1, . . . , Yb. We define the mixing coefficients of absolute regularity by

βk = sup
n∈Z+

β(An1 ,A∞n+k). (15)

The process {Yi}i∈Z+ is called absolutely regular if limk→∞ βk = 0.

Then, we can obtain the main theorem in the following.
Theorem 2 (Asymptotics under H1). Under the alternative, H1 : SY are from a stochastic progress {Yi}+∞i=1 , if {Yi}+∞i=1

is an absolutely regular process with mixing coefficients {βk}k>0 satisfying
∑+∞
k=1 β

δ/(2+δ)
k < +∞ for some δ > 0, then

̂SAMMD
2

u is OP (1/n), and in particular

√
n( ̂SAMMD

2

u − SAMMD2)
d→ N (0, C2

1σ
2
H1

),

where Yi = G`,f̂ (Bε[X ′′i ]) ∼ Q, X ′′i ∼ P, σ2
H1

= 4(EZ [(EZ′h(Z,Z ′))2]− [(EZ,Z′h(Z,Z ′))2]), h(Z,Z ′) = kω(X,X ′) +

kω(Y, Y ′) − kω(X,Y ′) − kω(X ′, Y ), Z := (X,Y ), X ∼ P and X ′′ are independent and C1 < +∞ is a constant for a
given ω.

Proof. Without loss of generality, let Z be a random variable on a probability space (ΩZ ,AZ ,QZ). We will first prove that
{Z}+∞i=1 is an absolutely regular process. According to Eq. (14), we have

βZ(AZ1 ,AZ2 ) = sup
AZ1 ,...,A

Z
n ,B

Z
1 ,...,B

Z
m

n∑
i=1

m∑
j=1

|QZ(AZi ∩BZj )−QZ(AZi )QZ(BZj )|, (16)

where AZ1 ,AZ2 are sub-σ-field of AZ generated by {Z}+∞i=1 and the supremum is taken over all partitions AZ1 , . . . , A
Z
n

and BZ1 , . . . , B
Z
m of Ω into elements of AZ1 and AZ2 , respectively. Since X and Y are independent and Z = (X,Y ),

QZ(Z ∈ AZ) = QZ(X ∈ AX , Y ∈ A) = P(AX)Q(A). Thus, we have QZ(AZi ∩ BZj ) = P(AXi ∩ BXi )Q(Ai ∩ Bi),
QZ(AZi ) = P(AXi )Q(Ai), and QZ(BZi ) = P(BXi )Q(Bi). Since X and X ′ are independent, we have P(AXi ∩ BXi ) =
P(AXi )P(BXi ), meaning that

βZ(AZ1 ,AZ2 ) = sup
AZ1 ,...,A

Z
n ,B

Z
1 ,...,B

Z
m

n∑
i=1

m∑
j=1

P(AXi ∩BXi )|Q(Ai ∩Bj)−Q(Ai)Q(Bj)|. (17)

Due to the supremum, we can safely make P(AXi ∩BXi ) be 1. Thus, we have βZ(AZ1 ,AZ2 ) = β(A1,A2). Namely, {Z}+∞i=1

is an absolutely regular process with mixing coefficients {βk}k>0 satisfying
∑+∞
k=1 β

δ/(2+δ)
k < +∞. Based on Theorem 1

in (Denker & Keller, 1983), since h(·, ·) ≤ 2, we know that

√
n( ̂SAMMD

2

u − SAMMD2)
d→ N (0, 4σ2), (18)
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where

σ2 = E[h1(Z1)]2︸ ︷︷ ︸
σ2
H1

+2

+∞∑
j=1

cov(h1(Z1), h1(Zj)), (19)

h1(Zj) = EZih(Zi, Zj) − θ, and θ = EZi,Zjh(Zi, Zj). Note that, due to P 6= Q, we know σ > 0; due to the absolute
regularity, σ < +∞. Since the possible dependence between Z1 and Zj are caused by Y1 and Yj , we will calculate the
second term in the right side of Eq. (19) in the following. First, we introduce two notations for the convenience.

E(i)
X = EX [kω(Xi, X)− kω(Yi, X)], (20)

E(i)
Y = EY [kω(Xi, Y )− kω(Yi, Y )]. (21)

Thus, we know

h1(Z1) = E(1)
X + E(1)

Y︸ ︷︷ ︸
h̃1(Z1)

−θ, h1(Zj) = E(j)
X + E(j)

Y︸ ︷︷ ︸
h̃1(Zj)

−θ, θ = EZ1
[E(1)
X + E(1)

Y ], (22)

and

θ2 = EZ1
[E(1)
X + E(1)

Y ]EZj [E
(j)
X + E(j)

Y ] =
(
EZ1

[E(1)
X ] + EZ1

[E(1)
Y ]
)(

EZj [E
(j)
X ] + EZj [E

(j)
Y ]
)
. (23)

Then, we can compute the cov(h1(Z1), h1(Zj)).

cov(h1(Z1), h1(Zj)) =EZ1,Zj [(h̃1(Z1)− θ)(h̃1(Zj)− θ)]
=EZ1,Zj [h̃1(Z1)h̃1(Zj)− θh̃1(Zj)− θh̃1(Z1) + θ2]

=EZ1,Zj [h̃1(Z1)h̃1(Zj)]− θ2

=EZ1,Zj [(E
(1)
X + E(1)

Y )(E(j)
X + E(j)

Y )]− θ2

=EZ1,Zj [E
(1)
X E(j)

X + E(1)
X E(j)

Y + E(1)
Y E(j)

X + E(1)
Y E(j)

Y ]− θ2

=EZ1
[E(1)
X ]EZj [E

(j)
X ] + EZ1

[E(1)
X ]EZj [E

(j)
Y ] + EZ1

[E(1)
Y ]EZj [E

(j)
X ] + EZ1,Zj [E

(1)
Y E(j)

Y ]− θ2. (24)

Substituting Eq. (23) into Eq. (24), we have

cov(h1(Z1), h1(Zj)) = EZ1,Zj [E
(1)
Y E(j)

Y ]− EZ1
[E(1)
Y ]EZj [E

(j)
Y ]. (25)

Then, substituting Eq. (21) into Eq. (25), we have

cov(h1(Z1), h1(Zj)) =EY1,Yj

[
EY EY [kω(Y1, Y )kω(Yj , Y )]

]
− EY1

[
EY [kω(Y1, Y )]

]
EYj
[
EY [kω(Yj , Y )]

]
=EY EY

[
EY1,Yj [kω(Y1, Y )kω(Yj , Y )]− EY1

[kω(Y1, Y )]EYj [kω(Yj , Y )]
]
. (26)

Since kω(·, ·) ≤ 1, according to Lemma 1 in (Yoshihara, 1976), we have cov(h1(Z1), h1(Zj)) < 4β
δ/(2+δ)
j . Because∑+∞

k=1 β
δ/(2+δ)
k < +∞, we know, ∀ε′ ∈ (0, 1), there exists an N such that

∑+∞
k=N+1 β

δ/(2+δ)
k < ε′. Hence

+∞∑
j=1

cov(h1(Z1), h1(Zj)) =

N∑
j=1

EY EY
[
EY1,Yj [kω(Y1, Y )kω(Yj , Y )]− EY1

[kω(Y1, Y )]EYj [kω(Yj , Y )]
]

+ c′, (27)

where c′ is a small constant. Without loss of generality, we assume the small constant c′ is smaller than E[h1(Z1)]2. Thus,
there exists a constant C2

1 − 1 such that 2
∑+∞
j=1 cov(h1(Z1), h1(Zj)) = (C2

1 − 1)E[h1(Z1)]2. Namely, σ2 = C2
1σ

2
H1

,
which completes the proof.
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Figure 7. Visualization of outputs using t-SNE. This figure visualizes outputs of the second to last layers in ResNet-18 and ResNet-34.
Different colors represent different semantic meanings (i.e., different classes in the testing set of the SVHN).

Next, we will show that the bootstrapped SAMMD (shown in the following) has the same asymptotic null distribution as the
empirical SAMMD. First, we restate the bootstrapped SAMMD in the following.

̂SAMMDw(SX , SY ; kω)

=
1

n2

n∑
i=1

n∑
j=1

W̃ x
i W̃

x
j kω(xi, xj) +

1

m2

m∑
i=1

m∑
j=1

W̃ y
i W̃

y
j kω(yi, yj)−

2

nm

n∑
i=1

m∑
j=1

W̃ x
i W̃

y
j kω(xi, yj), (28)

where

{W̃X
i }ni=1 = {WX

i }ni=1 −
1

n

n∑
i=1

WX
i , {W̃Y

i }mi=1 = {WY
i }mi=1 −

1

m

m∑
i=1

WY
i . (29)

The WX
i and WY

j are generated by

Wt = e−1/lWt−1 +
√

1− e−2/lεt, (30)

whereW0, ε0, . . . , εt are independent standard normal random variables. Then, following the Proposition 1 in (Chwialkowski
et al., 2014), we can directly obtain the following proposition using the relation between β-mixing and τ -mixing presented
in Eq. (18) in (Chwialkowski et al., 2014).

Proposition 1. Let {Yi}+∞i=1 be an absolutely regular process with mixing coefficients {βk}k>0 satisfying βk =

O(k(−6−ε
′′)(1+δ)) for some ε > 0 and δ > 0, n = ρxn

′ and m = ρyn
′, where n′ = n + m. Then, under the null

hypothesis Yi ∼ P, ψ(ρxρyn
′ ̂SAMMDw(SX , SY ; kω), ρxρyn

′ ̂SAMMD(SX , SY ; kω)) → 0 in probability as n′ → +∞,
where ψ is the Prokhorov metric.

E. Experiments Setup
We implement all methods on Python 3.7 (Pytorch 1.1) with a NVIDIA GeForce RTX2080 Ti GPU. The CIFAR-10 dataset
and the SVHN dataset can be downloaded via Pytorch. See the codes submitted. Given the 50, 000 images from the
CIFAR-10 training set and 73, 257 digits from the SVHN training set, we conduct a standard training on ResNet-18 and
ResNet-34 for classification. Given the 100, 000 images from the Tiny-Imagenet training set, we conduct a standard training
on WRN-32-10 classification. DNNS are trained using SGD with 0.9 momentum, the initial learning rate of 0.01 and the
batch size of 128 for 150 epochs. Based on these pre-trained models, adversarial data is generated from fast gradient sign
method (FGSM) (Goodfellow et al., 2015), basic iterative methods (BIM) (Kurakin et al., 2017), project gradient descent
(PGD) (Madry et al., 2018), Carlini and Wagner attack (CW) (Carlini & Wagner, 2017b), AutoAttack (AA) (Croce & Hein,
2020) and Square attack (Square) (Andriushchenko et al., 2020).
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(a) Six different attacks
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(b) Different ε of FGSM
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(c) Different ε of BIM
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(d) Different ε of CW
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(e) Different ε of AA
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(f) Different ε of PGD
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(g) Different set sizes
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(i) Non-IID (a): PGD
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(j) Non-IID (b): Square
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(k) WRN-Tiny: PGD
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Figure 8. Results of adversarial data detection. Subfigures (a)-(l) report the test power (i.e., the detection rate) when SY are adversarial
data. The ideal test power is 1 (i.e., 100% detection rate). Subfigure (a) - (j) are the experiments on the adversarial data of the CIFAR-10
acquired by ResNet-34. Subfigure (k)-(l) are the experiments on the adversarial data of the Tiny-Imagenet acquired by WRN-32-10.

For each attack method, we generate eight adversarial datasets with the L∞-norm bounded perturbation ε ∈ [0.0235, 0.0784].
For attack methods except FGSM, maximum step K = 20 and step size α = ε/10. For the 10, 000 images from the
CIFAR-10 testing set and 26, 032 digits from the SVHN testing set, we only choose the adversarial data, whose original
images are correctly classified by the pre-trained models. We extract semantic features from the second to last full connected
layer of the well-trained ResNet-18 and ResNet-34. In the wild bootstrap process of SAMMD, given an alternative value set
{0.1, 0.2, 0.5, 1, 5, 10, 15, 20}, we choose the optimal l (in Eq. (6)) depending on whose type I error on natural data is the
most close to α (α = 0.05 in the paper). The optimal value of l we choose is 0.2. For images from the CIFAR-10 (or the
SVHN) testing set and adversarial datasets generated above, we select a subset containing 500 images of the each for Strp
and Strq , and train on that; we then evaluate on 100 random subsets of each, disjoint from the training set, of the remaining
data. We repeat this full process 20 times, and report the mean rejection rate of each test. The learning rate of our SAMMD
test and all baselines is 0.0002.

F. Additional Experiments
Results of ResNet-34 on the CIFAR-10. For the adversarial data acquired by ResNet-34 on CIFAR-10, we also compare
our SAMMD test with baselines in Figure 8. Figure 8a is a supplement of ResNet-18 to Figure 4 that different ε of PGD.
For 6 different attacks, FGSM, BIM, PGD, AA, CW and Square (the Non-IID (b)), Figure 8b reports the test power of all
tests when SY are adversarial data (L∞ norm ε = 0.0314; set size = 500). Figure 8(c)-(h) report the average test power on
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(a) Different ε of FGSM (RN18)
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(b) Different ε of BIM (RN18)
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(c) Different ε of CW (RN18)
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(d) Different ε of AA (RN18)
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(e) Different ε of PGD (RN18)
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(f) Non-IID (b): Square (RN18)
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(g) Different ε of FGSM (RN34)
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(h) Different ε of BIM (RN34)
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(i) Different ε of CW (RN34)
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(j) Different ε of AA (RN34)
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(k) Different ε of PGD (RN34)
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(l) Non-IID (b): Square (RN34)

Figure 9. Results of adversarial data detection on the SVHN. Subfigure (a)-(l) report the test power (i.e., the detection rate) when SY are
adversarial data. The ideal test power is 1 (i.e., 100% detection rate).

Table 2. Average type I error within natural data and natural data on the SVHN and Tiny-ImageNet.

Attack SAMMD MMD-D C2ST-L C2ST-S MMD-O ME SCF MMD-G

SVHN 0.053±0.017 0.037±0.011 0.036±0.010 0.043±0.012 0.017±0.004 0.022±0.005 0.022±0.006 0.015±0.004

Tiny-ImageNet 0.049±0.015 0.046±0.019 0.051±0.023 0.052±0.016 0.048±0.010 0.039±0.007 0.021±0.008 0.047±0.013

different ε of FGSM, BIM, AA, CW and Square (set size = 500). Figure 8i reports the average test power on different set
sizes. Figure 8j reports the average test power when adversarial data and natural data mix. Results show that our SAMMD
test also achieves the highest test power.

Results of ResNet-18 and ResNet-34 on the SVHN. We compare the SAMMD test with 6 existing two-sample tests on
the SVHN. All baselines and experiments setting are the same as those stated in Section 7. We report the type I error in
Table 2. The ideal type I error should be around α (0.05 in this paper). For 6 different attacks that FGSM, BIM, PGD, CW,
AA, Square and different L∞-norm bounded perturbation ε, we report the test power of all tests when SY are adversarial
data in Figure 9. Results show that our SAMMD test also performs the best. Compared to results on CIFAR-10, adversarial
data generated on the SVHN is more easily detected by these state-of-the-art tests.

Results of Wide ResNet on the Tiny-Imagenet. We also validate the effectiveness of SAMMD on the larger network
WRN-32-10 and the larger dataset Tiny-Imagenet. All baselines and experiments setting are the same as those stated in
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Table 3. The average runtime of the SAMMD test and baselines.

Attack SAMMD MMD-D C2ST-L C2ST-S MMD-O ME SCF MMD-G

Runtime(s) 12.51±2.97 47.26±5.92 48.82±4.28 160.78±13.47 11.13±2.15 56.25±8.34 3.59±1.08 1.23±0.17

Section 7. We report the type I error in Table 2. For different attacks PGD and AA, we report the test power of all tests when
SY are adversarial data in Figure 8 (k)-(l). Results show that our SAMMD test also performs the best.

Time complexity of the SAMMD test. Let E denote the cost of computing an embedding φp(x), and K denote the cost
of computing sf̂ (x,y) given φp(x), φp(y) in Eq. (7). Then each iteration of training in Algorithm 1 costs O(mE +m2K),
where m is the minibatch size.

The average runtime. For images from the CIFAR-10 testing set and adversarial datasets generated by PGD, we select
the subset containing 500 images of the each for Strp and Strq , and train on that; we then evaluate on 100 random subsets of
each, disjoint from the training set, of the remaining data. We repeat this full process 1 times and report the average runtime
of our SAMMD test and baselines in Table 3, and the units are seconds.


