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A. The Proof of Lemma 1
Lemma 1. Based on Eq.(5) and Assumption 1, it holds that

R̂n(¯̀◦ F) ≤ c2L`R̂n (Fk)
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where σ = [σ1, . . . , σn], which denotes n Rademacher varibles. Let us first assume c = 2 and use the max operator
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When there are c classes, the general case can be derived from max{z1, . . . , zc} = max{z1,max{z2, . . . , zc}}, by
recurrence, we will have
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By our Assumption 1 and the definition of ¯̀(·), we further have
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ȳi
k )

]

≤ Eσ

[
sup
f∈F

1

n

n∑
i=1

σi`(1− fk(xi), 1− eyik )

]



Supplementary Material for Discriminative Complementary-Label Learning with Weighted Loss

≤ Eσ

[
sup
f∈F

1

n

n∑
i=1

σi`(fk(xi), e
yi
k )

]
= R̂n(` ◦ Fk)

According to Talagrand’s contraction lemma (Ledoux & Talagrand, 1991), we have R̂n(¯̀◦ F) ≤ c2L`R̂n(Fk). �

B. The Proof of Lemma 2
Given the upper bound for R̂n(¯̀◦ F), we can prove Lemma 2 that defines the uniform deviation bound.

Lemma 2. For any δ > 0, with probability at least 1− δ,
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where R̄(f) and R̄n(f) is defined by Eq.(6) and Eq.(7) respectively.

Proof. Consider the single direction supf∈F (R̄(f)− R̄n(f)) with probability at least 1−δ/2. BecauseM is the upper bound
of `, the change of supf∈F
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By symmetrization (Mohri et al., 2012), it is a routine work to show that
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C. The Proof of Theorem 1
According to Lemma 2, we can establish the estimation error bound for the proposed CLL risk estimator. The estimation
error bound is shown in Theorem 1.

Theorem 1. For any δ > 0, with probability at least 1− δ,
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Proof.

R̄(f̄∗n)− R̄(f̄∗) = (R̄n(f̄∗n)− R̄n(f̄∗)) + (R̄(f̄∗n)− R̄n(f̄∗n)) + (R̄n(f̄∗)− R̄(f̄∗))
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Since R̄n(f̄∗n) − R̄n(f̄∗) ≤ 0, the second step in the above equation naturally follows from the first step. The proof is
complete. �



Supplementary Material for Discriminative Complementary-Label Learning with Weighted Loss

MNIST, linear, set 1 MNIST, linear, set 2 MNIST, linear, set 3 

Fashion, linear, set 1 Fashion, linear, set 2 Fashion, linear, set 3 

Kuzushiji, linear, set 1 Kuzushiji, linear, set 2 Kuzushiji, linear, set 3 

MNIST, MLP, set 1 MNIST, MLP, set 2 MNIST, MLP, set 3 

Fashion, MLP, set 1 Fashion, MLP, set 2 Fashion, MLP, set 3 

Kuzushiji, MLP, set 1 Kuzushiji, MLP, set 2 Kuzushiji, MLP, set 3 

Figure 1. The experimental results on various biased settings on the linear model for 300 epochs. The dark color is the mean accuracy and
the light color corresponds to the std.

D. Empirical Risk for Biased Settings
Figure 1 and Figure 2 are corresponding empirical risks for the linear model and MLP model on various datasets and biased
settings.

Results From Figure 1, the empirical risk of PC on three datasets goes non-negative when the generation setting of
complementary labels gradually becomes uniform. Furthermore, as shown in Figure 1, all approaches work normally with
linear base model on MNIST, Fashion-MNIST and Kuzushiji-MNIST, while empirical risk of URE-based methods, such as
PC and GA, goes zero or even negative when the more complex models are applied (shown in 2). Specifically, under the
case of using MLP model, the performance of PC becomes the worst. This is due to the property that URE-based methods
are easy to suffer from over-fitting problem when using complex models (Chou et al., 2020).
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Figure 2. The experimental results on various biased settings on the MLP model for 300 epochs. The dark color is the mean accuracy and
the light color corresponds to the std.


