
Leveraging Unlabeled Data to Guarantee Generalization

Supplementary Material
Throughout this discussion, we will make frequently use of the following standard results concerning the exponential
concentration of random variables:

Lemma 4 (Hoeffding’s inequality for independent RVs (Hoeffding, 1994)). Let Z1, Z2, . . . , Zn be independent bounded
random variables with Zi P ra, bs for all i, then

P

˜

1

n

n
ÿ

i“1

pZi ´ E rZisq ě t

¸

ď exp

ˆ

´
2nt2

pb´ aq2

˙

and

P

˜

1

n

n
ÿ

i“1

pZi ´ E rZisq ď ´t

¸

ď exp

ˆ

´
2nt2

pb´ aq2

˙

for all t ě 0.

Lemma 5 (Hoeffding’s inequality for sampling with replacement (Hoeffding, 1994)). Let Z “ pZ1, Z2, . . . , ZN q be a
finite population of N points with Zi P ra.bs for all i. Let X1, X2, . . . Xn be a random sample drawn without replacement
from Z . Then for all t ě 0, we have

P

˜

1

n

n
ÿ

i“1

pXi ´ µq ě t

¸

ď exp

ˆ

´
2nt2

pb´ aq2

˙

and

P

˜

1

n

n
ÿ

i“1

pXi ´ µq ď ´t

¸

ď exp

ˆ

´
2nt2

pb´ aq2

˙

,

where µ “ 1
N

řN
i“1 Zi.

We now discuss one condition that generalizes the exponential concentration to dependent random variables.

Condition 2 (Bounded difference inequality). Let Z be some set and φ : Zn Ñ R. We say that φ satisfies the bounded
difference assumption if there exists c1, c2, . . . cn ě 0 s.t. for all i, we have

sup
Z1,Z2,...,Zn,Z1iPZn`1

∣∣φpZ1, . . . , Zi, . . . , Znq ´ φpZ1, . . . , Z
1
i, . . . , Znq

∣∣ ď ci .

Lemma 6 (McDiarmid’s inequality (McDiarmid, 1989)). Let Z1, Z2, . . . , Zn be independent random variables on set Z
and φ : Zn Ñ R satisfy bounded difference inequality (Condition 2). Then for all t ą 0, we have

P pφpZ1, Z2, . . . , Znq ´ E rφpZ1, Z2, . . . , Znqs ě tq ď exp

ˆ

´
2t2

řn
i“1 c

2
i

˙

and

P pφpZ1, Z2, . . . , Znq ´ E rφpZ1, Z2, . . . , Znqs ď ´tq ď exp

ˆ

´
2t2

řn
i“1 c

2
i

˙

.

A. Proofs from Sec. 3
Additional notation Let m1 be the number of mislabeled points (rSM ) and m2 be the number of correctly labeled points
(rSC). Note m1 `m2 “ m.
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A.1. Proof of Theorem 1

Proof of Lemma 1. The main idea of our proof is to regard the clean portion of the data (S Y rSC) as fixed. Then, there
exists an (unknown) classifier f˚ that minimizes the expected risk calculated on the (fixed) clean data and (random draws
of) the mislabeled data rSM . Formally,

f˚ :“ argmin
fPF

E
qDpfq , (10)

where
qD “ n

m` n
S ` m2

m` n
rSC `

m1

m` n
D1 .

Note here that qD is a combination of the empirical distribution over correctly labeled data S Y rSC and the (population)
distribution over mislabeled data D1. Recall that

pf :“ argmin
fPF

ESY rSpfq . (11)

Since, pf minimizes 0-1 error on S Y rS, using ERM optimality on (11), we have

ESY rSp
pfq ď ESY rSpf

˚q . (12)

Moreover, since f˚ is independent of rSM , using Hoeffding’s bound, we have with probability at least 1´ δ that

E
rSM
pf˚q ď ED1pf˚q `

d

logp1{δq

2m1
. (13)

Finally, since f˚ is the optimal classifier on qD, we have

E
qDpf

˚q ď E
qDp

pfq . (14)

Now to relate (12) and (14), we multiply (13) by m1

m`n and add n
m`nESpfq `

m2

m`nE rSC
pfq both the sides. Hence, we can

rewrite (13) as follows:

ESY rSpf
˚q ď E

qDpf
˚q `

m1

m` n

d

logp1{δq

2m1
. (15)

Now we combine equations (12), (15), and (14), to get

ESY rSp
pfq ď E

qDp
pfq `

m1

m` n

d

logp1{δq

2m1
, (16)

which implies

E
rSM
p pfq ď ED1p pfq `

d

logp1{δq

2m1
. (17)

Since rS is obtained by randomly labeling an unlabeled dataset, we assume 2m1 « m 3. Moreover, using ED1 “ 1´ ED we
obtain the desired result.

Proof of Lemma 2. Recall E
rSpfq “

m1

m E
rSM
pfq ` m2

m E
rSC
pfq. Hence, we have

2E
rSpfq ´ E

rSM
pfq ´ E

rSC
pfq “

ˆ

2m1

m
E
rSM
pfq ´ E

rSM
pfq

˙

`

ˆ

2m2

m
E
rSC
pfq ´ E

rSC
pfq

˙

(18)

“

ˆ

2m1

m
´ 1

˙

E
rSM
pfq `

ˆ

2m2

m
´ 1

˙

E
rSC
pfq . (19)

3Formally, with probability at least 1´ δ, we have pm´ 2m1q ď
a

m logp1{δq{2.
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Since the dataset is labeled uniformly at random, with probability at least 1´ δ, we have
`

2m1

m ´ 1
˘

ď

b

logp1{δq
2m . Similarly,

we have with probability at least 1´ δ,
`

2m2

m ´ 1
˘

ď

b

logp1{δq
2m . Using union bound, with probability at least 1´ δ, we have

2E
rS ´ E

rSM
pfq ´ E

rSC
pfq ď

c

logp2{δq

2m

´

E
rSM
pfq ` E

rSC
pfq

¯

. (20)

With re-arranging E
rSM
pfq ` E

rSC
pfq and using the inequality 1´ a ď 1

1`a , we have

2E
rS ´ E

rSM
pfq ´ E

rSC
pfq ď 2E

rS

c

logp2{δq

2m
. (21)

Proof of Lemma 3. In the set of correctly labeled points S Y rSC , we have S as a random subset of S Y rSC . Hence, using
Hoeffding’s inequality for sampling without replacement (Lemma 5), we have with probability at least 1´ δ

E
rSC
p pfq ´ ESY rSC

p pfq ď

d

logp1{δq

2m2
. (22)

Re-writing ESY rSC
p pfq as m2

m2`n
E
rSC
p pfq ` n

m2`n
ESp pfq, we have with probability at least 1´ δ

ˆ

n

n`m2

˙

´

E
rSC
p pfq ´ ESp pfq

¯

ď

d

logp1{δq

2m2
. (23)

As before, assuming 2m2 « m, we have with probability at least 1´ δ

E
rSC
p pfq ´ ESp pfq ď

´

1`
m2

n

¯

c

logp1{δq

m
ď

´

1`
m

2n

¯

c

logp1{δq

m
. (24)

Proof of Theorem 1. Having established these core intermediate results, we can now combine above three lemmas to prove
the main result. In particular, we bound the population error on clean data (EDp pfq) as follows:

(i) First, use (17), to obtain an upper bound on the population error on clean data, i.e., with probability at least 1´ δ{4, we
have

EDp pfq ď 1´ E
rSM
p pfq `

c

logp4{δq

m
. (25)

(ii) Second, use (21), to relate the error on the mislabeled fraction with error on clean portion of randomly labeled data and
error on whole randomly labeled dataset, i.e., with probability at least 1´ δ{2, we have

´E
rSM
pfq ď E

rSC
pfq ´ 2E

rS ` 2E
rS

c

logp4{δq

2m
. (26)

(iii) Finally, use (24) to relate the error on the clean portion of randomly labeled data and error on clean training data, i.e.,
with probability 1´ δ{4, we have

E
rSC
p pfq ď ´ESp pfq `

´

1`
m

2n

¯

c

logp4{δq

m
. (27)

Using union bound on the above three steps, we have with probability at least 1´ δ:

EDp pfq ď ESp pfq ` 1´ 2E
rSp
pfq `

´?
2E

rS ` 2`
m

2n

¯

c

logp4{δq

m
. (28)
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A.2. Proof of Proposition 1

Proof of Proposition 1. For a classifier f : X Ñ t´1, 1u, we have 1´ 2 I rfpxq ‰ ys “ y ¨ fpxq. Hence, by definition of
E , we have

1´ 2E
rSpfq “

1

m

m
ÿ

i“1

yi ¨ fpxiq ď sup
fPF

1

m

m
ÿ

i“1

yi ¨ fpxiq . (29)

Note that for fixed inputs px1, x2, . . . , xmq in rS, py1, y2, . . . ymq are random labels. Define φ1py1, y2, . . . , ymq :“
supfPF

1
m

řm
i“1 yi ¨ fpxiq. We have the following bounded difference condition on φ1. For all i,

sup
y1,...ym,y1iPt´1,1um`1

∣∣φ1py1, . . . , yi, . . . , ymq ´ φ1py1, . . . , y1i, . . . , ymq∣∣ ď 1{m. (30)

Similarly, we define φ2px1, x2, . . . , xmq :“ Eyi„Ut´1,1u

“

supfPF
1
m

řm
i“1 yi ¨ fpxiq

‰

. We have the following bounded
difference condition on φ2. For all i,

sup
x1,...xm,x1iPXm`1

∣∣φ2px1, . . . , xi, . . . , xmq ´ φ1px1, . . . , x1i, . . . , xmq∣∣ ď 1{m. (31)

Using McDiarmid’s inequality (Lemma 6) twice with Condition (30) and (31), with probability at least 1´ δ, we have

sup
fPF

1

m

m
ÿ

i“1

yi ¨ fpxiq ´ Ex,y

«

sup
fPF

1

m

m
ÿ

i“1

yi ¨ fpxiq

ff

ď

c

2 logp2{δq

m
. (32)

Combining (29) and (32), we obtain the desired result.

A.3. Proof of Theorem 2

Proof of Theorem 2 follows similar to the proof of Theorem 1. Note that the same results in Lemma 1, Lemma 2, and
Lemma 3 hold in the regularized ERM case. However, the arguments in the proof of Lemma 1 change slightly. Hence, we
state the lemma for regularized ERM and prove it here for completeness.

Lemma 7. Assume the same setup as Theorem 2. Then for any δ ą 0, with probability at least 1´ δ over the random draws
of mislabeled data rSM , we have

EDp pfq ď 1´ E
rSM
p pfq `

c

logp1{δq

m
. (33)

Proof. The main idea of the proof remains the same, i.e. regard the clean portion of the data (S Y rSC ) as fixed. Then, there
exists a classifier f˚ that is optimal over draws of the mislabeled data rSM .

Formally,

f˚ :“ argmin
fPF

E
qDpfq ` λRpfq , (34)

where
qD “ n

m` n
S ` m1

m` n
rSC `

m2

m` n
D1 .

That is, qD a combination of the empirical distribution over correctly labeled data S Y rSC and the (population) distribution
over mislabeled data D1. Recall that

pf :“ argmin
fPF

ESY rSpfq ` λRpfq . (35)

Since, pf minimizes 0-1 error on S Y rS, using ERM optimality on (11), we have

ESY rSp
pfq ` λRp pfq ď ESY rSpf

˚q ` λRpf˚q . (36)
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Moreover, since f˚ is independent of rSM , using Hoeffding’s bound, we have with probability at least 1´ δ that

E
rSM
pf˚q ď ED1pf˚q `

d

logp1{δq

2m1
. (37)

Finally, since f˚ is the optimal classifier on qD, we have

E
qDpf

˚q ` λRpf˚q ď E
qDp

pfq ` λRp pfq . (38)

Now to relate (36) and (38), we can re-write the (37) as follows:

ESY rSpf
˚q ď E

qDpf
˚q `

m1

m` n

d

logp1{δq

2m1
. (39)

After adding λRpf˚q on both sides in (39), we combine equations (36), (39), and (38), to get

ESY rSp
pfq ď E

qDp
pfq `

m1

m` n

d

logp1{δq

2m1
, (40)

which implies

E
rSM
p pfq ď ED1p pfq `

d

logp1{δq

2m1
. (41)

Similar as before, since rS is obtained by randomly labeling an unlabeled dataset, we assume 2m1 « m. Moreover, using
ED1 “ 1´ ED we obtain the desired result.

A.4. Proof of Theorem 3

To prove our results in the multiclass case, we first state and prove lemmas parallel to those used in the proof of balanced
binary case. We then combine these results to obtain the result in Theorem 3.

Before stating the result, we define mislabeled distribution D1 for any D. While D1 and D share the same marginal
distribution over inputs X , the conditional distribution over labels y given an input x „ DX is changed as follows: For any
x, the Probability Mass Function (PMF) over y is defined as: pD1p¨|xq :“

1´pDp¨|xq
k´1 , where pDp¨|xq is the PMF over y for

the distribution D.

Lemma 8. Assume the same setup as Theorem 3. Then for any δ ą 0, with probability at least 1´ δ over the random draws
of mislabeled data rSM , we have

EDp pfq ď pk ´ 1q
´

1´ E
rSM
p pfq

¯

` pk ´ 1q

c

logp1{δq

m
. (42)

Proof. The main idea of the proof remains the same. We begin by regarding the clean portion of the data (S Y rSC ) as fixed.
Then, there exists a classifier f˚ that is optimal over draws of the mislabeled data rSM .

However, in the multiclass case, we cannot as easily relate the population error on mislabeled data to the population accuracy
on clean data. While for binary classification, we could lower bound the population accuracy 1´ ED with the empirical error
on mislabeled data E

rSM
(in the proof of Lemma 1), for multiclass classification, error on the mislabeled data and accuracy on

the clean data in the population are not so directly related. To establish (42), we break the error on the (unknown) mislabeled
data into two parts: one term corresponds to predicting the true label on mislabeled data, and the other corresponds to
predicting neither the true label nor the assigned (mis-)label. Finally, we relate these errors to their population counterparts
to establish (42).

Formally,

f˚ :“ argmin
fPF

E
qDpfq ` λRpfq , (43)
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where
qD “ n

m` n
S ` m1

m` n
rSC `

m2

m` n
D1 .

That is, qD is a combination of the empirical distribution over correctly labeled data S Y rSC and the (population) distribution
over mislabeled data D1. Recall that

pf :“ argmin
fPF

ESY rSpfq ` λRpfq . (44)

Following the exact steps from the proof of Lemma 7, with probability at least 1´ δ, we have

E
rSM
p pfq ď ED1p pfq `

d

logp1{δq

2m1
. (45)

Similar to before, since rS is obtained by randomly labeling an unlabeled dataset, we assume k
k´1m1 « m.

Now we will relate ED1p pfq with EDp pfq. Let yT denote the (unknown) true label for a mislabeled point px, yq (i.e., label
before replacing it with a mislabel).

Epx,yqP„D1
”

I
”

pfpxq ‰ y
ıı

“ Epx,yqP„D1
”

I
”

pfpxq ‰ y ^ pfpxq ‰ yT
ıı

l jh n

I

` Epx,yqP„D1
”

I
”

pfpxq ‰ y ^ pfpxq “ yT
ıı

l jh n

II

. (46)

Clearly, term 2 is one minus the accuracy on the clean unseen data, i.e.,

II “ 1´ Ex,y„D

”

I
”

pfpxq ‰ y
ıı

“ 1´ EDp pfq . (47)

Next, we relate term 1 with the error on the unseen clean data. We show that term 1 is equal to the error on the unseen clean
data scaled by k´2

k´1 , where k is the number of labels. Using the definition of mislabeled distribution D1, we have

I “
1

k ´ 1

˜

Epx,yqP„D

«

ÿ

iPY^i‰y
I
”

pfpxq ‰ i^ pfpxq ‰ y
ı

ff¸

“
k ´ 2

k ´ 1
EDp pfq . (48)

Combining the result in (47), (48) and (46), we have

ED1p pfq “ 1´
1

k ´ 1
EDp pfq . (49)

Finally, combining the result in (49) with equation (45), we have with probability 1´ δ,

EDp pfq ď pk ´ 1q
´

1´ E
rSM
p pfq

¯

` pk ´ 1q

d

k logp1{δq

2pk ´ 1qm
. (50)

Lemma 9. Assume the same setup as Theorem 3. Then for any δ ą 0, with probability at least 1´ δ over the random draws
of rS, we have ∣∣∣kE

rSp
pfq ´ E

rSC
p pfq ´ pk ´ 1qE

rSM
p pfq

∣∣∣ ď 2k

c

logp4{δq

2m
.
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Proof. Recall E
rSpfq “

m1

m E
rSM
pfq ` m2

m E
rSC
pfq. Hence, we have

kE
rSpfq ´ pk ´ 1qE

rSM
pfq ´ E

rSC
pfq “ pk ´ 1q

ˆ

km1

pk ´ 1qm
E
rSM
pfq ´ E

rSM
pfq

˙

`

ˆ

km2

m
E
rSC
pfq ´ E

rSC
pfq

˙

“ k

„ˆ

m1

m
´
k ´ 1

k

˙

E
rSM
pfq `

ˆ

m2

m
´

1

k

˙

E
rSC
pfq



.

Since the dataset is randomly labeled, we have with probability at least 1 ´ δ,
`

m1

m ´ k´1
k

˘

ď

b

logp1{δq
2m . Similarly, we

have with probability at least 1´ δ,
`

m2

m ´ 1
k

˘

ď

b

logp1{δq
2m . Using union bound, we have with probability at least 1´ δ

kE
rSpfq ´ pk ´ 1qE

rSM
pfq ´ E

rSC
pfq ď k

c

logp2{δq

2m

´

E
rSM
pfq ` E

rSC
pfq

¯

. (51)

Lemma 10. Assume the same setup as Theorem 3. Then for any δ ą 0, with probability at least 1 ´ δ over the random
draws of rSC and S, we have ∣∣∣E

rSC
p pfq ´ ESp pfq

∣∣∣ ď 1.5

c

k logp2{δq

2m
.

Proof. In the set of correctly labeled points S Y rSC , we have S as a random subset of S Y rSC . Hence, using Hoeffding’s
inequality for sampling without replacement (Lemma 5), we have with probability at least 1´ δ

E
rSc
p pfq ´ ESY rSC

p pfq ď

d

logp1{δq

2m2
. (52)

Re-writing ESY rSC
p pfq as m2

m2`n
E
rSC
p pfq ` n

m2`n
ESp pfq, we have with probability at least 1´ δ

ˆ

n

n`m2

˙

´

E
rSc
p pfq ´ ESp pfq

¯

ď

d

logp1{δq

2m2
. (53)

As before, assuming km2 « m, we have with probability at least 1´ δ

E
rSc
p pfq ´ ESp pfq ď

´

1`
m2

n

¯

c

k logp1{δq

2m
ď

ˆ

1`
1

k

˙

c

k logp1{δq

2m
. (54)

Proof of Theorem 3. Having established these core intermediate results, we can now combine above three lemmas. In
particular, we bound the population error on clean data (EDp pfq) as follows:

(i) First, use (50), to obtain an upper bound on the population error on clean data, i.e., with probability at least 1´ δ{4, we
have

EDp pfq ď pk ´ 1q
´

1´ E
rSM
p pfq

¯

` pk ´ 1q

d

k logp4{δq

2pk ´ 1qm
. (55)

(ii) Second, use (51) to relate the error on the mislabeled fraction with error on clean portion of randomly labeled data and
error on whole randomly labeled dataset, i.e., with probability at least 1´ δ{2, we have

´pk ´ 1qE
rSM
pfq ď E

rSC
pfq ´ kE

rS ` k

c

logp4{δq

2m
. (56)
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(iii) Finally, use (54) to relate the error on the clean portion of randomly labeled data and error on clean training data, i.e.,
with probability 1´ δ{4, we have

E
rSC
p pfq ď ´ESp pfq `

´

1`
m

kn

¯

c

k logp4{δq

2m
. (57)

Using union bound on the above three steps, we have with probability at least 1´ δ:

EDp pfq ď ESp pfq ` pk ´ 1q ´ kE
rSp
pfq ` p

a

kpk ´ 1q ` k `
?
k `

m

n
?
k
q

c

logp4{δq

2m
. (58)

Simplifying the term in RHS of (58), we get the desired result. in the final bound.
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B. Proofs from Sec. 4
We suppose that the parameters of the linear function are obtained via gradient descent on the following L2 regularized
problem:

LSpw;λq :“
n
ÿ

i“1

pwTxi ´ yiq
2 ` λ ||w||

2
2 , (59)

where λ ě 0 is a regularization parameter. We assume access to a clean dataset S “ tpxi, yiquni“1 „ Dn and randomly
labeled dataset rS “ tpxi, yiqun`mi“n`1 „

rDm. Let X “ rx1, x2, ¨ ¨ ¨ , xm`ns and y “ ry1, y2, ¨ ¨ ¨ , ym`ns. Fix a positive

learning rate η such that η ď 1{
´

ˇ

ˇ

ˇ

ˇXTX
ˇ

ˇ

ˇ

ˇ

op ` λ
2
¯

and an initialization w0 “ 0. Consider the following gradient descent

iterates to minimize objective (59) on S Y rS:

wt “ wt´1 ´ η∇wLSY rSpwt´1;λq @t “ 1, 2, . . . (60)

Then we have twtu converge to the limiting solution pw “
`

XTX ` λI
˘´1

XTy. Define pfpxq :“ fpx; pwq.

B.1. Proof of Theorem 4

We use a standard result from linear algebra, namely the Shermann-Morrison formula (Sherman & Morrison, 1950) for
matrix inversion:

Lemma 11 (Sherman & Morrison (1950)). Suppose A P Rnˆn is an invertible square matrix and u, v P Rn are column
vectors. Then A` uvT is invertible iff 1` vTAu ‰ 0 and in particular

pA` uvT q´1 “ A´1 ´
A´1uvTA´1

1` vTA´1u
. (61)

For a given training set S Y rSC , define leave-one-out error on mislabeled points in the training data as

ELOOp rSM q
“

ř

pxi,yiqP rSM
Epfpiqpxiq, yiq∣∣∣rSM ∣∣∣ ,

where fpiq :“ fpA, pS Y rSqpiqq. To relate empirical leave-one-out error and population error with hypothesis stability
condition, we use the following lemma:

Lemma 12 (Bousquet & Elisseeff (2002)). For the leave-one-out error, we have

E
„

´

ED1p pfq ´ ELOOp rSM q

¯2


ď
1

2m1
`

3β

n`m
. (62)

Proof of the above lemma is similar to the proof of Lemma 9 in Bousquet & Elisseeff (2002) and can be found in App. D.
Before presenting the proof of Theorem 4, we introduce some more notation. Let Xpiq denote the matrix of covariates with
the ith point removed. Similarly, let ypiq be the array of responses with the ith point removed. Define the corresponding

regularized GD solution as pwpiq “
´

XT
piqXpiq ` λI

¯´1

XT
piqypiq. Define pfpiqpxq :“ fpx; pwpiqq.

Proof of Theorem 4. Because squared loss minimization does not imply 0-1 error minimization, we cannot use arguments
from Lemma 1. This is the main technical difficulty. To compare the 0-1 error at a train point with an unseen point, we use
the closed-form expression for pw and Shermann-Morrison formula to upper bound training error with leave-one-out cross
validation error.

The proof is divided into three parts: In part one, we show that 0-1 error on mislabeled points in the training set is lower than
the error obtained by leave-one-out error at those points. In part two, we relate this leave-one-out error with the population
error on mislabeled distribution using Condition 1. While the empirical leave-one-out error is an unbiased estimator of
the average population error of leave-one-out classifiers, we need hypothesis stability to control the variance of empirical
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leave-one-out error. Finally, in part three, we show that the error on the mislabeled training points can be estimated with just
the randomly labeled and clean training data (as in proof of Theorem 1).

Part 1 First we relate training error with leave-one-out error. For any training point pxi, yiq in rS Y S, we have

Ep pfpxiq, yiq “ I
“

yi ¨ x
T
i pw ă 0

‰

“ I
”

yi ¨ x
T
i

`

XTX ` λI
˘´1

XTy ă 0
ı

(63)

“ I

»

—

—

—

–

yi ¨ x
T
i

´

XT
piqXpiq ` x

T
i xi ` λI

¯´1

l jh n

I

pXT
piqypiq ` yi ¨ xiq ă 0

fi

ffi

ffi

ffi

fl

. (64)

Letting A “

´

XT
piqXpiq ` λI

¯

and using Lemma 11 on term 1, we have

Ep pfpxiq, yiq “ I
„

yi ¨ x
T
i

„

A´1 ´
A´1xix

T
i A

´1

1` xTi A
´1xi



pXT
piqypiq ` yi ¨ xiq ă 0



(65)

“ I
„

yi ¨

„

xTi A
´1p1` xTi A

´1xiq ´ x
T
i A

´1xix
T
i A

´1

1` xTi A
´1xi



pXT
piqypiq ` yi ¨ xiq ă 0



(66)

“ I
„

yi ¨

„

xTi A
´1

1` xTi A
´1xi



pXT
piqypiq ` yi ¨ xiq ă 0



. (67)

Since 1` xTi A
´1xi ą 0, we have

Ep pfpxiq, yiq “ I
”

yi ¨ x
T
i A

´1pXT
piqypiq ` yi ¨ xiq ă 0

ı

(68)

“ I
”

xTi A
´1xi ` yi ¨ x

T
i A

´1pXT
piqypiqq ă 0

ı

(69)

ď I
”

yi ¨ x
T
i A

´1pXT
piqypiqq ă 0

ı

“ Ep pfpiqpxiq, yiq . (70)

Using (70), we have

E
rSM
p pfq ď ELOOp rSM q

:“

ř

pxi,yiqP rSM
Ep pfpiqpxiq, yiq∣∣∣ rSM ∣∣∣ . (71)

Part 2 We now relate RHS in (71) with the population error on mislabeled distribution. To do this, we leverage Condition 1
and Lemma 12. In particular, we have

ESY rSM

„

´

ED1p pfq ´ ELOOp rSM q

¯2


ď
1

2m1
`

3β

m` n
. (72)

Using Chebyshev’s inequality, with probability at least 1´ δ, we have

ELOOp rSM q
ď ED1p pfq `

d

1

δ

ˆ

1

2m1
`

3β

m` n

˙

. (73)

Part 3 Combining (73) and (71), we have

E
rSM
p pfq ď ED1p pfq `

d

1

δ

ˆ

1

2m1
`

3β

m` n

˙

. (74)
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Compare (74) with (17) in the proof of Lemma 1. We obtain a similar relationship between E
rSM

and ED1 but with a
polynomial concentration instead of exponential concentration. In addition, since we just use concentration arguments to
relate mislabeled error to the errors on the clean and unlabeled portions of the randomly labeled data, we can directly use the
results in Lemma 2 and Lemma 3. Therefore, combining results in Lemma 2, Lemma 3, and (74) with union bound, we
have with probability at least 1´ δ

EDp pfq ď ESp pfq ` 1´ 2E
rSp
pfq `

´?
2E

rSp
pfq ` 1`

m

2n

¯

c

logp4{δq

m
`

d

4

δ

ˆ

1

m
`

3β

m` n

˙

. (75)

B.2. Extension to multiclass classification

For multiclass problems with squared loss minimization, as standard practice, we consider one-hot encoding for the
underlying label, i.e., a class label c P rks is treated as p0, ¨, 0, 1, 0, ¨, 0q P Rk (with c-th coordinate being 1). As before, we
suppose that the parameters of the linear function are obtained via gradient descent on the following L2 regularized problem:

LSpw;λq :“
n
ÿ

i“1

ˇ

ˇ

ˇ

ˇwTxi ´ yi
ˇ

ˇ

ˇ

ˇ

2

2
` λ

k
ÿ

j“1

||wj ||
2
2 , (76)

where λ ě 0 is a regularization parameter. We assume access to a clean dataset S “ tpxi, yiquni“1 „ Dn and randomly
labeled dataset rS “ tpxi, yiqun`mi“n`1 „

rDm. Let X “ rx1, x2, ¨ ¨ ¨ , xm`ns and y “ rey1 , ey2 , ¨ ¨ ¨ , eym`ns. Fix a positive

learning rate η such that η ď 1{
´

ˇ

ˇ

ˇ

ˇXTX
ˇ

ˇ

ˇ

ˇ

op ` λ
2
¯

and an initialization w0 “ 0. Consider the following gradient descent

iterates to minimize objective (59) on S Y rS:

wj
t “ wj

t´1 ´ η∇wj
LSY rSpw

t´1;λq @t “ 1, 2, . . . and j “ 1, 2, . . . , k . (77)

Then we have twjtu for all j “ 1, 2, ¨ ¨ ¨ , k converge to the limiting solution pwj “
`

XTX ` λI
˘´1

XTyj . Define
pfpxq :“ fpx; pwq.
Theorem 5. Assume that this gradient descent algorithm satisfies Condition 1 with β “ Op1q. Then for a multiclass
classification problem wth k classes, for any δ ą 0, with probability at least 1´ δ, we have:

EDp pfq ď ESp pfq ` pk ´ 1q

ˆ

1´
k

k ´ 1
E
rSp
pfq

˙

`

ˆ

k `
?
k `

m

n
?
k

˙

c

logp4{δq

2m
`
a

kpk ´ 1q

d

4

δ

ˆ

1

m
`

3β

m` n

˙

. (78)

Proof. The proof of this theorem is divided into two parts. In the first part, we relate the error on the mislabeled samples
with the population error on the mislabeled data. Similar to the proof of Theorem 4, we use Shermann-Morrison formula to
upper bound training error with leave-one-out error on each pwj . Second part of the proof follows entirely from the proof of
Theorem 3. In essence, the first part derives an equivalent of (45) for GD training with squared loss and then the second part
follows from the proof of Theorem 3.

Part-1: Consider a training point pxi, yiq in rS Y S. For simplicity, we use ci to denote the class of i-th point and use yi as
the corresponding one-hot embedding. Recall error in multiclass point is given by Ep pfpxiq, yiq “ I

“

ci R argmaxxTi pw
‰

.
Thus, there exists a j ‰ ci P rks, such that we have

Ep pfpxiq, yiq “ I
“

ci R argmaxxTi pw
‰

“ I
“

xTi pwci ă xTi pwj
‰

(79)

“ I
”

xTi
`

XTX ` λI
˘´1

XTyci ă xTi
`

XTX ` λI
˘´1

XTyj

ı

(80)

“ I

»

—

—

—

–

xTi

´

XT
piqXpiq ` x

T
i xi ` λI

¯´1

l jh n

I

´

XT
piqyci piq ` xi ´XT

piqyjpiq

¯

ă 0

fi

ffi

ffi

ffi

fl

. (81)
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Letting A “

´

XT
piqXpiq ` λI

¯

and using Lemma 11 on term 1, we have

Ep pfpxiq, yiq “ I
„

xTi

„

A´1 ´
A´1xix

T
i A

´1

1` xTi A
´1xi



´

XT
piqyci piq ` xi ´XT

piqyjpiq

¯

ă 0



(82)

“ I
„„

xTi A
´1p1` xTi A

´1xiq ´ x
T
i A

´1xix
T
i A

´1

1` xTi A
´1xi



´

XT
piqyci piq ` xi ´XT

piqyjpiq

¯

ă 0



(83)

“ I
„„

xTi A
´1

1` xTi A
´1xi



´

XT
piqyci piq ` xi ´XT

piqyjpiq

¯

ă 0



. (84)

Since 1` xTi A
´1xi ą 0, we have

Ep pfpxiq, yiq “ I
”

xTi A
´1

´

XT
piqyci piq ` xi ´XT

piqyjpiq

¯

ă 0
ı

(85)

“ I
”

xTi A
´1xi ` x

T
i A

´1XT
piqyci piq ´ x

T
i A

´1XT
piqyjpiq ă 0

ı

(86)

ď I
”

xTi A
´1XT

piqyci piq ´ x
T
i A

´1XT
piqyjpiq ă 0

ı

“ Ep pfpiqpxiq, yiq . (87)

Using (87), we have

E
rSM
p pfq ď ELOOp rSM q

:“

ř

pxi,yiqP rSM
Ep pfpiqpxiq, yiq∣∣∣ rSM ∣∣∣ . (88)

We now relate RHS in (71) with the population error on mislabeled distribution. Similar as before, to do this, we leverage
Condition 1 and Lemma 12. Using (73) and (88), we have

E
rSM
p pfq ď ED1p pfq `

d

1

δ

ˆ

1

2m1
`

3β

m` n

˙

. (89)

We have now derived a parallel to (45). Using the same arguments in the proof of Lemma 8, we have

EDp pfq ď pk ´ 1q
´

1´ E
rSM
p pfq

¯

` pk ´ 1q

d

k

δpk ´ 1q

ˆ

1

2m1
`

3β

m` n

˙

. (90)

Part-2: We now combine the results in Lemma 9 and Lemma 10 to obtain the final inequality in terms of quantities that
can be computed from just the randomly labeled and clean data. Similar to the binary case, we obtained a polynomial
concentration instead of exponential concentration. Combining (90) with Lemma 9 and Lemma 10, we have with probability
at least 1´ δ

EDp pfq ď ESp pfq ` pk ´ 1q

ˆ

1´
k

k ´ 1
E
rSp
pfq

˙

`

ˆ

k `
?
k `

m

n
?
k

˙

c

logp4{δq

2m
`
a

kpk ´ 1q

d

4

δ

ˆ

1

m
`

3β

m` n

˙

. (91)

B.3. Discussion on Condition 1

The quantity in LHS of Condition 1 measures how much the function learned by the algorithm (in terms of error on unseen
point) will change when one point in the training set is removed. We need hypothesis stability condition to control the
variance of the empirical leave-one-out error to show concentration of average leave-one-error with the population error.

Additionally, we note that while the dominating term in the RHS of Theorem 4 matches with the dominating term in ERM
bound in Theorem 1, there is a polynomial concentration term (dependence on 1{δ instead of logp

a

1{δq) in Theorem 4.
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Since with hypothesis stability, we just bound the variance, the polynomial concentration is due to the use of Chebyshev’s
inequality instead of an exponential tail inequality (as in Lemma 1). Recent works have highlighted that a slightly stronger
condition than hypothesis stability can be used to obtain an exponential concentration for leave-one-out error (Abou-Moustafa
& Szepesvári, 2019), but we leave this for future work for now.

B.4. Formal statement and proof of Proposition 2

Before formally presenting the result, we will introduce some notation. By LSpwq, we denote the objective in (59) with
λ “ 0. Assume Singular Value Decomposition (SVD) of X as

?
nUS1{2V T . Hence XTX “ V SV T . Consider the GD

iterates defined in (60). We now derive closed form expression for the tth iterate of gradient descent:

wt “ wt´1 ` η ¨X
T py ´Xwt´1q “ pI ´ ηV SV T qwk´1 ` ηX

Ty . (92)

Rotating by V T , we get

rwt “ pI ´ ηSq rwk´1 ` ηry, (93)

where rwt “ V Twt and ry “ V TXTy. Assuming the initial point w0 “ 0 and applying the recursion in (93), we get

rwt “ S´1pI ´ pI ´ ηSqkqry , (94)

Projecting solution back to the original space, we have

wt “ V S´1pI ´ pI ´ ηSqkqV TXTy . (95)

Define ftpxq :“ fpx;wtq as the solution at the tth iterate. Let rwλ “ argminw LSpw;λq “ pXTX ` λIq´1XTy “

V pS ` λIq´1V TXTy. and define rfλpxq :“ fpx; rwλq as the regularized solution. Assume κ be the condition number of
the population covariance matrix and let smin be the minimum positive singular value of the empirical covariance matrix. Our
proof idea is inspired from recent work on relating gradient flow solution and regularized solution for regression problems
(Ali et al., 2018). We will use the following lemma in the proof:

Lemma 13. For all x P r0, 1s and for all k P N, we have (a) kx
1`kx ď 1´ p1´ xqk and (b) 1´ p1´ xqk ď 2 ¨ kx

kx`1 .

Proof. Using p1´ xqk ď 1
1`kx , we have part (a). For part (b), we numerically maximize p1`kxqp1´p1´xqkq

kx for all k ě 1
and for all x P r0, 1s.

Proposition 3 (Formal statement of Proposition 2). Let λ “ 1
tη . For a training point x, we have

Ex„S

”

pftpxq ´ rfλpxqq
2
ı

ď cpt, ηq ¨ Ex„S
“

ftpxq
2
‰

,

where cpt, ηq :“ minp0.25, 1
s2mint

2η2
q. Similarly for a test point, we have

Ex„DX

”

pftpxq ´ rfλpxqq
2
ı

ď κ ¨ cpt, ηq ¨ Ex„DX

“

ftpxq
2
‰

.

Proof. We want to analyze the expected squared difference output of regularized linear regression with regularization
constant λ “ 1

ηt and the gradient descent solution at the tth iterate. We separately expand the algebraic expression for squared
difference at a training point and a test point. Then the main step is to show that

“

S´1pI ´ pI ´ ηSqkq ´ pS ` λIq´1
‰

ĺ

cpη, tq ¨ S´1pI ´ pI ´ ηSqkq.

Part 1 First, we will analyze the squared difference of the output at a training point (for simplicity, we refer to S Y rS as S),
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i.e.,

Ex„S

„

´

ftpxq ´ rfλpxq
¯2


“ ||Xwt ´X rwλ||
2
2 (96)

“
ˇ

ˇ

ˇ

ˇXV S´1pI ´ pI ´ ηSqtqV TXTy ´XV pS ` λIq´1V TXTy
ˇ

ˇ

ˇ

ˇ

2

2
(97)

“
ˇ

ˇ

ˇ

ˇXV
`

S´1pI ´ pI ´ ηSqtq ´ pS ` λIq´1
˘

V TXTy
ˇ

ˇ

ˇ

ˇ

2
(98)

“ yTV X

¨

˚

˚

˝

S´1pI ´ pI ´ ηSqtq ´ pS ` λIq´1

l jh n

I

˛

‹

‹

‚

2

SV TXTy . (99)

We now separately consider term 1. Substituting λ “ 1
tη , we get

S´1pI ´ pI ´ ηSqtq ´ pS ` λIq´1 “ S´1
`

pI ´ pI ´ ηSqtq ´ pI ` S´1λq´1
˘

(100)

“ S´1
`

pI ´ pI ´ ηSqtq ´ pI ` pStηq´1q´1
˘

l jh n

A

. (101)

We now separately bound the diagonal entries in matrix A. With si, we denote ith diagonal entry of S. Note that since
η ď 1{ ||S||op, for all i, ηsi ď 1. Consider ith diagonal term (which is non-zero) of the diagonal matrix A, we have

Aii “
1

si

ˆ

1´ p1´ siηq
t ´

tηsi
1` tηsi

˙

“
1´ p1´ siηq

t

si

¨

˚

˚

˚

˚

˝

1´
tηsi

p1` tηsiqp1´ p1´ siηqtq
l jh n

II

˛

‹

‹

‹

‹

‚

(102)

ď
1

2

„

1´ p1´ siηq
t

si



. (Using Lemma 13 (b))

Additionally, we can also show the following upper bound on term 2:

1´
tηsi

p1` tηsiqp1´ p1´ siηqtq
“
p1` tηsiqp1´ p1´ siηq

tq ´ tηsi
p1` tηsiqp1´ p1´ siηqtq

(103)

ď
1´ p1´ siηq

t ´ tηsip1´ siηq
t

p1` tηsiqp1´ p1´ siηqtq
(104)

ď
1

tηsi
. (Using Lemma 13 (a))

Combining both the upper bounds on each diagonal entry Aii, we have

A ĺ c1pη, tq ¨ S
´1pI ´ pI ´ ηSqtq , (105)

where c1pη, tq “ minp0.5, 1
tsiη
q. Plugging this into (99), we have

Ex„S

„

´

ftpxq ´ rfλpxq
¯2


ď cpη, tq ¨ yTV X
`

S´1pI ´ pI ´ ηSqtq
˘2

SV TXTy (106)

“ cpη, tq ¨ yTV X
`

S´1pI ´ pI ´ ηSqtq
˘

S
`

S´1pI ´ pI ´ ηSqtq
˘

V TXTy (107)

“ cpη, tq ¨ ||Xwt||
2
2 (108)

“ cpη, tq ¨ Ex„S

”

pftpxqq
2
ı

, (109)

where cpη, tq “ minp0.25, 1
t2s2iη

2 q.
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Part 2 With Σ, we denote the underlying true covariance matrix. We now consider the squared difference of output at an
unseen point:

Ex„DX

„

´

ftpxq ´ rfλpxq
¯2


“ Ex„DX

“
ˇ

ˇ

ˇ

ˇxTwt ´ x
T
rwλ

ˇ

ˇ

ˇ

ˇ

2

‰

(110)

“
ˇ

ˇ

ˇ

ˇxTV S´1pI ´ pI ´ ηSqtqV TXTy ´ xTV pS ` λIq´1V TXTy
ˇ

ˇ

ˇ

ˇ

2
(111)

“
ˇ

ˇ

ˇ

ˇxTV
`

S´1pI ´ pI ´ ηSqtq ´ pS ` λIq´1
˘

V TXTy
ˇ

ˇ

ˇ

ˇ

2
(112)

“ yTV X
`

S´1pI ´ pI ´ ηSqtq ´ pS ` λIq´1
˘

V TΣV (113)
`

pI ´ pI ´ ηSqtq ´ pS ` λIq´1
˘

V TXTy (114)

ď σmax ¨ y
TV X

¨

˚

˚

˝

S´1pI ´ pI ´ ηSqtq ´ pS ` λIq´1

l jh n

I

˛

‹

‹

‚

2

V TXTy , (115)

where σmax is the maximum eigenvalue of the underlying covariance matrix Σ. Using the upper bound on term 1 in (105),
we have

Ex„DX

„

´

ftpxq ´ rfλpxq
¯2


ď σmax ¨ cpη, tq ¨ y
TV X

`

S´1pI ´ pI ´ ηSqtq
˘2

V TXTy (116)

“ κ ¨ cpη, tq ¨ σmin ¨
ˇ

ˇ

ˇ

ˇV
`

S´1pI ´ pI ´ ηSqtq
˘

V TXTy
ˇ

ˇ

ˇ

ˇ

2

2
(117)

ď κ ¨ cpη, tq ¨
“

V
`

S´1pI ´ pI ´ ηSqtq
˘

V TXT
‰T

Σ (118)
“

V
`

S´1pI ´ pI ´ ηSqtq
˘

V TXT
‰

y (119)

“ κ ¨ cpη, tq ¨ Ex„DX

“
ˇ

ˇ

ˇ

ˇxTwt
ˇ

ˇ

ˇ

ˇ

2

‰

. (120)

B.5. Extension to deep learning

Under Assumption B.6, we present the formal result parallel to Theorem 3.

Theorem 6. Consider a multiclass classification problem with k classes. Under Assumption 1, for any δ ą 0, with
probability at least 1´ δ, we have

EDp pfq ď ESp pfq ` pk ´ 1q
´

1´ k
k´1E rSp

pfq
¯

` c

d

logp 4δ q

2m
, (121)

for some constant c ď ppc` 1qk `
?
k ` m

n
?
k
q.

The proof follows exactly as in step (i) to (iii) in Theorem 3.

B.6. Justifying Assumption 1

Motivated by the analysis on linear models, we now discuss alternate (and weaker) conditions that imply Assumption 1. We
need hypothesis stability (Condition 1) and the following assumption relating training error and leave-one-error:

Assumption 2. Let pf be a model obtained by training with algorithm A on a mixture of clean S and randomly labeled data
rS. Then we assume we have

E
rSM
p pfq ď ELOOp rSM q

,

for all pxi, yiq P rSM where pfpiq :“ fpA, S Y rSM piqq and ELOOp rSM q
:“

ř

pxi,yiqP
rSM

Ep pfpiqpxiq,yiq

| rSM | .

Intuitively, this assumption states that the error on a (mislabeled) datum px, yq included in the training set is less than the
error on that datum px, yq obtained by a model trained on the training set S ´ tpx, yqu. We proved this for linear models
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trained with GD in the proof of Theorem 5. Condition 1 with β “ Op1q and Assumption 2 together with Lemma 12 implies
Assumption 1 with a polynomial residual term (instead of logarithmic in 1{δ):

ESM
p pfq ď ED1p pfq `

d

1

δ

ˆ

1

m
`

3β

m` n

˙

. (122)
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C. Additional experiments and details
C.1. Datasets

Toy Dataset Assume fixed constants µ and σ. For a given label y, we simulate features x in our toy classification setup as
follows:

x :“ concat rx1, x2s where x1 „ N py ¨ µ, σ2Idˆdq and x1 „ N p0, σ2Idˆdq .

In experiements throughout the paper, we fix dimention d “ 100, µ “ 1.0, and σ “
?
d. Intuitively, x1 carries the

information about the underlying label and x2 is additional noise independent of the underlying label.

CV datasets We use MNIST (LeCun et al., 1998) and CIFAR10 (Krizhevsky & Hinton, 2009). We produce a binary
variant from the multiclass classification problem by mapping classes t0, 1, 2, 3, 4u to label 1 and t5, 6, 7, 8, 9u to label ´1.
For CIFAR dataset, we also use the standard data augementation of random crop and horizontal flip. PyTorch code is as
follows:

(transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip())

NLP dataset We use IMDb Sentiment analysis (Maas et al., 2011) corpus.

C.2. Architecture Details

All experiments were run on NVIDIA GeForce RTX 2080 Ti GPUs. We used PyTorch (Paszke et al., 2019) and Keras with
Tensorflow (Abadi et al., 2016) backend for experiments.

Linear model For the toy dataset, we simulate a linear model with scalar output and the same number of parameters as the
number of dimensions.

Wide nets To simulate the NTK regime, we experiment with 2´layered wide nets. The PyTorch code for 2-layer wide
MLP is as follows:

nn.Sequential(
nn.Flatten(),
nn.Linear(input dims, 200000, bias=True),
nn.ReLU(),
nn.Linear(200000, 1, bias=True)
)

We experiment both (i) with the second layer fixed at random initialization; (ii) and updating both layers’ weights.

Deep nets for CV tasks We consider a 4-layered MLP. The PyTorch code for 4-layer MLP is as follows:

nn.Sequential(nn.Flatten(),
nn.Linear(input dim, 5000, bias=True),
nn.ReLU(),
nn.Linear(5000, 5000, bias=True),
nn.ReLU(),
nn.Linear(5000, 5000, bias=True),
nn.ReLU(),
nn.Linear(1024, num label, bias=True)
)

For MNIST, we use 1000 nodes instead of 5000 nodes in the hidden layer. We also experiment with convolutional nets.
In particular, we use ResNet18 (He et al., 2016). Implementation adapted from: https://github.com/kuangliu/
pytorch-cifar.git.

Deep nets for NLP We use a simple LSTM model with embeddings intialized with ELMo embeddings (Peters et al.,
2018). Code adapted from: https://github.com/kamujun/elmo_experiments/blob/master/elmo_
experiment/notebooks/elmo_text_classification_on_imdb.ipynb
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We also evaluate our bounds with a BERT model. In particular, we fine-tune an off-the-shelf uncased BERT model (Devlin
et al., 2018). Code adapted from Hugging Face Transformers (Wolf et al., 2020): https://huggingface.co/
transformers/v3.1.0/custom_datasets.html.

C.3. Additonal experiments

Results with SGD on underparameterized linear models
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Figure 3. We plot the accuracy and corresponding bound (RHS in (1)) at δ “ 0.1 for toy binary classification task. Results aggregated
over 3 seeds. Accuracy vs fraction of unlabeled data (w.r.t clean data) in the toy setup with a linear model trained with SGD. Results
parallel to Fig. 2(a) with SGD.

Results with wide nets on binary MNIST

0.0 0.1 0.2 0.3 0.4
Fraction of unlabeled data

50

60

70

80

90

100

Ac
cu

ra
cy

MNIST

GD
Early stop
Weight decay

Test
Predicted bound

(a) GD with MSE loss
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(b) SGD with CE loss
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(c) SGD with MSE loss

Figure 4. We plot the accuracy and corresponding bound (RHS in (1)) at δ “ 0.1 for binary MNIST classification. Results aggregated
over 3 seeds. Accuracy vs fraction of unlabeled data for a 2-layer wide network on binary MNIST with both the layers training in (a,b)
and only first layer training in (c). Results parallel to Fig. 2(b) .

Results on CIFAR 10 and MNIST We plot epoch wise error curve for results in Table 1(Fig. 5 and Fig. 6). We observe
the same trend as in Fig. 1. Additionally, we plot an oracle bound obtained by tracking the error on mislabeled data which
nevertheless were predicted as true label. To obtain an exact emprical value of the oracle bound, we need underlying true
labels for the randomly labeled data. While with just access to extra unlabeled data we cannot calculate oracle bound, we
note that the oracle bound is very tight and never violated in practice underscoring an importamt aspect of generalization
in multiclass problems. This highlight that even a stronger conjecture may hold in multiclass classification, i.e., error on
mislabeled data (where nevertheless true label was predicted) lower bounds the population error on the distribution of
mislabeled data and hence, the error on (a specific) mislabeled portion predicts the population accuracy on clean data. On
the other hand, the dominating term of in Theorem 3 is loose when compared with the oracle bound. The main reason, we
believe is the pessimistic upper bound in (45) in the proof of Lemma 8. We leave an investigation on this gap for future.

Results on CIFAR 100 On CIFAR100, our bound in (5) yields vacous bounds. However, the oracle bound as explained
above yields tight guarantees in the initial phase of the learning (i.e., when learning rate is less than 0.1) (Fig. 7).

C.4. Hyperparameter Details

Fig. 1 We use clean training dataset of size 40, 000. We fix the amount of unlabeled data at 20% of the clean size, i.e. we
include additional 8, 000 points with randomly assigned labels. We use test set of 10, 000 points. For both MLP and ResNet,
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(b) ResNet

Figure 5. Per epoch curves for CIFAR10 corresponding results in Table 1. As before, we just plot the dominating term in the RHS of
(5) as predicted bound. Additionally, we also plot the predicted lower bound by the error on mislabeled data which nevertheless were
predicted as true label. We refer to this as “Oracle bound”. See text for more details.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epoch

10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

Test accuracy
Predicted bound
Oracle bound

(a) MLP
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(b) ResNet

Figure 6. Per epoch curves for MNIST corresponding results in Table 1. As before, we just plot the dominating term in the RHS of (5) as
predicted bound. Additionally, we also plot the predicted lower bound by the error on mislabeled data which nevertheless were predicted
as true label. We refer to this as “Oracle bound”. See text for more details.

we use SGD with an initial learning rate of 0.1 and momentum 0.9. We fix the weight decay parameter at 5ˆ 10´4. After
100 epochs, we decay the learning rate to 0.01. We use SGD batch size of 100.

Fig. 2 (a) We obtain a toy dataset according to the process described in Sec. C.1. We fix d “ 100 and create a dataset of
50, 000 points with balanced classes. Moreover, we sample additional covariates with the same procedure to create randomly
labeled dataset. For both SGD and GD training, we use a fixed learning rate 0.1.

Fig. 2 (b) Similar to binary CIFAR, we use clean training dataset of size 40, 000 and fix the amount of unlabeled data at
20% of the clean dataset size. To train wide nets, we use a fixed learning of 0.001 with GD and SGD. We decide the weight
decay parameter and the early stopping point that maximizes our generalization bound (i.e. without peeking at unseen data ).
We use SGD batch size of 100.

Fig. 2 (c) With IMDb dataset, we use a clean dataset of size 20, 000 and as before, fix the amount of unlabeled data at 20%
of the clean data. To train ELMo model, we use Adam optimizer with a fixed learning rate 0.01 and weight decay 10´6 to
minimize cross entropy loss. We train with batch size 32 for 3 epochs. To fine-tune BERT model, we use Adam optimizer
with learning rate 5ˆ 10´5 to minimize cross entropy loss. We train with a batch size of 16 for 1 epoch.

Table 1 For multiclass datasets, we train both MLP and ResNet with the same hyperparameters as described before. We
sample a clean training dataset of size 40, 000 and fix the amount of unlabeled data at 20% of the clean size. We use SGD
with an initial learning rate of 0.1 and momentum 0.9. We fix the weight decay parameter at 5ˆ 10´4. After 30 epochs for
ResNet and after 50 epochs for MLP, we decay the learning rate to 0.01. We use SGD with batch size 100. For Fig. 7, we
use the same hyperparameters as CIFAR10 training, except we now decay learning rate after 100 epochs.

In all experiments, to identify the best possible accuracy on just the clean data, we use the exact same set of hyperparamters
except the stopping point. We choose a stopping point that maximizes test performance.
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Figure 7. Predicted lower bound by the error on mislabeled data which nevertheless were predicted as true label with ResNet18 on
CIFAR100. We refer to this as “Oracle bound”. See text for more details. The bound predicted by RATT (RHS in (5)) is vacuous.

C.5. Summary of experiments

Classification type Model category Model Dataset

Binary

Low dimensional Linear model Toy Gaussain dataset
Overparameterized 2-layer wide net Binary MNISTlinear nets

Deep nets

MLP Binary MNIST
Binary CIFAR

ResNet Binary MNIST
Binary CIFAR

ELMo-LSTM model IMDb Sentiment Analysis
BERT pre-trained model IMDb Sentiment Analysis

Multiclass Deep nets

MLP MNIST
CIFAR10

ResNet
MNIST

CIFAR10
CIFAR100
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D. Proof of Lemma 12
Proof of Lemma 12. Recall, we have a training set S Y rSC . We defined leave-one-out error on mislabeled points as

ELOOp rSM q
“

ř

pxi,yiqP rSM
Epfpiqpxiq, yiq∣∣∣rSM ∣∣∣ ,

where fpiq :“ fpA, pS Y rSqpiqq. Define S1 :“ S Y rS. Assume px, yq and px1, y1q as i.i.d. samples from D1. Using Lemma
25 in Bousquet & Elisseeff (2002), we have

E
„

´

ED1p pfq ´ ELOOp rSM q

¯2


ďES1,px,yq,px1,y1q
”

Ep pfpxq, yqEp pfpx1q, y1q
ı

´ 2ES1,px,yq
”

Ep pfpxq, yqEpfpiqpxiq, yiq
ı

`
m1 ´ 1

m1
ES1

“

Epfpiqpxiq, yiqEpfpjqpxjq, yjq
‰

`
1

m1
ES1

“

Epfpiqpxiq, yiq
‰

. (123)

We can rewrite the equation above as :

E
„

´

ED1p pfq ´ ELOOp rSM q

¯2


ď ES1,px,yq,px1,y1q
”

Ep pfpxq, yqEp pfpx1q, y1q ´ Ep pfpxq, yqEpfpiqpxiq, yiq
ı

l jh n

I

` ES1
”

Epfpiqpxiq, yiqEpfpjqpxjq, yjq ´ Ep pfpxq, yqEpfpiqpxiq, yiq
ı

l jh n

II

`
1

m1
ES1

“

Epfpiqpxiq, yiq ´ Epfpiqpxiq, yiqEpfpjqpxjq, yjq
‰

l jh n

III

. (124)

We will now bound term III. Using Cauchy-Schwarz’s inequality, we have

ES1
“

Epfpiqpxiq, yiq ´ Epfpiqpxiq, yiqEpfpjqpxjq, yjq
‰2
ď ES1

“

Epfpiqpxiq, yiq
‰2 ES1

“

1´ Epfpjqpxjq, yjq
‰2

(125)

ď
1

4
. (126)

Note that since pxi, yiq, pxj , yjq, px, yq, and px1, y1q are all from same distribution D1, we directly incorporate the bounds
on term I and II from the proof of Lemma 9 in Bousquet & Elisseeff (2002). Combining that with (126) and our definition
of hypothesis stability in Condition 1, we have the required claim.


