Supplementary material for the paper:
 "What does LIME really see in images?"

June 10, 2021

Organization of the supplementary material

In this appendix, we present the detailed proof of our main results (Theorem 1 and Proposition 2) and additional qualitative results. We follow the proof scheme of Garreau and von Luxburg 2020. In a nutshell, when $\lambda=0$, the main problem

$$
\begin{equation*}
\hat{\beta}_{n}^{\lambda} \in \underset{\beta \in \mathbb{R}^{\alpha+1}}{\arg \min }\left\{\sum_{i=1}^{n} \pi_{i}\left(y_{i}-\beta^{\top} z_{i}\right)^{2}+\lambda\|\beta\|^{2}\right\} \tag{1}
\end{equation*}
$$

reduces to least squares, with $\hat{\beta}_{n}$ given in closed-form by

$$
\hat{\beta}_{n}=\left(Z^{\top} W Z\right)^{-1} Z^{\top} W y,
$$

with $Z \in\{0,1\}^{n \times d}$ the matrix whose lines are given by the $z_{i} \mathrm{~S}$ and W the diagonal matrix such that $W_{i, i}=\pi_{i}$. Setting $\hat{\Sigma}_{n}:=\frac{1}{n} Z^{\top} W Z$ and $\hat{\Gamma}_{n}:=\frac{1}{n} Z^{\top} W y$, the study of $\hat{\beta}_{n}$ can be split in two parts: the examination of $\hat{\Sigma}_{n}$ (Section 1), and then that of $\hat{\Gamma}_{n}$ (Section 22). We put everything together in Section 3 , proving the concentration of $\hat{\beta}_{n}$ and providing the expression of β^{f}. All technical results are collected in Section 4 Finally, additional qualitative results are presented in Section 5

1 Study of $\hat{\Sigma}_{n}$

We start by the study of $\hat{\Sigma}_{n}$, first computing its limit Σ when $n \rightarrow+\infty$ (Section 1.1). We show that Σ is invertible in closed-form in Section 1.2 We then proceed to show that $\hat{\Sigma}_{n}$ is concentrated around Σ in Section 1.3 We conclude this section by obtaining a control on the operator norm of Σ^{-1} (Section 1.4), a technical requirement for the proof of the main result.

1.1 Computation of Σ

By definition of Z and W, the matrix $\hat{\Sigma}_{n}$ can be written

$$
\hat{\Sigma}=\left(\begin{array}{cccc}
\frac{1}{n} \sum_{n=1}^{n} \pi_{i} & \frac{1}{n} \sum_{i=1}^{n} \pi_{i} z_{i, 1} & \cdots & \frac{1}{n} \sum_{n=1}^{n} \pi_{i} z_{i, d} \\
\frac{\sum_{i=1}^{n} \pi_{i} z_{i, 1}}{} & \frac{1}{n} \sum_{i=1}^{n} \pi_{i} z_{i, 1} & \cdots & \frac{1}{n} \sum_{i=1}^{n} \pi_{i} z_{i, 1} z_{i, d} \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Recall that we defined the random variable z such that z_{i} is i.i.d. z for any i, as well as π and x the associated weights and perturbed samples. For any $p \geqslant 0$, we also defined $\alpha_{p}=\mathbb{E}\left[\pi \prod_{i=1}^{p} z_{i}\right]$ (Definition 1). Taking the expectation with respect to z in the previous display, we obtain

$$
\Sigma_{j, k}= \begin{cases}\alpha_{0} & \text { if } j=k=0, \\ \alpha_{1} & \text { if } j=0 \text { and } k>0 \text { or } j>0 \text { and } k=0 \text { or } j=k>0, \\ \alpha_{2} & \text { otherwise. }\end{cases}
$$

As promised, it is possible to compute the α coefficients in closed-form. Let us denote by S the number of superpixel deletions. Since the coordinates of z are i.i.d. Bernoulli with parameter $1 / 2$, we deduce that S is a binomial random variable of parameters d and $1 / 2$. Note that, conditionally to $S=s$, $\sum_{j} z_{j}=d-s$ and therefore $\pi=\psi(s / d)$ with

$$
\begin{equation*}
\forall t \in[0,1], \quad \psi(t):=\exp \left(\frac{-(1-\sqrt{1-t})^{2}}{2 \nu^{2}}\right) \tag{2}
\end{equation*}
$$

as in the paper. As a consequence of these observations, we have:

Figure 1: The first three α coefficients as a function of the bandwidth ν for $d=50$. In green the limit value given by Lemma 1

Proposition 1 (Computation of the α coefficients). Let $p \geqslant 0$ be an integer. Then

$$
\alpha_{p}=\frac{1}{2^{d}} \sum_{s=0}^{d}\binom{d-p}{s} \psi(s / d) .
$$

Proof. We write

$$
\begin{array}{rlr}
\alpha_{p} & =\mathbb{E}\left[\pi z_{1} \cdots z_{p}\right] \\
& =\sum_{s=0}^{d} \mathbb{E}_{s}\left[\pi z_{1} \cdots z_{p}\right] \mathbb{P}(S=s) & \text { (law of total expectation) } \\
& =\frac{1}{2^{d}} \sum_{s=0}^{d}\binom{d}{s} \mathbb{E}_{s}\left[\pi z_{1} \cdots z_{p} \mid z_{1}=1, \ldots, z_{p}=1\right] \mathbb{P}_{s}\left(z_{1}=1, \ldots, z_{p}=1\right) & (S \sim \mathcal{B}(n, 1 / 2)) \\
& =\frac{1}{2^{d}} \sum_{s=0}^{d}\binom{d}{s} \psi(s / d) \mathbb{P}_{s}\left(z_{1}=1, \ldots, z_{p}=1\right) & \text { (definition of } \psi) \\
\alpha_{p} & =\frac{1}{2^{d}} \sum_{s=0}^{d}\binom{d}{s} \frac{(d-p)!}{d!} \cdot \frac{(d-s)!}{(d-s-p)!} \psi(s / d) & \text { (Lemma 3) }
\end{array}
$$

We conclude by some algebra.
It is quite straightforward to compute the limits of the α coefficients when $\nu \rightarrow+\infty$. In fact, since $\mathrm{e}^{-1 /\left(2 \nu^{2}\right)} \leqslant \psi(t) \leqslant 1$ for any $\nu>0$, we have the following bounds on α_{p} :
Lemma 1 (Bounding the α coefficients). For any $p \geqslant 0$, we have

$$
\frac{\mathrm{e}^{\frac{-1}{2 \nu^{2}}}}{2^{p}} \leqslant \alpha_{p} \leqslant \frac{1}{2^{p}} .
$$

In particular, when $\nu \rightarrow+\infty$, we have $\alpha_{p} \rightarrow \frac{1}{2^{p}}$ for any $p \geqslant 0$.
We demonstrate these approximations in Figure 1

1.2σ coefficients

Since the structure of Σ is the same as in the text case Mardaoui and Garreau, 2021, we can invert it similarly.

Proposition 2 (Inverse of Σ). For any $d \geqslant 1$, recall that we defined

$$
\left\{\begin{aligned}
\sigma_{1} & =-\alpha_{1}, \\
\sigma_{2} & =\frac{(d-2) \alpha_{0} \alpha_{2}-(d-1) \alpha_{1}^{2}+\alpha_{0} \alpha_{1}}{\alpha_{1}-\alpha_{2}}, \\
\sigma_{3} & =\frac{\alpha_{1}^{2}-\alpha_{0} \alpha_{2}}{\alpha_{1}-\alpha_{2}},
\end{aligned}\right.
$$

and $c_{d}=(d-1) \alpha_{0} \alpha_{2}-d \alpha_{1}^{2}+\alpha_{0} \alpha_{1}$. Let us further define $\sigma_{0}:=(d-1) \alpha_{2}+\alpha_{1}$. Assume that $c_{d} \neq 0$ and $\alpha_{1} \neq \alpha_{2}$. Then Σ is invertible, and it holds that

$$
\Sigma^{-1}=\frac{1}{c_{d}}\left(\begin{array}{ccccc}
\sigma_{0} & \sigma_{1} & \sigma_{1} & \cdots & \sigma_{1} \tag{3}\\
\sigma_{1} & \sigma_{2} & \sigma_{3} & \cdots & \sigma_{3} \\
\sigma_{1} & \sigma_{3} & \sigma_{2} & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \sigma_{3} \\
\sigma_{1} & \sigma_{3} & \cdots & \sigma_{3} & \sigma_{2}
\end{array}\right) \in \mathbb{R}^{(d+1) \times(d+1)}
$$

Figure 2: The first four σ coefficients as a function of the bandwidth ν for $d=50$. In green, the limit values given by Eq. (4).

From Lemma 1 we deduce

$$
\sigma_{0} \rightarrow \frac{d+1}{4}, \quad \sigma_{1} \rightarrow \frac{-1}{2}, \quad \sigma_{2} \rightarrow 1, \quad \sigma_{3} \rightarrow 0, \quad \text { and } \quad c_{d} \rightarrow 1 / 4 .
$$

Figure 3: Evolution of c_{d} with respect to ν when $d=50$.

Note that in this case the lower bound obtained on c_{d} is tight. We show the evolution of c_{d} with respect to the bandwidth in Figure 3

Proof. By definition of the α coefficients and Pascal identity, it holds that

$$
\begin{equation*}
\alpha_{p}-\alpha_{p+1}=\frac{1}{2^{d}} \sum_{s=0}^{d}\binom{d-p-1}{s-1} \psi\left(\frac{s}{d}\right) \tag{5}
\end{equation*}
$$

for any $p \geqslant 0$. Since $\mathrm{e}^{-1 /\left(2 \nu^{2}\right)} \leqslant \psi(t) \leqslant 1$ for any $1 \leqslant t \leqslant 1$, we deduce from Eq. (5) that, for any $p \geqslant 0$,

$$
\begin{equation*}
\frac{\mathrm{e}^{\frac{-1}{2^{2}}}}{2^{p+1}} \leqslant \alpha_{p}-\alpha_{p+1} \leqslant \frac{1}{2^{p+1}} \tag{6}
\end{equation*}
$$

We deduce the lower bound on $\alpha_{1}-\alpha_{2}$ by setting $p=1$ in the previous display.
Let us turn to c_{d}. We write

$$
\begin{align*}
c_{d} & =d \alpha_{1}\left(\alpha_{0}-\alpha_{1}\right)-(d-1) \alpha_{0}\left(\alpha_{1}-\alpha_{2}\right) \\
& =\frac{1}{4^{d}}\left[d \cdot \sum_{s=0}^{d}\binom{d-1}{s} \psi\left(\frac{s}{d}\right) \cdot \sum_{s=0}^{d}\binom{d-1}{s-1} \psi\left(\frac{s}{d}\right)-(d-1) \cdot \sum_{s=0}^{d}\binom{d}{s} \psi\left(\frac{s}{d}\right) \cdot \sum_{s=0}^{d}\binom{d-2}{s-1} \psi\left(\frac{s}{d}\right)\right] \tag{5}
\end{align*}
$$

$$
c_{d}=\frac{1}{4^{d}}\left[\sum_{s=0}^{d}\binom{d-1}{s} \psi\left(\frac{s}{d}\right) \cdot \sum_{s=0}^{d} s\binom{d}{s} \psi\left(\frac{s}{d}\right)-\sum_{s=0}^{d}\binom{d}{s} \psi\left(\frac{s}{d}\right) \cdot \sum_{s=0}^{d} s\binom{d-1}{s} \psi\left(\frac{s}{d}\right)\right]
$$

where we used elementary properties of the binomial coefficients in the last display. For any $0 \leqslant s \leqslant d$, let us set

$$
A_{s}:=\binom{d-1}{s} \sqrt{\psi\left(\frac{s}{d}\right)}, B_{s}:=s \sqrt{\psi\left(\frac{s}{d}\right)}, C_{s}:=\sqrt{\psi\left(\frac{s}{d}\right)}, \text { and } D_{s}:=\binom{d}{s} \sqrt{\psi\left(\frac{s}{d}\right)} .
$$

With these notation,

$$
c_{d}=\frac{1}{4^{d}}\left[\sum_{s} A_{s} C_{s} \cdot \sum_{s} B_{s} D_{s}-\sum_{s} A_{s} B_{s} \cdot \sum C_{s} D_{s}\right] .
$$

According to the four-letter identity (Proposition 13), we can rewrite c_{d} as

$$
\begin{aligned}
c_{d} & =\frac{1}{4^{d}} \sum_{s<t}\left(A_{s} D_{t}-A_{t} D_{s}\right)\left(C_{s} B_{t}-C_{t} B_{s}\right) \\
& =\frac{1}{4^{d}} \sum_{s<t}(t-s)\left(\binom{d-1}{s}\binom{d}{t}-\binom{d-1}{t}\binom{d}{s}\right) \psi\left(\frac{s}{d}\right) \psi\left(\frac{t}{d}\right) \\
c_{d} & =\frac{1}{d \cdot 4^{d}} \sum_{s<t}\binom{d}{s}\binom{d}{t}(s-t)^{2} \psi\left(\frac{s}{d}\right) \psi\left(\frac{t}{d}\right) .
\end{aligned}
$$

Since $\mathrm{e}^{-1 /\left(2 \nu^{2}\right)} \leqslant \psi(t) \leqslant 1$ for any $1 \leqslant t \leqslant 1$, all that is left to do is to control the double sum. According to Proposition 14, we have

$$
\sum_{s<t}\binom{d}{s}\binom{d}{t}(s-t)^{2}=d \cdot 4^{d-1}
$$

We deduce that

$$
\begin{equation*}
\frac{\mathrm{e}^{\frac{-1}{2 \nu^{2}}}}{4} \leqslant c_{d} \leqslant \frac{1}{4} \tag{7}
\end{equation*}
$$

We conclude this section with useful relationships between α and σ coefficients.
Proposition 4 (Useful equalities). Let α_{p}, σ_{p}, and c_{d} be defined as above. Then it holds that

$$
\begin{gather*}
\sigma_{0} \alpha_{1}+\sigma_{1} \alpha_{1}+(d-1) \sigma_{1} \alpha_{2}=0 \tag{8}\\
\sigma_{1} \alpha_{1}+\sigma_{2} \alpha_{1}+(d-1) \sigma_{3} \alpha_{2}=c_{d} \tag{9}\\
\sigma_{1} \alpha_{1}+\sigma_{2} \alpha_{2}+\sigma_{3} \alpha_{1}+(d-2) \sigma_{3} \alpha_{2}=0 \tag{10}\\
\sigma_{1} \alpha_{0}+\sigma_{2} \alpha_{1}+(d-1) \sigma_{3} \alpha_{1}=0 \tag{11}\\
\sigma_{0} \alpha_{0}+d \sigma_{1} \alpha_{1}=c_{d} \tag{12}
\end{gather*}
$$

Proof. Straightforward from the definitions.

1.3 Concentration of $\hat{\Sigma}_{n}$

We now turn to the concentration of $\hat{\Sigma}_{n}$ around Σ. More precisely, we show that $\hat{\Sigma}_{n}$ is close to Σ in operator norm, with high probability. Since the definition of $\hat{\Sigma}_{n}$ is identical to the one in the Tabular LIME case, we can use the proof machinery of Garreau and von Luxburg 2020.
Proposition 5 (Concentration of $\hat{\Sigma}_{n}$). For any $t \geqslant 0$,

$$
\mathbb{P}\left(\left\|\hat{\Sigma}_{n}-\Sigma\right\|_{\text {op }} \geqslant t\right) \leqslant 4 d \cdot \exp \left(\frac{-n t^{2}}{32 d^{2}}\right)
$$

Proof. We can write $\hat{\Sigma}=\frac{1}{n} \sum_{i} \pi_{i} Z_{i} Z_{i}^{\top}$. The summands are bounded i.i.d. random variables, thus we can apply the matrix version of Hoeffding inequality. More precisely, the entries of $\hat{\Sigma}_{n}$ belong to [0, 1] by construction, and Lemma 1 guarantees that the entries of Σ also belong to [0, 1]. Therefore, if we set $M_{i}:=\frac{1}{n} \pi_{i} Z_{i} Z_{i}^{\top}-\Sigma$, then the M_{i} satisfy the assumptions of Theorem 21 in Garreau and von Luxburg 2020 and we can conclude since $\frac{1}{n} \sum_{i} M_{i}=\hat{\Sigma}_{n}-\Sigma$.

1.4 Control of $\left\|\Sigma^{-1}\right\|_{\text {op }}$

In this section, we obtain a control on the operator norm of the inverse covariance matrix. Our strategy is to bound the norm of the σ coefficients. We start with the control of $\alpha_{1}^{2}-\alpha_{0} \alpha_{2}$, a quantity appearing in σ_{2} and σ_{3}.

Lemma 2 (Control of $\alpha_{1}^{2}-\alpha_{0} \alpha_{2}$). For any $d \geqslant 2$, we have

$$
\left|\alpha_{1}^{2}-\alpha_{0} \alpha_{2}\right| \leqslant \frac{1}{2 d}
$$

Proof. By definition of the α coefficients, we know that

$$
\alpha_{1}^{2}-\alpha_{0} \alpha_{2}=\frac{1}{4^{d}}\left[\left(\sum_{s=0}^{d}\binom{d-1}{s} \psi\left(\frac{s}{d}\right)\right)^{2}-\left(\sum_{s=0}^{d}\binom{d}{s} \psi\left(\frac{s}{d}\right)\right) \cdot\left(\sum_{s=0}^{d}\binom{d-2}{s} \psi\left(\frac{s}{d}\right)\right)\right]
$$

Let us ignore the $1 / 4^{d}$ normalization for now, and set $w_{s}:=\binom{d}{s} \psi\left(\frac{s}{d}\right)$. Elementary manipulations of the binomial coefficients allow us to rewrite the previous display as

$$
\begin{equation*}
\left(\sum_{s=0}^{d} \frac{d-s}{d} w_{s}\right)^{2}-\left(\sum_{s=0}^{d} w_{s}\right) \cdot\left(\sum_{s=0}^{d} \frac{d-s}{d} \cdot \frac{d-s-1}{d-1} w_{s}\right) . \tag{13}
\end{equation*}
$$

Let us notice that

$$
\frac{d-s}{d}-\frac{d-s-1}{d-1}=\frac{s}{d(d-1)}
$$

Thus we can split Eq. 13 in two parts.
The first part is reminiscent of the Cauchy-Schwarz-like expression that appears in the proof of Proposition 3

$$
\begin{equation*}
\left(\sum_{s=0}^{d} \frac{d-s}{d} w_{s}\right)^{2}-\left(\sum_{s=0}^{d} w_{s}\right) \cdot\left(\sum_{s=0}^{d} \frac{(d-s)^{2}}{d^{2}} w_{s}\right) . \tag{14}
\end{equation*}
$$

We use, again, the four letter identity (Proposition 13) to bound this term. Namely, for any $0 \leqslant s \leqslant d$, let us set

$$
A_{s}=B_{s}:=\frac{d-s}{d} \sqrt{w_{s}}, \quad \text { and } \quad C_{s}=D_{s}:=\sqrt{w_{s}}
$$

Then we can rewrite Eq. 14) as

$$
\begin{equation*}
\sum_{s<t}\left(A_{s} D_{t}-A_{t} D_{s}\right)\left(C_{s} B_{t}-C_{t} B_{s}\right)=\frac{-1}{d^{2}} \sum_{s<t}(t-s)^{2}\binom{d}{s}\binom{d}{t} \psi\left(\frac{s}{d}\right) \psi\left(\frac{t}{d}\right) \tag{15}
\end{equation*}
$$

According to Proposition 14 Eq. 15 is bounded by $d \cdot 4^{d-1} / d^{2}=4^{d-1} / d$.
The second part of Eq. 13) reads

$$
\left(\sum_{s=0}^{d} w_{s}\right) \cdot\left(\sum_{s=0}^{d} \frac{d-s}{d} \cdot \frac{s}{d(d-1)} w_{s}\right) .
$$

Since ψ is bounded by 1 , coming back to the definition of the w_{s}, it is straightforward to show that $\left|\sum_{s} w_{s}\right| \leqslant 2^{d}$ and that $\left|\sum_{s} s(d-s) w_{s}\right| \leqslant d(d-1) 2^{d-2}$. We deduce that (the absolute value of) this second term is upper bounded by $4^{d-1} / d$.

Putting together the bounds obtained on both terms and renormalizing by 4^{d}, we obtain that

$$
\left|\alpha_{1}^{2}-\alpha_{0} \alpha_{2}\right| \leqslant \frac{1}{4^{d}}\left[\frac{4^{d-1}}{d}+\frac{4^{d-1}}{d}\right]=\frac{1}{2 d}
$$

We now have everything we need to provide reasonably tight upper bounds for the σ coefficients.
Proposition 6 (Bounding the σ coefficients). Let $d \geqslant 2$. Then the following holds:

$$
\left|\sigma_{0}\right| \leqslant \frac{3 d}{4}, \quad\left|\sigma_{1}\right| \leqslant \frac{1}{2}, \quad\left|\sigma_{2}\right| \leqslant 2 \mathrm{e}^{\frac{1}{2 \nu^{2}}}, \quad \text { and } \quad\left|\sigma_{3}\right| \leqslant \frac{2 \mathrm{e}^{\frac{1}{2 \nu^{2}}}}{d}
$$

Proof. From Lemma 1 and the definition of σ_{0}, we have

$$
\left|\sigma_{0}\right|=\left|(d-1) \alpha_{2}+\alpha_{1}\right| \leqslant \frac{d-1}{4}+\frac{1}{2}=\frac{d+3}{4}
$$

We deduce the first result since $d \geqslant 2$. Next, since $\sigma_{1}=-\alpha_{1}$, we obtain $\left|\sigma_{1}\right| \leqslant 1 / 2$ directly from Lemma 1 . Regarding the last two coefficients, recall that Proposition 3 guarantees that their common denominator $\alpha_{1}-\alpha_{2}$ is lower bounded by $\mathrm{e}^{\frac{-1}{2 \nu^{2}}} / 4$. Since

$$
(d-2) \alpha_{0} \alpha_{2}-(d-1) \alpha_{1}^{2}+\alpha_{0} \alpha_{1}=c_{d}+\alpha_{1}^{2}-\alpha_{0} \alpha_{2}
$$

we can write $\sigma_{2}=\left(c_{d}+\alpha_{1}^{2}-\alpha_{0} \alpha_{2}\right) /\left(\alpha_{1}-\alpha_{2}\right)$ and deduce that

$$
\left|\sigma_{2}\right| \leqslant \frac{1 / 4+1 /(2 d)}{\mathrm{e}^{\frac{-1}{2 \nu^{2}}} / 4} \leqslant 2 \mathrm{e}^{\frac{1}{2 \nu^{2}}}
$$

since, according to Eq. (7), $c_{d} \leqslant 1 / 4$ and $\alpha_{1}^{2}-\alpha_{0} \alpha_{2} \leqslant 1 /(2 d)$ according to Lemma 2. Finally, we write

$$
\left|\sigma_{3}\right|=\left|\frac{\alpha_{1}^{2}-\alpha_{0} \alpha_{2}}{\alpha_{1}-\alpha_{2}}\right| \leqslant \frac{1 /(2 d)}{\mathrm{e}^{\frac{-1}{2 \nu^{2}}} / 4}=\frac{2 \mathrm{e}^{\frac{1}{2 \nu^{2}}}}{d} .
$$

The bounds obtained in Proposition 6 immediately translate into a control of the Frobenius norm of Σ^{-1}, which in turn yields a control over the operator norm of Σ^{-1}, as promised.

Corollary 1 (Control of $\left\|\Sigma^{-1}\right\|_{\mathrm{op}}$). Let $d \geqslant 2$. Then $\left\|\Sigma^{-1}\right\|_{\mathrm{op}} \leqslant 8 d \mathrm{e}^{\frac{1}{\nu^{2}}}$.

Proof. Using Proposition 6, we write

$$
\begin{aligned}
\left\|\Sigma^{-1}\right\|_{\mathrm{F}}^{2} & =\frac{1}{c_{d}^{2}}\left[\sigma_{0}^{2}+2 d \sigma_{1}^{2}+d \sigma_{2}^{2}+\left(d^{2}-d\right) \sigma_{3}^{2}\right] \\
& \leqslant 16 \mathrm{e}^{\frac{1}{\nu^{2}}}\left[\frac{9 d^{2}}{16}+\frac{2 d}{4}+4 d \mathrm{e}^{\frac{1}{\nu^{2}}}+4 \mathrm{e}^{\frac{1}{\nu^{2}}}\right] \\
& \leqslant 61 d^{2} \mathrm{e}^{\frac{2}{\nu^{2}}}
\end{aligned}
$$

where we used $d \geqslant 2$ in the last display. Since the operator norm is upper bounded by the Frobenius norm, we conclude observing that $\sqrt{61} \leqslant 8$.

Remark 1. The bound on $\left\|\Sigma^{-1}\right\|_{\text {op }}$ is essentially tight with respect to the dependency in d, as can be seen in Figure 4

Figure 4: Evolution of $\left\|\Sigma^{-1}\right\|_{\text {op }}$ as a function of d for various values of the bandwidth parameter. The linear dependency in d is striking.

2 Study of $\hat{\Gamma}_{n}$

We now turn to the study of $\hat{\Gamma}_{n}$. We start by computing the limiting expression. Recall that we defined $\hat{\Gamma}_{n}=\frac{1}{n} Z^{\top} W y$, where $y \in \mathbb{R}^{d+1}$ is the random vector defined coordinate-wise by $y_{i}=f\left(x_{i}\right)$. From the definition of $\hat{\Gamma}_{n}$, it is straightforward that

$$
\hat{\Gamma}_{n}=\left(\begin{array}{c}
\frac{1}{n} \sum_{i=1}^{n} \pi_{i} f\left(x_{i}\right) \\
\frac{1}{n} \sum_{i=1}^{n} \pi_{i} z_{i, 1} f\left(x_{i}\right) \\
\vdots \\
\frac{1}{n} \sum_{i=1}^{n} \pi_{i} z_{i, d} f\left(x_{i}\right)
\end{array}\right) \in \mathbb{R}^{d+1}
$$

As a consequence, if we define $\Gamma^{f}:=\mathbb{E}\left[\hat{\Gamma}_{n}\right]$, it holds that

$$
\Gamma^{f}=\left(\begin{array}{c}
\mathbb{E}[\pi f(x)] \tag{16}\\
\mathbb{E}\left[\pi z_{1} f(x)\right] \\
\vdots \\
\mathbb{E}\left[\pi z_{d} f(x)\right]
\end{array}\right)
$$

We specialize Eq. 16 to shape detectors in Section 2.1 and linear models in Section 2.2 The concentration of $\hat{\Gamma}_{n}$ around Γ is obtained in Section 2.3

2.1 Shape detectors

Recall that we defined

$$
\begin{equation*}
\forall x \in[0,1]^{D}, \quad f(x)=\prod_{u \in \mathcal{S}} \mathbf{1}_{x_{u}>\tau}, \tag{17}
\end{equation*}
$$

with $\mathcal{S}=\left\{u_{1}, \ldots, u_{q}\right\}$ a fixed set of pixels indices and $\tau \in(0,1)$ a threshold. As in the paper, let us define $E=\left\{j\right.$ s.t. $\left.J_{j} \cap \mathcal{S} \neq \varnothing\right\}$ denote the set of superpixels intersecting the shape, and

$$
E_{+}=\left\{j \in E \text { s.t. } \bar{\xi}_{j}>\tau\right\} \quad \text { and } \quad E_{-}=\left\{j \in E \text { s.t. } \bar{\xi}_{j} \leqslant \tau\right\}
$$

We also defined

$$
\mathcal{S}_{+}=\left\{u \in \mathcal{S} \text { s.t. } \xi_{u}>\tau\right\} \quad \text { and } \quad \mathcal{S}_{-}=\left\{u \in \mathcal{S} \text { s.t. } \xi_{u} \leqslant \tau\right\} .
$$

In the main paper, we made the following simplifying assumption:

$$
\begin{equation*}
\forall j \in E_{+}, \quad J_{j} \cap \mathcal{S}_{-}=\varnothing \tag{18}
\end{equation*}
$$

This is not the case here. Unfortunately, without this assumption, the expression of Γ^{f} is slightly more complicated and we need to generalize the definition of the α coefficients.

Definition 1 (Generalized α coefficients). For any p, q such that $p+q \leqslant d$, we define

$$
\begin{equation*}
\alpha_{p, q}:=\mathbb{E}\left[\pi z_{1} \cdots z_{p} \cdot\left(1-z_{p+1}\right) \cdots\left(1-z_{p+q}\right)\right] . \tag{19}
\end{equation*}
$$

We notice that, for any $1 \leqslant p \leqslant d, \alpha_{p, 0}=\alpha_{p}$. As it is the case with α coefficients, the generalized α coefficients can be computed in closed-form:

Proposition 7 (Computation of the generalized α coefficients). Let p, q such that $p+q \leqslant d$. Then

$$
\alpha_{p, q}=\frac{1}{2^{d}} \sum_{s=0}^{d}\binom{d-p-q}{s-q} \psi\left(\frac{s}{d}\right) .
$$

Proof. We follow the proof of Proposition 1

$$
\begin{align*}
\alpha_{p, q} & =\mathbb{E}\left[\pi z_{1} \cdots z_{p} \cdot\left(1-z_{p+1}\right) \cdots\left(1-z_{p+q}\right)\right] \\
& =\sum_{s=0}^{d} \mathbb{E}_{s}\left[\pi z_{1} \cdots z_{p} \cdot\left(1-z_{p+1}\right) \cdots\left(1-z_{p+q}\right)\right] \cdot \mathbb{P}(S=s) \\
& =\frac{1}{2^{d}} \sum_{s=0}^{d}\binom{d}{s} \psi\left(\frac{s}{d}\right) \mathbb{P}_{s}\left(z_{1}=\cdots=z_{p}=1, z_{p+1}=\cdots=z_{p+q}=0\right) \\
& =\frac{1}{2^{d}} \sum_{s=0}^{d}\binom{d}{s} \psi\left(\frac{s}{d}\right)\binom{d-p-q}{s-q}\binom{d}{s} \tag{Lemma4}\\
\alpha_{p, q} & =\frac{1}{2^{d}} \sum_{s=0}^{d}\binom{d-p-q}{s-q} \psi\left(\frac{s}{d}\right) .
\end{align*}
$$

Notice that the expression of $\alpha_{p, q}$ coincide with that of α_{p} when $q=0$. We can now give the expression of Γ^{f} for an elementary shape detector in the general case.

Proposition 8 (Computation of Γ^{f}, elementary shape detector). Assume that f is written as in Eq. (17). Assume that for any $j \in E_{-}, J_{j} \cap \mathcal{S}_{-}=\varnothing$ (otherwise $\Gamma^{f}=0$). Let $p:=\left|E_{-}\right|$and $q:=\left|\left\{j \in E_{+}, J_{j} \cap \mathcal{S}_{-} \neq \varnothing\right\}\right|$. Then $\mathbb{E}[\pi f(x)]=\alpha_{p, q}$ and

$$
\mathbb{E}\left[\pi z_{j} f(x)\right]= \begin{cases}0 & \text { if } j \in\left\{j \in E_{+} \text {s.t. } J_{j} \cap \mathcal{S}_{-} \neq \varnothing\right\} \\ \alpha_{p, q} & \text { if } j \in E_{-}, \\ \alpha_{p+1, q} & \text { otherwise. }\end{cases}
$$

Taking $q=0$ (a consequence of Eq. 18) in Proposition 8 directly yields $\mathbb{E}[\pi f(x)]=\alpha_{p}$ and

$$
\mathbb{E}\left[\pi z_{j} f(x)\right]= \begin{cases}\alpha_{p} & \text { if } j \in E_{-} \\ \alpha_{p+1} & \text { otherwise }\end{cases}
$$

Proof. We notice that, for any $u \in J_{j}$,

$$
x_{u}=z_{j} \xi_{u}+\left(1-z_{j}\right) \bar{\xi}_{u} .
$$

There are four cases to consider when deciding whether $x_{u}>\tau$ or not:

- $\xi_{u}>\tau$ and $\bar{\xi}_{u}>\tau$, that is, $j \in E_{+}$and $u \in J_{j} \cap \mathcal{S}_{+}$. Then $x_{u}>\tau$ a.s.;
- $\xi_{u} \leqslant \tau$ and $\bar{\xi}_{u}>\tau$, that is, $j \in E_{+}$and $u \in J_{j} \cap \mathcal{S}_{-}$. Then $x_{u}>\tau$ if, and only if, $z_{j}=0$;
- $\xi_{u}>\tau$ and $\bar{\xi}_{u} \leqslant \tau$, that is, $j \in E_{-}$and $u \in J_{j} \cap \mathcal{S}_{+}$. Then $x_{u}>\tau$ if, and only if, $z_{j}=1$;
- $\xi_{u} \leqslant \tau$ and $\bar{\xi}_{u} \leqslant \tau$, that is, $j \in E_{-}$and $u \in J_{j} \cap \mathcal{S}_{-}$. Then $x_{u} \leqslant \tau$ a.s., but this last case cannot happen since we assume that for any $j \in E_{-}, J_{j} \cap \mathcal{S}_{-}=\varnothing$.

This case separation allows us to rewrite $f(x)$ as

$$
\begin{align*}
f(x) & =\prod_{u \in \mathcal{S}} \mathbf{1}_{x_{u}>\tau} \tag{Eq.17}\\
& =\prod_{j \in E_{+}} \prod_{u \in J_{j} \cap \mathcal{S}_{-}}\left(1-z_{j}\right) \cdot \prod_{j \in E_{-}} \prod_{u \in J_{j} \cap \mathcal{S}_{+}} z_{j}
\end{align*}
$$

Since we assumed that for any $j \in E_{-}, J_{j} \cap \mathcal{S}_{-}=\varnothing$, then for any $j \in E_{-}, J_{j} \cap \mathcal{S}_{+} \neq \varnothing$. Thus the rightmost inner products are never empty, and since $z_{j} \in\{0,1\}$ a.s., we deduce that there are p terms in the rightmost product. By definition of q, and again since $1-z_{j} \in\{0,1\}$ a.s., there are q terms in the leftmost product. By definition of E_{+}and E_{-}, these products do not have any common terms. We deduce that $\mathbb{E}[\pi f(x)]=\alpha_{p, q}$ by definition of the generalized α coefficients.

When computing $\mathbb{E}\left[\pi z_{j} f(x)\right]$, there are several possibilities. First, if $j \in\left\{j \in E_{+}\right.$s.t. $\left.J_{j} \cap \mathcal{S}_{-} \neq \varnothing\right\}$, since $z_{j}\left(1-z_{j}\right)=0$ a.s., we deduce that $\mathbb{E}\left[\pi z_{j} f(x)\right]=0$. Second, if $j \in E_{-}$, since $z_{j}^{2}=z_{j}$, we recover $\mathbb{E}\left[\pi z_{j} f(x)\right]=\mathbb{E}[\pi f(x)]=\alpha_{p, q}$. Finally, if j does not belong to one of these sets, then the rightmost product gains one additional term and we obtain $\alpha_{p+1, q}$.

2.2 Linear model

In this section, we compute Γ^{f} for a linear f. As in the paper, we define

$$
\begin{equation*}
f(x)=\sum_{u=1}^{D} \lambda_{u} x_{u} \tag{20}
\end{equation*}
$$

with $\lambda_{1}, \ldots, \lambda_{D} \in \mathbb{R}$ arbitrary coefficients. By linearity, we just have to look into the case $f: x \mapsto x_{u}$ where $u \in\{1, \ldots, D\}$ is a fixed pixel index.

Proposition 9 (Computation of Γ^{f}, linear case). Assume that f is defined as in Eq. 20) and $u \in J_{j}$. Then

$$
\begin{gathered}
\mathbb{E}\left[\pi x_{u}\right]=\alpha_{1}\left(\xi_{u}-\bar{\xi}_{u}\right)+\alpha_{0} \bar{\xi}_{u} \\
\mathbb{E}\left[\pi z_{j} x_{u}\right]=\alpha_{1}\left(\xi_{u}-\bar{\xi}_{u}\right)+\alpha_{1} \bar{\xi}_{u}
\end{gathered}
$$

and, for any $k \neq j$,

$$
\mathbb{E}\left[\pi z_{k} x_{u}\right]=\alpha_{2}\left(\xi_{u}-\bar{\xi}_{u}\right)+\alpha_{1} \bar{\xi}_{u} .
$$

Proof. As in the proof of Proposition 8, we notice that

$$
x_{u}=z_{j} \xi_{u}+\left(1-z_{j}\right) \bar{\xi}_{u}
$$

Then we write

$$
\begin{aligned}
\mathbb{E}\left[\pi x_{u}\right] & =\mathbb{E}\left[\pi\left(z_{j} \xi_{u}+\left(1-z_{j}\right) \bar{\xi}_{u}\right)\right] \\
& =\mathbb{E}\left[\pi z_{j}\left(\xi_{u}-\bar{\xi}_{u}\right)+\pi \bar{\xi}_{u}\right] \\
\mathbb{E}\left[\pi x_{u}\right] & =\alpha_{1}\left(\xi_{u}-\bar{\xi}_{u}\right)+\alpha_{0} \bar{\xi}_{u},
\end{aligned}
$$

where we used the definition of the α coefficients. Now let us compute $\mathbb{E}\left[\pi z_{j} f(x)\right]$:

$$
\begin{array}{rlr}
\mathbb{E}\left[\pi z_{j} x_{u}\right] & =\mathbb{E}\left[\pi z_{j}\left(z_{j} \xi_{u}+\left(1-z_{j}\right) \bar{\xi}_{u}\right)\right] \\
& =\mathbb{E}\left[\pi z_{j}\left(\left(\xi_{u}-\bar{\xi}_{u}\right) z_{j}+\bar{\xi}_{u}\right)\right] \\
\mathbb{E}\left[\pi z_{j} x_{u}\right] & =\alpha_{1}\left(\xi_{u}-\bar{\xi}_{u}\right)+\alpha_{1} \bar{\xi}_{u} .
\end{array} \quad\left(z_{j} \in\{0,1\} \text { a.s. }\right)
$$

And finally, for any $k \neq j$,

$$
\begin{aligned}
\mathbb{E}\left[\pi z_{k} x_{u}\right] & =\mathbb{E}\left[\pi z_{k}\left(\left(\xi_{u}-\bar{\xi}_{u}\right) z_{j}+\bar{\xi}_{u}\right)\right] \\
& =\alpha_{2}\left(\xi_{u}-\bar{\xi}_{u}\right)+\alpha_{1} \bar{\xi}_{u}
\end{aligned}
$$

2.3 Concentration of $\hat{\Gamma}_{n}$

We now show that $\hat{\Gamma}_{n}$ is concentrated around Γ^{f}. Since the expression of $\hat{\Gamma}_{n}$ is the same than in the tabular case, and we assume that f is bounded on the support of x, the same reasoning as in the proof of Proposition 24 in Garreau and von Luxburg [2020] can be applied.
Proposition 10 (Concentration of $\hat{\Gamma}_{n}$). Assume that f is bounded by $M>0$ on Supp (x). Then, for any $t>0$, it holds that

$$
\mathbb{P}\left(\left\|\hat{\Gamma}_{n}-\Gamma^{f}\right\| \geqslant t\right) \leqslant 4 \operatorname{dexp}\left(\frac{-n t^{2}}{32 M d^{2}}\right) .
$$

Proof. Since f is bounded by M on $\operatorname{Supp}(x)$, it holds that $|f(x)| \leqslant M$ almost surely. We can then proceed as in the proof of Proposition 24 in Garreau and von Luxburg 2020.

3 The study of β^{f}

3.1 Concentration of $\hat{\beta}_{n}$

In this section we show the concentration of $\hat{\beta}_{n}$ (Theorem 1 in the paper). The proof scheme follows closely that of Garreau and von Luxburg 2020.
Theorem 1 (Concentration of $\hat{\beta}_{n}$). Assume that f is bounded by a constant M on the unit cube $[0,1]^{D}$. Let $\epsilon>0$ and $\eta \in(0,1)$. Let d be the number of superpixels used by LIME. Then, there exists $\beta^{f} \in \mathbb{R}^{d+1}$ such that, for every

$$
n \geqslant\left\lceil\max \left(2^{15} d^{4} \mathrm{e} \frac{2}{\nu^{2}}, \frac{2^{21} d^{7} \max \left(M, M^{2}\right) \mathrm{e}^{\frac{4}{\nu^{2}}}}{\epsilon^{2}}\right) \log \frac{8 d}{\eta}\right\rceil,
$$

we have $\mathbb{P}\left(\left\|\hat{\beta}_{n}-\beta^{f}\right\| \geqslant \epsilon\right) \leqslant \eta$.
Proof. As in Garreau and von Luxburg 2020, the key idea of the proof is to notice that

$$
\begin{equation*}
\left\|\hat{\beta}_{n}-\beta^{f}\right\| \leqslant 2\left\|\Sigma^{-1}\right\|_{\mathrm{op}}\left\|\hat{\Gamma}-\Gamma^{f}\right\|+2\left\|\Sigma^{-1}\right\|_{\mathrm{op}}^{2}\left\|\Gamma^{f}\right\|\|\hat{\Sigma}-\Sigma\|_{\mathrm{op}} \tag{21}
\end{equation*}
$$

provided that (i) $\left\|\Sigma^{-1}(\hat{\Sigma}-\Sigma)\right\|_{\text {op }} \leqslant 0.32$ (this is Lemma 27 in Garreau and von Luxburg 2020. We are going to build an event of probability at least $1-\eta$ such that $\hat{\Sigma}_{n}$ is close to Σ and $\hat{\Gamma}_{n}$ is close from Γ^{f}. The deterministic bound obtained on $\left\|\Sigma^{-1}\right\|_{\text {op }}$ together with the boundedness of f will allow us to show that (ii) $\left\|\Sigma^{-1}\right\|_{\text {op }}\left\|\hat{\Gamma}-\Gamma^{f}\right\| \leqslant \epsilon / 4$ and (iii) $\left\|\Sigma^{-1}\right\|_{\text {op }}^{2}\left\|\Gamma^{f}\right\|\|\hat{\Sigma}-\Sigma\|_{\text {op }} \leqslant \epsilon / 4$.

We first show (i). Let us set $n_{1}:=\left\lceil 2^{15} d^{4} \frac{2}{\nu^{2}} \log \frac{8 d}{\eta}\right\rceil$ and $t_{1}:=\frac{1}{25 d e^{\frac{1}{\nu^{2}}}}$. According to Proposition 5 , for any $n \geqslant n_{1}$,

$$
\mathbb{P}\left(\left\|\hat{\Sigma}_{n}-\Sigma\right\|_{\mathrm{op}} \geqslant t_{1}\right) \leqslant 4 d \cdot \exp \left(\frac{-n_{1} t_{1}^{2}}{32 d^{2}}\right) \leqslant \frac{\eta}{2} .
$$

Moreover, we know that $\left\|\Sigma^{-1}\right\|_{\mathrm{op}} \leqslant 8 \mathrm{de}^{\frac{1}{\nu^{2}}}$ (Corollary 1 . Since the operator norm is sub-multiplicative, with probability greater than $1-\eta / 2$, we have

$$
\left\|\Sigma^{-1}\left(\hat{\Sigma}_{n}-\Sigma\right)\right\|_{\text {op }} \leqslant\left\|\Sigma^{-1}\right\|_{\text {op }} \cdot\left\|\hat{\Sigma}_{n}-\Sigma\right\|_{\text {op }} \leqslant 8 d \mathrm{e}^{\frac{1}{\nu^{2}}} \cdot t_{1}=0.32
$$

Now let us show (ii). Let us define $n_{2}:=\left\lceil\frac{2^{15} M d^{4} \frac{2}{\nu^{2}}}{\epsilon^{2}} \log \frac{8 d}{\eta}\right\rceil$ and $t_{2}:=\frac{\epsilon}{32 d e} \frac{\nu^{\frac{1}{\nu^{2}}}}{}$. According to Proposition 10. for any $n \geqslant n_{2}$, we have

$$
\mathbb{P}\left(\left\|\hat{\Gamma}_{n}-\Gamma\right\| \geqslant t_{2}\right) \leqslant 4 d \cdot \exp \left(\frac{-n_{2} t_{2}^{2}}{32 M d^{2}}\right) \leqslant \frac{\eta}{2}
$$

Recall that $\left\|\Sigma^{-1}\right\|_{\mathrm{op}} \leqslant 8 d \mathrm{e}^{\frac{1}{\nu^{2}}}$ (Corollary 1 1 : with probability higher than $1-\eta / 2$,

$$
\left\|\Sigma^{-1}\right\|_{\mathrm{op}} \cdot\left\|\hat{\Gamma}_{n}-\Gamma^{f}\right\| \leqslant 8 d \mathrm{e}^{\frac{1}{\nu^{2}}} \cdot t_{2}=\frac{\epsilon}{4}
$$

Finally let us show (iii). Let us define $n_{3}:=\left\lceil\frac{2^{21} d^{7} M^{2} e^{\frac{4}{\nu^{2}}}}{\epsilon^{2}} \log \frac{8 d}{\eta}\right\rceil$ and $t_{3}:=\frac{\epsilon}{2^{8} M d^{5 / 2} \mathrm{e}^{\frac{2}{\nu^{2}}}}$. According to Proposition 5 for any $n \geqslant n_{3}$, we have

$$
\mathbb{P}\left(\left\|\hat{\Sigma}_{n}-\Sigma\right\|_{\mathrm{op}} \geqslant t_{3}\right) \leqslant 4 d \cdot \exp \left(\frac{-n_{3} t_{3}^{2}}{32 d^{2}}\right) \leqslant \frac{\eta}{2} .
$$

Since f is bounded by M, it is straightforward to show that $\left\|\hat{\Gamma}^{f}\right\| \leqslant M \cdot d^{1 / 2}$. Moreover, recall that $\left\|\Sigma^{-1}\right\|_{\text {op }}^{2} \leqslant 64 d^{2} \mathrm{e}^{\frac{2}{\nu^{2}}}$. We deduce that, with probability at least $\eta / 2$,

$$
\left\|\Sigma^{-1}\right\|_{\text {op }}^{2} \cdot\left\|\Gamma^{f}\right\| \cdot\left\|\hat{\Sigma}_{n}-\Sigma\right\|_{\text {op }} \leqslant 64 d^{2} \mathrm{e}^{\frac{2}{\nu^{2}}} \cdot M d^{1 / 2} \cdot t_{3}=\frac{\epsilon}{4} .
$$

Finally, we notice that both n_{2} and n_{3} are smaller than

$$
n_{4}:=\left\lceil\frac{2^{21} d^{7} \max \left(M, M^{2}\right) \mathrm{e}^{\frac{4}{\nu^{2}}}}{\epsilon^{2}} \log \frac{8 d}{\eta}\right\rceil .
$$

Thus (ii) and (ii) simultaneously happen on an event of probability greater than $\eta / 2$ when n is larger than n_{4}. We conclude by a union bound argument.

Remark 2. In view of Remark 1, it seems difficult to improve much the rate of convergence given by Theorem 11 with the current proof technology. Indeed, a careful inspection of the proof reveals that, starting from Eq. 21, , the control of $\left\|\Sigma^{-1}\right\|_{\text {op }}$ is key. Since the dependency in d seems tight, there is not much hope for improvement.

3.2 General expression of β^{f}

We are now able to recover Proposition 2 of the paper: the expression of β^{f} is obtained simply by multiplying Eq. (3) and (16). We also give the value of the intercept (β_{0} with our notation), which is omitted in the paper for simplicity's sake.

Corollary 2 (Computation of β^{f}). Under the assumptions of Theorem 1.

$$
\begin{equation*}
\beta_{0}^{f}=c_{d}^{-1}\left\{\sigma_{0} \mathbb{E}[\pi f(x)]+\sigma_{1} \sum_{j=1}^{d} \mathbb{E}\left[\pi z_{j} f(x)\right]\right\}, \tag{22}
\end{equation*}
$$

and, for any $1 \leqslant j \leqslant d$,

$$
\begin{equation*}
\beta_{j}^{f}=c_{d}^{-1}\left\{\sigma_{1} \mathbb{E}[\pi f(x)]+\sigma_{2} \mathbb{E}\left[\pi z_{j} f(x)\right]+\sigma_{3} \sum_{\substack{k=1 \\ k \neq j}}^{d} \mathbb{E}\left[\pi z_{k} f(x)\right]\right\} \tag{23}
\end{equation*}
$$

3.3 Shape detectors

We now specialize Corollary 2 to the case of elementary shape detectors.
Proposition 11 (Expression of β^{f}, shape detector). Let f be written as in Eq. 17). Assume that for any $j \in E_{-}, J_{j} \cap \mathcal{S}_{-}=\varnothing$ (otherwise $\beta^{f}=0$). Let p and q as before. Then

$$
\beta_{0}^{f}=c_{d}^{-1}\left\{\sigma_{0} \alpha_{p, q}+p \sigma_{1} \alpha_{p, q}+(d-p-q) \alpha_{p+1, q}\right\}
$$

for any $j \in E_{-}$,

$$
\beta_{j}^{f}=c_{d}^{-1}\left\{\sigma_{1} \alpha_{p, q}+\sigma_{2} \alpha_{p, q}+(p-1) \sigma_{2} \alpha_{p, q}+(d-p-q) \sigma_{3} \alpha_{p+1, q}\right\}
$$

for any $j \in E_{+}$such that $J_{j} \cap \mathcal{S}_{-} \neq \varnothing$,

$$
\beta_{j}^{f}=c_{d}^{-1}\left\{\sigma_{1} \alpha_{p, q}+p \sigma_{3} \alpha_{p, q}+(d-p-q) \alpha_{p+1, q}\right\}
$$

and

$$
\beta_{j}^{f}=c_{d}^{-1}\left\{\sigma_{1} \alpha_{p, q}+\sigma_{2} \alpha_{p+1, q}+p \sigma_{3} \alpha_{p, q}+(d-p-q-1) \sigma_{3} \alpha_{p+1, q}\right\}
$$

otherwise.
Proof. Straightforward from Corollary 2 and Proposition 8
Note that taking $q=0$ in Proposition 11 yields Proposition 3 of the paper.

3.4 Linear models

We deduce from Proposition 9 the expression of β^{f} for linear models. Let us define M_{j} the binary mask associated to superpixel J_{j} and let \circ be the termwise product.

Proposition 12 (Computation of β^{f}, linear case). Assume that f is defined as in Eq. 20). Then

$$
\beta_{0}^{f}=\sum_{u=1}^{D} \lambda_{u} \bar{\xi}_{u}=f(\bar{\xi})
$$

and, for any $1 \leqslant j \leqslant d$,

$$
\beta_{j}^{f}=\sum_{u \in J_{j}} \lambda_{u}\left(\xi_{u}-\bar{\xi}_{u}\right)=f\left(M_{j} \circ(\xi-\bar{\xi})\right) .
$$

It is interesting to compute prediction of the surrogate model at ξ :

$$
\beta_{0}^{f}+\beta_{1}^{f}+\cdots+\beta_{d}^{f}=f(\bar{\xi})+f\left(M_{1} \circ(\xi-\bar{\xi})\right)+\cdots+f\left(M_{d} \circ(\xi-\bar{\xi})\right)=f(\xi)
$$

Thus in the case of linear models, the limit explanation is faithful.
Proof. By linearity, we can start by computing β^{f} for the function $x \mapsto x_{u}$. Assume that $j \in\{1, \ldots, d\}$ is such that $u \in J_{j}$. According to Corollary 2 and Proposition 9 ,

$$
\begin{aligned}
\beta_{0}^{f} & =\frac{1}{c_{d}}\left\{\sigma_{0} \mathbb{E}[\pi f(x)]+\sigma_{1} \sum_{j=1}^{d} \mathbb{E}\left[\pi z_{j} f(x)\right]\right\} \\
& =\frac{1}{c_{d}}\left\{\sigma_{0}\left(\alpha_{1}\left(\xi_{u}-\bar{\xi}_{u}\right)+\alpha_{0} \bar{\xi}_{u}\right)+\sigma_{1}\left(\alpha_{1}\left(\xi_{u}-\bar{\xi}_{u}\right)+\alpha_{1} \bar{\xi}_{u}\right)+(d-1) \sigma_{1}\left(\alpha_{2}\left(\xi_{u}-\bar{\xi}_{u}\right)+\alpha_{1} \bar{\xi}_{u}\right)\right\} \\
& =\frac{1}{c_{d}}\left\{\left(\sigma_{0} \alpha_{1}+\sigma_{1} \alpha_{1}+(d-1) \sigma_{1} \alpha_{2}\right)\left(\xi_{u}-\bar{\xi}_{u}\right)+\left(\sigma_{0} \alpha_{0}+d \sigma_{1} \alpha_{1}\right) \bar{\xi}_{u}\right\} \\
\beta_{0}^{f} & =\bar{\xi}_{u}
\end{aligned}
$$

where we used Eqs. (8) and 12 in the last display.

$$
\begin{aligned}
\beta_{j}^{f} & =\frac{1}{c_{d}}\left\{\sigma_{1} \mathbb{E}[\pi f(x)]+\sigma_{2} \mathbb{E}\left[\pi z_{j} f(x)\right]+\sigma_{3} \sum_{\substack{k=1 \\
k \neq j}}^{d} \mathbb{E}\left[\pi z_{k} f(x)\right]\right\} \\
& =\frac{1}{c_{d}}\left\{\sigma_{1}\left(\alpha_{1}\left(\xi_{u}-\bar{\xi}_{u}\right)+\alpha_{0} \bar{\xi}_{u}\right)+\sigma_{2}\left(\alpha_{1}\left(\xi_{u}-\bar{\xi}_{u}\right)+\alpha_{1} \bar{\xi}_{u}\right)+(d-1) \sigma_{3}\left(\alpha_{2}\left(\xi_{u}-\bar{\xi}_{u}\right)+\alpha_{1} \bar{\xi}_{u}\right)\right\} \\
& =\frac{1}{c_{d}}\left\{\left(\sigma_{1} \alpha_{1}+\sigma_{2} \alpha_{1}+(d-1) \sigma_{3} \alpha_{2}\right)\left(\xi_{u}-\bar{\xi}_{u}\right)+\left(\sigma_{1} \alpha_{0}+\sigma_{2} \alpha_{1}+(d-1) \sigma_{3} \alpha_{1}\right) \bar{\xi}_{u}\right\} \\
\beta_{j}^{f} & =\xi_{u}-\bar{\xi}_{u},
\end{aligned}
$$

where we used Eqs. (9) and (11) in the last display. Finally, let $k \neq j$:

$$
\begin{aligned}
\beta_{k}^{f}= & \frac{1}{c_{d}}\left\{\sigma_{1} \mathbb{E}[\pi f(x)]+\sigma_{2} \mathbb{E}\left[\pi z_{k} f(x)\right]+\sigma_{3} \sum_{\substack{k^{\prime}=1 \\
k^{\prime} \neq j, k}}^{d} \mathbb{E}\left[\pi z_{k^{\prime}} f(x)\right]\right\} \\
= & \frac{1}{c_{d}}\left\{\sigma_{1}\left(\alpha_{1}\left(\xi_{u}-\bar{\xi}_{u}\right)+\alpha_{0} \bar{\xi}_{u}\right)+\sigma_{2}\left(\alpha_{2}\left(\xi_{u}-\bar{\xi}_{u}\right)+\alpha_{1} \bar{\xi}_{u}\right)+\sigma_{3}\left(\alpha_{1}\left(\xi_{u}-\bar{\xi}_{u}\right)+\alpha_{1} \bar{\xi}_{u}\right)\right. \\
& \left.+(d-2) \sigma_{3}\left(\alpha_{2}\left(\xi_{u}-\bar{\xi}_{u}\right)+\alpha_{1} \bar{\xi}_{u}\right)\right\} \\
= & \frac{1}{c_{d}}\left\{\left(\sigma_{1} \alpha_{1}+\sigma_{2} \alpha_{2}+\sigma_{3} \alpha_{1}+(d-2) \sigma_{3} \alpha_{2}\right)\left(\xi_{u}-\bar{\xi}_{u}\right)+\left(\sigma_{1} \alpha_{0}+\sigma_{2} \alpha_{1}+(d-1) \sigma_{3} \alpha_{1}\right) \bar{\xi}_{u}\right\} \\
\beta_{k}^{f}= & 0
\end{aligned}
$$

where we used Eqs. (10) and (11) in the last display. We deduce the result by linearity.

4 Technical results

4.1 Probability computations

In this section we collect all elementary probability computations necessary for the computation of the α coefficients and the generalized α coefficients.

Lemma 3 (Activated only). Let $p \geqslant 0$ be an integer. Then

$$
\mathbb{P}_{s}\left(z_{1}=1, \ldots, z_{p}=1\right)=\frac{(d-p)!}{d!} \cdot \frac{(d-s)!}{(d-s-p)!}
$$

Proof. Conditionally to $S=s$, the choice of S is uniform among all subsets of $\{1, \ldots, d\}$. Therefore we recover the proof of Lemma 4 in Mardaoui and Garreau 2021.

The following lemma is a slight generalization, which coincides when $q=0$.
Lemma 4 (Activated and deactivated). Let p, q be integers. Then

$$
\mathbb{P}_{s}\left(z_{1}=\cdots=z_{p}=1, z_{p+1}=\cdots=z_{p+q}=0\right)=\binom{d-p-q}{s-q}\binom{d}{s}^{-1}
$$

Proof. Conditionally to $S=s$, the deletions are uniformly distributed. Therefore, the total number of cases is $\binom{d}{s}$. Now, the favorable cases correspond to superpixels $p+1, \ldots, p+q$ deleted: these are q fixed deletions. We also need to have superpixels $1, \ldots, p$ activated, these are p indices that are not available to deletions. In total, we need to place $s-q$ deletions among $d-p-q$ possibilities. We deduce the result.

4.2 Algebraic identities

In this section we collect some identities used throughout the proofs.
Proposition 13 (Four letter identity). Let A, B, C, and D be four finite sequences of real numbers. Then it holds that

$$
\sum_{j} A_{j} C_{j} \cdot \sum_{j} B_{j} D_{j}-\sum_{j} A_{j} B_{j} \cdot \sum C_{j} D_{j}=\sum_{j<k}\left(A_{j} D_{k}-A_{k} D_{j}\right)\left(C_{j} B_{k}-C_{k} B_{j}\right) .
$$

Proof. See the proof of Exercise 3.7 in Steele 2004.
Proposition 14 (A combinatorial identity). Let $d \geqslant 1$ be an integer. Then

$$
V_{d}:=\sum_{j<k}\binom{d}{j}\binom{d}{k}(j-k)^{2}=d \cdot 4^{d-1}
$$

Proof. We first notice that

$$
\begin{array}{rlr}
V_{d} & =\frac{1}{2} \sum_{j, k}\binom{d}{j}\binom{d}{k}(j-k)^{2} & \quad \text { (by symmetry) } \\
& =\sum_{j, k}\binom{d}{j}\binom{d}{k} k^{2}-\sum_{j, k}\binom{d}{j}\binom{d}{k} j k & \text { (developing the square) } \\
& =\sum_{j}\binom{d}{j} \sum_{k}\binom{d}{k} k^{2}-\left(\sum_{j}\binom{d}{j} j\right)^{2}
\end{array}
$$

It is straightforward to show that

$$
\sum_{j}\binom{d}{j}=2^{d}, \sum_{j}\binom{d}{j} j=d \cdot 2^{d-1}, \text { and } \sum_{j}\binom{d}{j} j^{2}=d(d+1) \cdot 2^{d-2}
$$

We deduce that

$$
c_{d}=2^{d} \cdot d(d+1) \cdot 2^{d-2}-d^{2} \cdot 2^{2 d-2}=d \cdot 4^{d-1}
$$

5 Additional results

In this section, we present additional qualitative results on the three pre-trained models used in the paper: MobileNetV2 Sandler et al., 2018, DenseNet121 Huang et al., 2017, and InceptionV3 [Szegedy et al., 2016.

Figure 5: Empirical explanations, integrated gradient, and approximated explanations for images from the ILSVRC2017 dataset. The model explained is the likelihood function associated to the top class given by MobileNetV2.

Figure 6: Empirical explanations, integrated gradient, and approximated explanations for images from the ILSVRC2017 dataset. The model explained is the likelihood function associated to the top class given by DenseNet121.

Figure 7: Empirical explanations, integrated gradient, and approximated explanations for images from the ILSVRC2017 dataset. The model explained is the likelihood function associated to the top class given by InceptionV3.

References

D. Garreau and U. von Luxburg. Looking Deeper into Tabular LIME. arXiv preprint arXiv:2008.11092, 2020.
G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4700-4708, 2017.
D. Mardaoui and D. Garreau. An Analysis of LIME for Text Data. In Proceedings of The 24 th International Conference on Artificial Intelligence and Statistics (AISTATS), 2021.
M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR), pages 4510-4520, 2018.
J. M. Steele. The Cauchy-Schwarz master class: an introduction to the art of mathematical inequalities. Cambridge University Press, 2004.
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2818-2826, 2016.

