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Abstract
We tackle the online ranking problem of assigning
L items to K positions on a web page in order to
maximize the number of user clicks. We propose
an original algorithm, easy to implement and with
strong theoretical guarantees to tackle this prob-
lem in the Position-Based Model (PBM) setting,
well suited for applications where items are dis-
played on a grid. Besides learning to rank, our
algorithm, GRAB (for parametric Graph for uni-
modal RAnking Bandit), also learns the parameter
of a compact graph over permutations of K items
among L. The logarithmic regret bound of this
algorithm is a direct consequence of the unimodal-
ity property of the bandit setting with respect to
the learned graph. Experiments against state-of-
the-art learning algorithms which also tackle the
PBM setting, show that our method is more effi-
cient while giving regret performance on par with
the best known algorithms on simulated and real
life datasets.

1. Introduction
Online Recommendation Systems are used to choose rel-
evant items, such as songs, adds or movies on a website.
At each call, they select K items among L potential ones,
K ≤ L. User feedbacks are collected for each displayed
items, reflecting how relevant these choices are: listening
time, clicks, rates, etc. These feedbacks are available only
for the items which were presented to the user. This corre-
sponds to an instance of the multi-armed bandit problem
with semi-bandit feedback (Gai et al., 2012; Chen et al.,
2013). Another problem, related to ranking, is to display
the K chosen items at the right positions to maximize the
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user attention. Typical examples of such displays are (i) a
list of news, visible one by one by scrolling; (ii) a list of
products, arranged by rows; or (iii) advertisements spread
in a web page. Numerous approaches have been proposed
to jointly learn how to choose the best positions for the cor-
responding best items (Radlinski et al., 2008; Combes et al.,
2015; Li et al., 2019) referred as multiple-play bandit or
online learning to rank (OLR). To take into account the user
behaviour while facing such a list of items, several models
exist (Richardson et al., 2007; Craswell et al., 2008) and
have been transposed to the bandit framework (Kveton et al.,
2015a; Komiyama et al., 2017) such as the Position-Based
Model (PBM) (Richardson et al., 2007). PBM allows to take
into account displays where the best position is a priori un-
known. This is typically the case when items are displayed
on a grid and not in an ordered list. PBM assumes that the
click probability on an item i at position k results from the
product of two independent factors: the item relevance and
its position’s visibility. Items displayed at other positions
do not impact the probability to consider the item i at posi-
tion k. According to PBM, a user may give more than one
feedbacks: she may click on all items relevant for her, e.g.
when looking for product on commercial websites. PBM is
also particularly interesting when the display is dynamic, as
often on modern web pages, and may depend on the read-
ing direction of the user (which varies from one country to
another) and on the ever-changing layout of the page.

In this paper, we tackle an online learning to rank bandit
setting, which mainly covers PBM click model, with an uni-
modal bandits point of view (Combes & Proutière, 2014).
First, we expose a family of parametric graphs of degree
L− 1 over permutations, such that the PBM setting is uni-
modal w.r.t. one graph in this family. While the correspond-
ing graph is unknown from the learner, graphs of this family
enable an efficient exploration strategy of the set of potential
recommendations. Secondly, we introduce a new bandit al-
gorithm, GRAB, which learns online the appropriate graph
in this family and bases its recommendations on the learned
graph. From an application point of view, this algorithm
has several interesting features: it is simple to implement
and efficient in terms of computation time; it handles the
PBM bandit setting without any knowledge on the impact
of positions (contrarily to many competitors); and it empiri-
cally exhibits a regret on par with other theoretically proven
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Table 1. Settings and upper-bound on cumulative regret for state of the art algorithms. The main notations for the assumptions are given in
Section 3. Nπ∗(aaa∗) is a set of recommendations in the neighborhood of the best recommendation. Kmax is the maximum number of
differences between two arms; see. Theorem 2 for a specific definition.

ALGORITHM HANDLED SETTINGS REGRET ∆, ASSUMING
θ1 > θ2 > · · · > θL

GRAB (OUR ALGORITHM) PBM O
(
L
∆

log T
)

min
aaa∈Nπ∗ (aaa∗)

µ∗ − µaaa

COMBUCB1 (KVETON ET AL., 2015B) PBM O
(
LK2

∆
log T

)
min
aaa∈PL

K

µ∗ − µaaa

PBM-PIE (LAGRÉE ET AL., 2016) PBM WITH κκκ KNOWN O
(
L−K

∆
log T

)
min

i∈{K+1,...,L}
µ∗ − µaaa[K:=i]

PMED-HINGE (KOMIYAMA ET AL., 2017) PBM WITH κ1 > · · · > κK O (c∗ (θθθ,κκκ) log T ) ∅
TOPRANK (LATTIMORE ET AL., 2018) PBM WITH κ1 > · · · > κK ,

CM, . . .
O
(
LK
∆

log T
)

min
(j,i)∈[L]×[K]:j>i

θi − θj
θi

OSUB (COMBES & PROUTIÈRE, 2014) UNIMODAL O
(
γ
∆

log T
)

min
aaa∈NG(aaa∗)

µ∗ − µaaa

KL-COMBUCB (THEOREM 2) COMBINATORIAL O
(
|A|K2

max
∆

log T
)

min
aaa∈A

µ∗ − µaaa

algorithms on both artificial and real datasets. In particular,
we prove a O(L/∆ log T ) regret upper-bound for GRAB.
The corresponding proof extends OSUB’s proof (Combes
& Proutière, 2014) both (i) to the context of a graph learned
online, and (ii) to the combinatorial semi-bandit setting.

This paper is organized as follows: Section 2 presents the
related work and Section 3 defines our target setting. We
introduce GRAB and the hypotheses needed in Section 4.
Theoretical guarantees and empirical performance are pre-
sented respectively in Section 5 and 6. We conclude in
Section 7.

2. Related Work
A comparison of the assumptions and the regret upper-
bounds of the related algorithms is shown in Table 1.

The Position-Based Model (PBM) (Richardson et al., 2007;
Craswell et al., 2008) relies on two vectors of parameters:
θθθ ∈ [0, 1]L and κκκ ∈ [0, 1]K , where θi is the probability
for the user to click on item i when she observes this item,
and κk is the probability for the user to observe position
k. Several bandit algorithms are designed to handle PBM
(Komiyama et al., 2015; Lagrée et al., 2016; Komiyama
et al., 2017). However, each of them assumes some knowl-
edge about the ranking of positions. (Komiyama et al.,
2015) and (Lagrée et al., 2016) assume κκκ known before-
hand. Thanks to this very strong assumption (that we do
not make in this paper), the theoretical results from (Lagrée
et al., 2016) depend on the L − K worst items and their
regret is expressed as O((L −K)/∆ log T ). (Komiyama
et al., 2017) and (Gauthier et al., 2021) propose respectively
PMED and PB-MHB, the only approaches learning both θθθ
and κκκ while recommending. However, PMED still requires

the κk values to be organized in decreasing order. It derives
a bound on the regret in O(c∗ (θθθ,κκκ) log T ), where c∗ (θθθ,κκκ)
only depends on θθθ and κκκ and is asymptotically optimal in
this setting. Unfortunately, to the best of our knowledge,
there is no known closed-form for c∗ (θθθ,κκκ), which hinders
the comparison to other algorithms, including ours. (Gau-
thier et al., 2021) has shown very good performances on
PBM, but PB-MHB, based on Thomson sampling, does
not have any theoretical guarantees. Other learning to rank
algorithms such as TopRank (Lattimore et al., 2018) and
BubbleRank (Li et al., 2019) cover many click models (in-
cluding PBM). They exhibit a regret upper-bound for T
iterations of O(LK/∆ log T ), where ∆ depends on the at-
traction probability θθθ of items. They also assume that the
best recommendation is the one displaying the items from
the most attractive to the K-ith most attractive, which im-
plies that the first position is the most-observed one, the
second position is the second most-observed one, and so on.

Although the hypotheses taken by PMED and TopRank are
often assumed by the approaches handling PBM setting.
In this paper we tackle a full PBM setting where there is
no a priori hypothesis on the ordering of positions. Our
algorithm, GRAB, suffers a O(L/∆ log T ) regret that we
conjecture to be on par with the best theoretical results
provided by PMED (O(c∗ (θθθ,κκκ) log T )).

Combinatorial algorithms (Gai et al., 2012; Chen et al.,
2013) can also handle the PBM bandit setting. Typically,
CombUCB1 (Kveton et al., 2015b) applied to PBM leads
to an algorithm which suffers a O(LK2/∆ log T ) regret
(see the appendix for more details), which is higher than
the upper-bound on the regret of GRAB by a factor K2.
Note that the proof of the upper-bound on the regret of
GRAB is based on the same reduction of the PBM bandit
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ρρρ =

A
B
C
D

1 2 3
1.00 0.90 0.80
0.90 0.81 0.72
0.80 0.72 0.64
0.70 0.63 0.56

 aaa= (B,C,A)
πππ= (1, 3, 2)

Πρρρ(aaa)= {πππ}

ρa1,1 = 0.90 > ρa2,2 = 0.72 < ρa3,3 = 0.80
ρaπ1 ,π1 = 0.90 > ρaπ2 ,π2 = 0.80 > ρaπ3 ,π3 = 0.72

µaaa◦(3,1) = 1.00 + 0.72 + 0.72 = 2.44 > µaaa = 0.90 + 0.72 + 0.80 = 2.42

aaa = (B,C,A)

aaa ◦ (2, 1) =
(C,B,A)

aaa ◦ (2, 3) =
(B,A,C)

aaa ◦ (3, 1) =
(A,C,B)

aaa[2 := D] =
(B,D,A)

aaa[3 := D] =
(B,C,D)

aaa[1 := D] =
(D,C,A)

Figure 1. Assumption 1 in practice. To distinguish between items and positions, the 4 items are denoted A, B, C, and D. On the left:
parameters and considered recommendation aaa. We consider a matrix of probabilities of clicks ρρρ which corresponds to a PBM click
model, and a sub-optimal recommendation aaa. The corresponding set Πρρρ(aaa) of appropriate rankings of positions is composed of a unique
permutation πππ. On the right: corresponding neighborhoods. Solid lines identify the neighborhoodNπππ(aaa) used by GRAB, and both solid
and dashed lines correspond to the neighborhoodNG(aaa) used by S-GRAB. Note that there is a recommendation better than aaa in both
neighborhoods: aaa ◦ (3, 1) = (A,C,B).

to a combinatorial semi-bandit, but with two additional
properties derived from the design of GRAB.

Finally, GRAB extends the unimodal bandit setting
(Combes & Proutière, 2014) which assumes the existence
of a known graph G carrying a partial order on the set of
bandit arms denoted A. The unimodal bandit algorithms
are aware of G, but ignore the partial order induced by the
edges of G. However, they rely on G to efficiently browse
the arms up to the best one. Typically, the algorithm OSUB
(Combes & Proutière, 2014) selects at each iteration t, an
arm aaa(t) in the neighborhood NG (ãaa(t)) given G of the
current best arm ãaa(t) (a.k.a. the leader). By restricting
the exploration to this neighborhood, the regret suffered by
OSUB scales as O(γ/∆ log T ), where γ is the maximum
degree of G, to be compared with O(|A|/∆ log T ) if the
arms were independent.

3. Learning to Rank in a Semi-Bandit Setting
We consider the following online learning to rank (OLR)
problem with clicks feedback which encompasses the
PBM setting. For any integer n, let [n] denote the set
{1, . . . , n}. An instance of our OLR problem is a tuple
(L,K, (ρi,k)(i,k)∈[L]×[K]), where L is the number of items
to be displayed, K 6 L is the number of positions to dis-
play the items, and for any item i and position k, ρi,k is the
probability for a user to click on item i when displayed at
position k, independently of the items displayed at other
positions. Under PBM click-model, there exists two vectors
θθθ ∈ RL and κκκ ∈ RK , such that ρi,k = θiκk (i.e. ρρρ is of
rank 1).

A recommendation algorithm is only aware of L and K and
has to deliver T consecutive recommendations. At each
iteration t ∈ [T ], the algorithm recommends a permutation
aaa(t) = (a1(t), . . . , aK(t)) of K distinct items among L,

where ak(t) is the item displayed at position k. We denote
A = PLK the set of such permutations, which corresponds to
the set of arms of the bandit setting. Throughout the paper,
we will use the terms permutation and recommendation
interchangeably to denote an element of PLK . Thereafter,
the algorithm observes the clicks vector ccc(t) ∈ {0, 1}K ,
where for any position k, ck(t) equals 1 if the user clicks on
item ak(t) displayed at position k, and 0 otherwise. Note
that the recommendation at time t is only based on previous
recommendations and observations.

While the individual clicks are observed, the reward of the
algorithm is their total number r(t)

def
=
∑K
k=1 ck(t). Let µaaa

denote the expectation of r(t) when the recommendation

is aaa(t) = aaa, and µ∗
def
= maxaaa∈PLK µaaa the highest expected

reward. The aim of the algorithm is to minimize the cumu-
lative (pseudo-) regret

R(T ) = Tµ∗ − E

[
T∑
t=1

µaaa(t)

]
, (1)

where the expectation is taken w.r.t. the recommendations
from the algorithm and the clicks. Note that for any recom-
mendation aaa ∈ PLK , µaaa =

∑K
k=1 ρak,k.

3.1. Modeling Assumption

Apart from the independency of the clicks, the proposed
algorithm assumes a relaxed version of unimodality. Here
we present this assumption and state its relation with PBM.
We first define the set of appropriate rankings of positions:
for each recommendation aaa ∈ PLK , we denote Πρρρ(aaa) ⊆ PKK
the set of permutations πππ of the K positions such that
ρaπ1 ,π1

> ρaπ2 ,π2
> · · · > ρaπK ,πK . Therefore, an ap-

propriate ranking of positions orders the positions from the
one with the highest probability of click to the one with the
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lowest probability of click. See Figure 1 for an example.

With this notation, our assumption is the following:

Assumption 1 (Relaxed Unimodality). For any recommen-
dation aaa ∈ PLK and any ranking of positions πππ ∈ Πρρρ(aaa), if
µaaa 6= µ∗, then either there exists k ∈ [K − 1] such that

µaaa < µaaa◦(πk,πk+1) (2)

or there exists i ∈ [L] \ aaa([K]) such that

µaaa < µaaa[πK :=i], (3)

where

• aaa ◦ (πk, πk+1) is the permutation for which the items
at positions πk and πk+1 are swapped,

• aaa[πK := i] is the permutation which is the same
as aaa for any position k 6= πK , and such that
aaa[πK := i]πK = i,

• and aaa([K]) is the set of items recommended by aaa,

namely aaa([K])
def
= {a1, . . . , aK}.

Assumption 1 relates to a natural property of standard click
models: (i) for the optimal recommendation, the position
with the k-th highest probability to be observed is the one
displaying the k-th most attractive item, (ii) for a sub-
optimal recommendation, swapping two consecutive items,
given this order, leads to an increase of the expected reward.
However, Assumption 1 considers the order based on the
click probabilities ρak,k, not on the observation probabili-
ties κk. Figure 1 gives an example of both orders and of the
neighborhood associated to the ranking πππ defined after the
order on click probabilities ρak,k.

While the existence of a better recommendation in the neigh-
borhood defined given this order is less intuitive, it remains
true for state of the art click models (PBM, the cascading
model, and the dependent click model) and paves the way
to an algorithm based on observed random variables. Note
also that while there exists a better recommendation both in
the neighborhood based on the order on observation proba-
bility and in the neighborhood based on the order on click
probability, this is not true for any neighborhood based on
any arbitrary order (as soon as K > 4).

Hereafter, Lemma 1, states that Assumption 1 is weaker
than the PBM one. The proof of this Lemma is deferred to
the appendix.

Lemma 1. Let (L,K, (θiκk)(i,k)∈[L]×[K]) be an online
learning to rank problem with users following PBM, with
positive probabilities of looking at a given position. Then
Assumption 1 is fulfilled.

3.2. Relation with Unimodality

Assumption 1 relates to the unimodality of the set of ex-
pected rewards (µaaa)aaa∈PLK

. Let us first recall the definition
of unimodality in (Combes & Proutière, 2014) and then
express this relation.

Definition 1 (Unimodality). Let A be a set of arms, and
(νaaa)aaa∈A a set of reward distributions of respective expec-
tations (µaaa)aaa∈A. Let G = (V,E) be an undirected graph
with vertices V = A and edges E ⊆ V 2. The set of ex-
pected rewards (µaaa)aaa∈A is unimodal w.r.t. G, if and only
if:

1. the set of expected rewards admits a unique best arm:
argmaxaaa∈A µaaa = {aaa∗};

2. and from any arm aaa 6= aaa∗, there exists a path
(aaa0, aaa1, . . . , aaan) in G such that aaa0 = aaa, aaan = aaa∗, and
∀i ∈ [n], µaaai > µaaai−1 .

Note that the second property of unimodal sets of expected
rewards is equivalent to the property stating that from any
sub-optimal arm aaa, there exists an arm aaa′ ∈ NG(aaa) such
that µaaa′ > µaaa, where NG(aaa) is the neighborhood of aaa in G.

Let’s assume that there exists a unique recommendation
aaa∗ with maximum expected reward, and denote F =
(πππaaa)aaa∈PLK

a set of rankings of positions such that for any
recommendation aaa, πππaaa ∈ Πρρρ(aaa). Then, by denoting
GF = (V,EF ) the directed graph with vertices V = PLK
and edges

EF
def
=
{

(aaa,aaa ◦ (πaaak, πaaa(k+1))) : k ∈ [K − 1]
}

∪ {(aaa,aaa[πaaaK := i]) : i ∈ [L] \ aaa([K])} ,

(µaaa)aaa∈PLK
is unimodal1 with respect to GF . Note that this

graph is unknown from the algorithm as it builds upon
the unknown mapping F . However, this mapping may be
learned online, paving the way to an OSUB-like algorithm
to explore the space of recommendations.

4. GRAB Algorithm
Our algorithm, GRAB, takes inspiration from the unimodal
bandit algorithm OSUB (Combes & Proutière, 2014) by
selecting at each iteration t an arm aaa(t) in the neighborhood
of the current best arm (a.k.a. the leader). While in OSUB
the neighborhood is known beforehand, here we learn it
online. GRAB is described in Algorithm 1. This algorithm
uses the following notations:

1While the definition of unimodality in (Combes & Proutière,
2014) involves an undirected graph, OSUB only requires a di-
rected graph and the existence of a strictly increasing path from
any sub-optimal arm to the optimal one.
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At each iteration t, we denote

ρ̂i,k(t)
def
=

1

Ti,k(t)

t−1∑
s=1

1{ak(s) = i}ck(s)

the average number of clicks obtained at position k when
displaying item i at this position, where

Ti,k(t)
def
=

t−1∑
s=1

1{ak(s) = i}

is the number of time item i has been displayed at position

k; ρ̂i,k(t)
def
= 0 when Ti,k(t) = 0.

We also denote ãaa(t) the leader, meaning the recommen-

dation with the best pseudo average reward µ̄aaa(t)
def
=∑K

k=1 ρ̂ak,k(t), and we note

T̃aaa(t)
def
=

t−1∑
s=1

1{ãaa(s) = aaa}

the number of times the leader is aaa for iterations 1 to t− 1.

Finally, the statistics ρ̂i,k(t) are paired with their respective
indices

bi,k(t)
def
= f

(
ρ̂i,k(t), Ti,k(t), T̃ãaa(t)(t) + 1

)
,

where f(ρ̂, s, t) stands for

sup{p ∈ [ρ̂, 1] : s× kl(ρ̂, p) ≤ log(t) + 3 log(log(t))},

with

kl(p, q)
def
= p log

(
p

q

)
+ (1− p) log

(
1− p
1− q

)
the Kullback-Leibler divergence from a Bernoulli distri-
bution of mean p to a Bernoulli distribution of mean q;
f(ρ̂, s, t)

def
= 1 when ρ̂ = 1, s = 0, or t = 0.

At each iteration t, GRAB first identifies the leader ãaa(t),
and then recommends either ãaa(t) every L-th iteration, or
the best permutation in the inferred neighborhood, given the
sum of indices

∑K
k=1 bak,k(t) (see Figure 1 for an example

of a neighborhood). Each time an argmax is computed, the
ties are randomly broken.

To finish the presentation of GRAB, let us now discuss its
initialisation and its time-complexity.
Remark 1 (Initialisation). The initialisation of the algo-
rithm is handled through the default value of indices bi,k:
1. This value ensures that any permutation is recommended
at least once, as soon as it belongs to the neighborhood of
an arm which is often the leader. If a permutation is not
in such neighborhood, the theoretical analysis in Section 5
proves that this permutation is sub-optimal, hence it does
not matter whether this permutation is explored at least once
or not.

Algorithm 1 GRAB: parametric Graph for unimodal RAnk-
ing Bandit
Input: number of items L, number of positions K

1: for t = 1, 2, . . . do

2: ãaa(t)← argmax
aaa∈PLK

K∑
k=1

ρ̂ak,k(t)

3: find π̃ππ(t) s.t. ρ̂ãπ̃1(t)(t),π̃1(t)(t) >
ρ̂ãπ̃2(t)(t),π̃2(t)(t) > · · · > ρ̂ãπ̃K (t)(t),π̃K(t)(t)

4: recommend

aaa(t) =


ãaa(t) , if T̃ãaa(t)(t)L ∈ N,

argmax
aaa∈{ãaa(t)}
∪Nπ̃ππ(ãaa(t))

K∑
k=1

bak,k(t) , otherwise

where Nπππ(aaa) = {aaa ◦ (πk, πk+1) : k ∈ [K − 1]} ∪
{aaa[πK := i] : i ∈ [L] \ aaa([K])}

5: observe the clicks vector ccc(t)
6: end for

Remark 2 (Algorithmic Complexity). Even though the
two optimization steps might seem costly, at each iteration
the choice of a recommendation is done in a polynomial
time w.r.t. L and K: first, the maximization at Line 2
is a linear sum assignment problem which is solvable in
O
(
K2(L+ logK)

)
time (Ramshaw & Tarjan, 2012); it is

not required to scan the L!/(L − K)! permutations of K
distinct items among L. Secondly, the maximization at Line
4 is over a set of L− 1 recommendations and is equivalent
to the maximization of

Baaa(t) =

K∑
k=1

bak,k(t)−
K∑
k=1

bãk(t),k(t)

which reduces to the sum of up to four bak,k(t) terms as we
are looking at recommendations aaa in the neighborhood of
the leader. Specifically, either

• aaa = ãaa(t) and Baaa(t) = 0,

• or aaa = ãaa(t) ◦ (k, k′) and Baaa(t) = bãk′ ,k(t) +
bãk,k′(t)− bãk,k(t)− bãk′ ,k′(t),

• or aaa = ãaa(t)[k := i] and Baaa(t) = bi,k(t)− bãk,k(t).

Hence, this maximization requires O(L) computation
time. Overall, the computation time per iteration is a
O
(
K2(L+ logK)

)
.

5. Theoretical Analysis
As already discussed in Section 2, the proof of the upper-
bound on the regret of GRAB follows a similar path as the
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proof of OSUB (Combes & Proutière, 2014): (1) apply stan-
dard bandit analysis to control the regret under the condition
that the leader ãaa(t) is the best arm aaa∗, and (2) upper-bound
the expected number of iterations such that ãaa(t) 6= aaa∗ by
a O(log log T ). The inference of the rankings on positions
adds up a third step (3) upper-bounding the expected number
of iterations such that π̃ππ(t) /∈ Πρρρ (ãaa(t)).

The first step differs from (Combes & Proutière, 2014), as
we have to account for the semi-bandit feedback. We note
that when the leader is the best arm, GRAB behaves as a
Kullback-Leibler variation of CombUCB1 (Kveton et al.,
2015b) that we call KL-CombUCB in the following (see
the appendix for a complete definition of KL-CombUCB).
We derive an upper-bound specific to KL-CombUCB which
accounts for the fact that the maximization at Line 4 of
Algorithm 1 can be reduced to the maximization over sums
of at most 4 terms (see Remark 2). In the context of GRAB,
this new result, expressed by Theorem 2, reduces the regret-
bound by a factor K w.r.t. the standard upper-bound for
CombUCB1.

The second part of the analysis is based on the fact that
with high probability µ̄aaa(t) > µ̄aaa′(t) if µaaa > µaaa′ , which
derives from the control of the deviation of each ρ̂i,k(t).
Here lies the second main difference with Combes &
Proutière’s analysis: we control the deviation of each indi-

vidual ρ̂i,k(t) while they control the deviation of µ̂aaa(t)
def
=

(
∑t−1
s=1 1{aaa(s) = aaa})−1

∑t−1
s=1 1{aaa(s) = aaa}r(s). Again,

the analysis benefits from the small number of differences
between recommendations in the neighborhood of the leader.
Moreover, the analysis handles the fact that the neighbor-
hoods may change from an iteration to another, while the
neighborhoods are constant in Combes & Proutière’s analy-
sis. The corresponding result is expressed, in the following,
by Lemma 2.

Finally, the number of iterations at which the inferred rank-
ing on the positions is inappropriate is controlled by Lemma
3. The proof of this lemma is eased by the fact that the
number of times the leader is played is at least proportional
to the number of times it is the leader.

We now propose and prove the main theorem that upper-
bounds the regret of GRAB. Its proof is given after the
presentation of all the necessary theorems and lemmas.

Theorem 1 (Upper-Bound on the Regret of GRAB). Let(
L,K, (ρi,k)(i,k)∈[L]×[K]

)
be an online learning to rank

problem satisfying Assumption 1 and such that there exists a
unique recommendation aaa∗ with maximum expected reward.

When facing this problem, GRAB fulfills:

∀aaa ∈ Nπππ∗(aaa∗), E

[
T∑
t=1

1 {ãaa(t)=aaa∗, π̃ππ(t)=πππ∗, aaa(t)=aaa}

]

6
8

∆2
aaa

log T +O (log log T ) , (4)

E

[
T∑
t=1

1{ãaa(t) 6= aaa∗}

]
= O (log log T ) , (5)

E

[
T∑
t=1

1{π̃ππ(t) /∈ Πρρρ (ãaa(t))}

]
= O (1) , (6)

and hence

R(T ) 6
∑

aaa∈Nπππ∗ (aaa∗)

8

∆aaa
log T +O (log log T ) (7)

= O
(

L

∆min
log(T )

)
,

where πππ∗ is the unique ranking of positions in Πρ(aaa
∗),

∆aaa
def
= µ∗ − µaaa, and ∆min

def
= minaaa∈Nπππ∗ (aaa∗) ∆aaa.

The first upper-bound (Equation (4)) deals with the expected
number of iterations at which GRAB recommends a sub-
optimal permutation while the leader is the best permutation.
It derives from Theorem 2 hereafter, which detailed proof is
in the appendix.

Theorem 2 (New Upper-Bound on the Regret of KL-Com-
bUCB). We consider a combinatorial semi-bandit setting.
Let E be a set of elements and A ⊆ {0, 1}E be a set of
arms, where each arm aaa is a subset of E. Let’s assume
that the reward when drawing the arm aaa ∈ A is

∑
e∈aaa ce,

where for each element e ∈ E, ce is an independent draw
of a Bernoulli distribution of mean ρe ∈ [0, 1]. There-
fore, the expected reward when drawing the arm aaa ∈ A is
µaaa =

∑
e∈aaa ρe.

When facing this bandit setting, KL-CombUCB (CombUCB1
equiped with Kullback-Leibler indices, see the appendix)
fulfills

∀aaa ∈ A s.t. µaaa 6= µ∗,

E

[
T∑
t=1

1{aaa(t) = aaa}

]
6

2K2
aaa

∆2
aaa

log T +O (log log T ) ,

and hence

R(T ) 6
∑

aaa∈A:µaaa 6=µ∗

2K2
aaa

∆aaa
log T +O (log log T )

= O
(
|A|K2

max

∆min
log(T )

)
,
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where µ∗
def
= maxaaa∈A µaaa, ∆aaa

def
= µ∗ − µaaa, ∆min

def
=

minaaa∈A:∆aaa>0 ∆aaa, Kaaa
def
= minaaa∗∈A:µaaa∗=µ∗ |aaa \ aaa∗| is the

smallest number of elements to remove from aaa to get an

optimal arm, and Kmax
def
= maxaaa∈A:µaaa 6=µ∗ Kaaa.

Secondly, the expected number of iterations at which the
leader is not the optimal arm (Equation (5)) is controlled by
Lemma 2, which detailed proof is in the appendix.

Lemma 2 (Upper-Bound on the Number of Iterations of
GRAB for which ãaa(t) 6= aaa∗). Under the hypotheses of
Theorem 1 and using its notations,

∀ãaa ∈ PLK\{aaa∗}, E

[
T∑
t=1

1{ãaa(t) = ãaa}

]
= O (log log T ) .

Finally, the number of iterations at which the inferred rank-
ing on the positions is inappropriate (Equation (6)) is con-
trolled by Lemma 3, which detailed proof is in the appendix.

Lemma 3 (Upper-Bound on the Number of Iterations of
GRAB for which πππ(t) /∈ Πρρρ(ãaa)). Under the hypothesises
of Theorem 1 and using its notations,

∀ãaa ∈ PLK , E

[
T∑
t=1

1 {ãaa(t) = ãaa, π̃ππ(t) /∈ Πρρρ (ãaa)}

]
= O (1) .

We assemble these results to get the proof of Theorem 1.

Proof of Theorem 1. First note that, since there is a unique
optimal permutation, there is a unique appropriate ranking
πππ∗ of positions w.r.t. aaa∗: Πρρρ(aaa

∗) = {πππ∗}. Then, the proof
is based on the following decomposition of the set [T ] of
iterations:

[T ] =
⋃

aaa∈{aaa∗}
∪Nπππ∗ (aaa∗)

{t ∈ [T ] : ãaa(t) = aaa∗, π̃ππ(t) = πππ∗, aaa(t) = aaa}

∪ {t ∈ [T ] : ãaa(t) 6= aaa∗} ∪ {t ∈ [T ] : π̃ππ(t) /∈ Πρρρ (ãaa(t))}.

As for any recommendation aaa,∆aaa 6 K, this decomposition
leads to the inequalityR(T ) 6

∑
aaa∈Nπππ∗ (aaa∗) ∆aaaAaaa+KB+

KC, with

Aaaa = E

[
T∑
t=1

1 {ãaa(t) = aaa∗, π̃ππ(t) = πππ∗, aaa(t) = aaa}

]
,

B = E

[
T∑
t=1

1 {ãaa(t) 6= aaa∗}

]
,

C = E

[
T∑
t=1

1{π̃ππ(t) /∈ Πρρρ (ãaa(t))}

]
.

The term Aaaa is smaller than the expected number of times
the arm aaa is chosen by KL-CombUCB when it plays on the
set of arms {aaa∗} ∪ Nπππ∗ (aaa∗). As any of these arms differs
with aaa∗ at at most two positions, Theorem 2 upper-bounds
Aaaa by

8

∆2
aaa

log T +O (log log T )

and hence
∑
aaa∈Nπππ∗ (aaa∗) ∆aaaAaaa = O (L/∆min log T ) as

|Nπππ∗ (aaa∗) | = L− 1.

Note that Theorem 5 of (Kveton et al., 2015b),
upper-bounding the regret of CombUCB1, leads to a
O (LK/∆ log T ) bound2 for

∑
aaa∈Nπππ∗ (aaa∗) ∆aaaAaaa, which

we reduce by a factor K by using Theorem 2.

From Lemma 2, the term B is upper-bounded by

B =
∑

ãaa∈PLK\{aaa∗}

E

[
T∑
t=1

1 {ãaa(t) = ãaa}

]
= O (log log T ) ,

and we upper-bound the term C with Lemma 3:

C =
∑
ãaa∈PLK

E

[
T∑
t=1

1{ãaa(t) = ãaa, π̃ππ(t) /∈ Πρρρ (ãaa)}

]
= O (1) .

Finally, the regret of GRAB is upper-bounded by summing
these three terms, which concludes the proof.

5.1. Discussion

Assumming θ1 > · · · > θL and κ1 > · · · > κK ,
the detailed formula for the regret upper-bound (7) is∑K−1
k=1

8 log T
(κk−κk+1)(θk−θk+1) +

∑L
k=K+1

8 log T
κK(θK−θk) , where

the first sum corresponds to the set of neighbors of aaa∗ which
recommend the same items as aaa∗, and the second sum re-
lates to the set of neighbors of aaa∗ which replace the ‘last’
item in aaa∗. Hence, the number of displayed items does not
impact the total number of terms, but the gaps ∆aaa.

Note also that GRAB is, by design, robust to miss-
specifications. Typically, GRAB would properly handle
a matrix ρρρ = θθθTκκκ+ E , if maxi,j |Ei,j | is smaller than half
of the minimum gap between two entries of the matrix θθθTκκκ.

However, if there is a set of optimal recommendations A∗
(instead of a unique one), after convergence, the leader will
be picked in that set at each iteration. So the neighbor-
hood of each optimal recommendation will be explored,
and we will get a regret bound in O(|A∗|L). This behavior

2In this setting, the ground set is E
def
=⋃

k∈[K]{(amax(k−1,1), k), (ak, k), (amin(k+1,K), k)} ∪⋃
k∈[L]\[K]{(ak,K)} and is of size L + 2K − 2, and any

arm is composed of exactly K elements in E.



Parametric Graph for Unimodal Ranking Bandit

questions the applicability of unimodality to the Cascading
Model (CM), as with this model there is at least K! optimal
recommendations. Moreover, while Assumption 1 is valid
for CM and the Dependent Click Model (DCM), our setting
also assumes the existence of the matrix ρρρ, which is false for
CM and DCM: in both settings the probability of clicking
on item i in position ` depends on other displayed items.

6. Experiments
In this section, we compare GRAB to PMED (Komiyama
et al., 2017), to TopRank (Lattimore et al., 2018), to PB-
MHB (Gauthier et al., 2021), to εn-Greedy, to Static Graph
for unimodal RAnking Bandit (S-GRAB), a simplified ver-
sion of GRAB, and to KL-CombUCB, an adaptation of
CombUCB1 (Kveton et al., 2015b) (see the appendix for
details regarding S-GRAB and KL-CombUCB). The ex-
periments are conducted on the Yandex dataset (Yandex,
2013) and on purely simulated data. We use the cumula-
tive regret to evaluate the performance of each algorithm,
where the cumulative regret is averaged over 20 indepen-
dent runs of T = 107 iterations each. Code and data
for replicating our experiments are available at https:
//github.com/gaudel/ranking_bandits.

6.1. Experimental Setting

We use two types of datasets: a simulated one for which we
set the values for κκκ and θθθ and a real one, where parameters
are inferred from real life logs of Yandex search engine
(Yandex, 2013). Let’s remind that θi is the probability for
the user to click on item i when it observes this item, and
κk is the probability for the user to observe position k.

Simulated data allow us to test GRAB in extreme sit-
uations. We consider L = 10 items, K = 5 posi-
tions, and κκκ = [1, 0.75, 0.6, 0.3, 0.1]. The range of val-
ues for θθθ is either close to zero (θθθ− = [10−3, 5.10−4,
10−4, 5.10−5, 10−5, 10−6, . . . , 10−6]), or close to one
(θθθ+ = [0.99, 0.95, 0.9, 0.85, 0.8, 0.75, . . . , 0.75]).

Real data contain the logs of actions toward the Yandex
search engine: 65 million search queries and 167 million
hits (clicks). Common use of this database in the bandit
setting consists first in extracting from these logs the pa-
rameters of the chosen real model, and then in simulating
users’ interactions given these parameters (Lattimore et al.,
2018). We use Pyclick library (Chuklin et al., 2015) to infer
the PBM parameters of each query with the expectation
maximization algorithm. This leads to θi values ranging
from 0.070 to 0.936, depending on the query. Similarly to
(Lattimore et al., 2018), we look at the results averaged on
the 10 most frequent queries, while displaying K = 5 items
among the L = 10 most attractive ones.

Among our opponents, TopRank and PMED require de-

103 104 105 106 107

Iterations

0
2500
5000
7500

10000
12500
15000
17500
20000

Cu
m

ul
at

iv
e 

Ex
pe

ct
ed

 R
eg

re
t

GRAB
S-GRAB
KL-CombUCB

PB-MHB, c=103, m=1
εn-greedy, c=104

TopRank
PMED

Figure 2. Cumulative regret w.r.t. iterations on Yandex dataset.
The plotted curves correspond to the average over 200 independent
sequences of recommendations (20 sequences per query). The
shaded area depicts the standard error of our regret estimates.

creasing values of κκκ which may not be fulfilled by PBM.
We pre-order them to fulfill these algorithms’ requirements.
Otherwise, κκκ is shuffled at the beginning of each sequence
of recommendations. We also carefully tune the exploration
hyper-parameter c of εn-greedy taking values ranging ex-
ponentially from 100 to 106. For PB-MHB, we use the
hyper-parameters recommended in (Gauthier et al., 2021).

6.2. Results

Figure 2 shows the results for the algorithms on Yandex
and Figure 3 on the simulated data. We measure the per-
formance of each algorithm according to the cumulative
regret (see Equation 1). It is the sum, over T consecutive
recommendations, of the difference between the expected
reward of the best answer and of the answer of a given rec-
ommender system. The best algorithm is the one with the
lowest regret. We average the results of each algorithm over
20 independent sequences of recommendations per query or
simulated setting. Although PMED theoretically yields an
asymptotically optimal regret, we stop it at iteration t = 105

due to its heavy computation-time.

Ablation Study The two main ingredients of GRAB are
the use of a graph to explore the set of recommendations,
and the online inference of this graph. Without these ingre-
dients, GRAB boils down to KL-CombUCB which recom-
mends at each iteration the best permutation given the sum
of indices bi,k and has a O

(
LK2/∆ log T

)
regret. With

only the first ingredient (namely a static graph of degree

https://github.com/gaudel/ranking_bandits
https://github.com/gaudel/ranking_bandits
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Figure 3. Cumulative regret w.r.t. iterations on simulated data. The
plotted curves correspond to the average over 20 independent se-
quences of recommendations. The shaded area depicts the standard
error of our regret estimates. For εn-Greedy, c is set to 105 when
θθθ is close to 0, and to 103 when θθθ is close to 1.

Θ(LK)), we get S-GRAB which regret is upper-bounded by
O (LK/∆ log T ), while GRAB’s regret is upper-bounded
byO (L/∆ log T ) thanks to a set of graphs of degree L− 1.

We want to assert the empirical impact of these ingredients.
On Figures 2 and 3, we see that GRAB has a better regret
than S-GRAB and KL-CombUCB in every settings. This
confirms that the proposed graphs are relevant to explore
the set of recommendations, and that GRAB quickly infer
the appropriate graph in the family of potential ones.

Results Analysis Figure 2 compares the empirical regret
of all algorithms on Yandex dataset. GRAB is the second
best with a regret at T = 107 about two time smaller than
the rest of the algorithms. Only PB-MHB yields a smaller
regret, but PB-MHB is more than ten times slower to deliver
a recommendation than GRAB and it does not have any
theoretical guarantees.

Figure 3 shows our results on purely simulated data illus-
trating extreme settings even though these settings are less
realistic. In both settings, GRAB is in the top-3 algorithms.
PB-MHB is still the algorithm yielding the best regret. How-
ever, while TopRank provides better or similar result as

Table 2. Average computation time for sequences of 107 recom-
mendations vs. all queries of Yandex dataset

ALGORITHM (HOUR/MIN) TRIAL (MS)

GRAB 2H24 0.9
S-GRAB 9H56 3.6
εn-GREEDY c = 104 1H13 0.4
PB-MHB c = 103 , m = 1 44H50 16
KL-COMBUCB 2H03 0.7
PMED 474H13∗ 170
TOPRANK 9H29 3
∗ EXTRAPOLATION FROM 105 RECOMMENDATIONS.

GRAB at iteration 107, its regret is higher than the one of
GRAB up to iteration t = 4× 106. TopRank only catchs-up
GRAB at the end of the sequences of recommendations.
We note that in the setting close to 1, TopRank manages
to find the perfect order after 106 iterations. In this setting
too, εn-greedy has better performance during the 106 first
iterations, but suffers from its greedy behaviour during the
last steps with a large variance.

Computation Time As shown in Table 2, the fastest al-
gorithm is εn-greedy. KL-CombUCB and GRAB are two
times slower. The exploration of S-GRAB multiplies its
computation time by 4 compared to GRAB. TopRank is
about three times slower than GRAB, and PB-MHB, despite
its good regret is one of the slowest algorithm with PMED.

7. Conclusion
Our work targets the full PBM setting, which aims at rec-
ommending a ranking of K items among L and display
them, without prior knowledge on the attractiveness of the
positions. We learn online both the user preferences and
their gaze habits. To solve this problem, we define a graph
parametrized by rankings of positions, and we extend the
unimodal bandit setting to this family of graphs. We also
design GRAB, an algorithm that learns online the proper
parametrization of the graph, and we prove a regret upper-
bound in O(L/∆ log T ) for this algorithm which reduces
by a factor K2 (respectively K) the bound which would be
obtained without the unimodal setting (resp. with the stan-
dard unimodal setting). On real and simulated data, GRAB
quickly delivers good recommendations.

The extension of the unimodal setting is a promising tool
which may benefit to recommendations to users with a more
general behavior, or to other combinatorial semi-bandit sce-
narios. The integration of unimodal bandit algorithms work-
ing on parametric spaces (Combes et al., 2020) may also
pave the way to efficient contextual recommendation sys-
tems handling larger sets of items and positions.
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