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A. Proof of Proposition 8
First, we prove that MWL is weaker than Manon. It suffices to note that MWL ⊆ Manon.

It remains to argue that Manon is weaker than MWL. The proof is an adaptation of the proofs of Lemma 2 in Xu et al.
(2019) and Theorem 5 in Morris et al. (2019). Given a labelled graph we show, by induction on the number of rounds of
computation, that ���(t)MWL

� ���
(t)
M for all M ∈ Manon and every t ≥ 0.

Clearly, this holds for t = 0 since ���(0)MWL
= ���

(0)
M := ννν, by definition. We assume next that the induction hypothesis holds up

to round t− 1 and consider round t. Let v and w be two vertices such that (���(t)MWL
)v = (���

(t)
MWL

)w holds. This implies, by the

definition of MWL, that (���(t−1)
MWL

)v = (���
(t−1)
MWL

)w and

{{(���(t−1)
MWL

)u | u ∈ NG(v)}} = {{(���(t−1)
MWL

)u | u ∈ NG(w)}}.

By the induction hypothesis, this implies that (���(t−1)
M )v = (���

(t−1)
M )w and

{{(���(t−1)
M )u | u ∈ NG(v)}} = {{(���(t−1)

M )u | u ∈ NG(w)}}.
As a consequence, there is a bijection between NG(v) and NG(w) such that to every vertex u ∈ NG(v) we can assign a
unique vertex u� ∈ NG(w) such that (���(t−1)

M )u = (���
(t−1)
M )u� . Hence,

MSG(t)
�
(���

(t−1)
M )v, (���

(t−1)
M )u,−,−

�
= MSG(t)

�
(���

(t−1)
M )w, (���

(t−1)
M )u� ,−,−

�
.

Since this mapping between NG(v) and NG(w) is a bijection we also have:

m(t)
v =

�

u∈NG(v)

MSG(t)
�
(���

(t−1)
M )v, (���

(t−1)
M )u,−,−

�
=

�

u�∈NG(w)

MSG(t)
�
(���

(t−1)
M )w, (���

(t−1)
M )u� ,−,−

�
= m(t)

w .

We may thus conclude that

(���
(t)
M )v = UPD(t)

�
(���

(t−1)
M )v,m

(t)
v

�
= UPD(t)

�
(���

(t−1)
M )w,m

(t)
w

�
= (���

(t)
M )w,

as desired.

B. Anonymous MPNNs and self labels

We connect to MPNNs of the form f
(t)
comb(���

(t−1)
v , f

(t)
aggr({{���(t−1)

u | u ∈ NG(v)}})) used in Xu et al. (2019) and Mor-
ris et al. (2019). Observe that the aggregation functions f

(t)
aggr({{���(t−1)

u | u ∈ NG(v)}}) can be written in the form
g(t)(

�
u∈NG(v) h

(t)(���(t−1)
u )), based on Lemma 5 from Xu et al. (2019).

Suppose that ννν : V → As0 . It suffices to define for every t ≥ 1, every x,y ∈ Ast−1 , every v ∈ V and u ∈ NG(u):

MSG(t)(x,y,−,−) := h(t)(y),

UPD(t)(x,y) := f
(t)
comb

�
x, g(t) (y)

�
.

(8)

Hence, the aMPNNs in Xu et al. (2019) and Morris et al. (2019) are examples of our aMPNNs.

The aMPNNs that we consider in this paper are slightly more general than those defined by (8). Indeed, we consider
message functions that can also depend on the previous label ���(t−1)

v . In contrast, the message functions in (8) only depend
on y, which corresponds to the previous labels ���(t−1)

u of neighbours u ∈ NG(v). Let M−
anon denote the class of aMPNNs

whose message functions only depend on the previous labels of neighbours. It now suffices to observe (see Example 2) that
MWL ∈ M−

anon to infer, combined with Proposition 8, that:
Corollary 20. The classes M−

anon, Manon and MWL are all equally strong.

We observe, however, that this does not imply that for every aMPNN M in Manon there exists an aMPNN M � in M−
anon

such that ���(t)M ≡ ���
(t)
M � for all t ≥ 0. Indeed, the corollary implies that for every M in Manon there exists an aMPNN M � in

M−
anon such that M � M �, and there exists an M �� in Manon, possibly different from M , such that M � � M ��. In fact, such

an aMPNN M ��, in this case is MWL.
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C. Proof of Theorem 11
Crucial in the proof is the notion of row-independence modulo equality from Morris et al. (2019), which we recall next.

Definition 21 (Row-independence modulo equality). A labelling ��� : V → As is row-independent modulo equality if the
set of unique labels assigned by ��� is linearly independent.

In what follows, we always assume that the initial labelling ννν of G is row-independent modulo equality. One can always
ensure this by extending the labels.7

Proof. We already know that MReLU
GNN is weaker than MWL (Theorem 10 and also Corollary 9). It remains to show that

MWL is weaker than MReLU
GNN . That is, given an aMPNN MWL, we need to construct an aMPNN M in MReLU

GNN such that
���
(t)
M � ���

(t)
MWL

, for all t ≥ 0. We observe that since ���(t)MWL
� ���

(t)
M for any M in MReLU

GNN , this is equivalent to constructing an

M such that ���(t)M ≡ ���
(t)
MWL

.

The proof is by induction on the number of computation rounds. The aMPNN M in MReLU
GNN that we will construct will use

message and update functions of the form:

MSG(t)(x,y,−,−) := yW(t) and UPD(t)(x,y) := ReLU
�
pxW(t) + y + b(t)

�
(9)

for some value p ∈ A, 0 < p < 1, weight matrix W(t) ∈ Ast−1×st , and bias vector b(t) ∈ Ast . Note that, in contrast
to aMPNNs of the form (2), we only have one weight matrix per round, instead of two, at the cost of introducing an
extra parameter p ∈ A. Furthermore, the aMPNN constructed in Morris et al. (2019) uses two distinct weight matrices in
A(st−1+s0)×(st+s0) (we come back to this at the end of this section) whereas our weight matrices are elements of Ast−1×st

and thus of smaller dimension.

The induction hypothesis is that ���(t)M ≡ ���
(t)
MWL

and that ���(t)M is row-independent modulo equality.

For t = 0, we have that for any M ∈ MReLU
GNN , ���(0)M = ���

(0)
MWL

:= ννν, by definition. Moreover, ���(0)M is row-independent modulo
equality because ννν is so, by assumption.

We next assume that up to round t − 1 we have found weight matrices and bias vectors for M such that ���(t−1)
M satisfies

the induction hypothesis. We will show that for round t we can find a weight matrix W(t) ∈ Ast−1×st and bias vector
b(t) ∈ Ast such that ���(t)M also satisfies the hypothesis.

Let L(t−1) ∈ An×st−1 denote the matrix consisting of rows (���(t−1)
M )v, for v ∈ V . Moreover, we denote by uniq(L(t−1))

a (m × st−1)-matrix consisting of the m unique rows in L(t−1) (the order of rows is irrelevant). We denote the rows in
uniq(L(t−1)) by a1, . . . ,am ∈ Ast−1 . By the induction hypothesis, these rows are linearly independent. Following the same
argument as in Morris et al. (2019), this implies that there exists an (st−1×m)-matrix U(t) such that uniq(L(t−1))U(t) = I.
Let us denote by e1, . . . , em ∈ Am the rows of I. In other words, in ei, all entries are zero except for entry i, which holds
value 1.

We consider the following intermediate labelling µµµ(t) : V → Am defined by

v �→
�
(A+ pI)L(t−1)U(t)

�
v
. (10)

We know that for every vertex v, (���(t−1)
M )v corresponds to a unique row ai in uniq(L(t−1)). We denote the index of this row

by ρ(v). More specifically, (���(t−1)
M )v = aρ(v). Let NG(v, i) := {u | u ∈ NG(v), ρ(v) = i}. That is, NG(v, i) consists of

all neighbours u of v which are labelled as ai by ���
(t−1)
M . It is now readily verified that the label µµµ(t)

v defined in (10) is of the
form

µµµ(t)
v = peρ(v) +

m�

i=1

|NG(v, i)|ei. (11)

We clearly have that ���(t)MWL
� µµµ(t). The converse also holds, as is shown in the following lemma.

7 Note that we allow to extend the labels only in a restricted way that does not impact the initial labelling, namely: equal labels must
be extended in the same way.
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Lemma 22. For any two vertices v and w, we have that µµµ(t)
v = µµµ

(t)
w implies (���(t)MWL

)v = (���
(t)
MWL

)w.

Proof. We argue by contradiction. Suppose, for the sake of contradiction, that there exist two vertices v, w ∈ V such that

µµµ(t)
v = µµµ(t)

w and (���
(t)
MWL

)v �= (���
(t)
MWL

)w (12)

hold. We show that this is impossible for any value p satisfying 0 < p < 1. (Recall from (11) that µµµ(t)
v depends on p.)

We distinguish between the following two cases. If (���(t)MWL
)v �= (���

(t)
MWL

)w then either

(i) (���
(t−1)
MWL

)v �= (���
(t−1)
MWL

)w; or

(ii) (���
(t−1)
MWL

)v = (���
(t−1)
MWL

)w and {{(���(t−1)
MWL

)u | u ∈ NG(v)}} �= {{(���(t−1)
MWL

)u | u ∈ NG(w)}}.

We first consider case (i). Observe that (���(t−1)
MWL

)v �= (���
(t−1)
MWL

)w implies that (���(t−1)
M )v �= (���

(t−1)
M )w. This follows from the

induction hypothesis ���(t−1)
M ≡ ���

(t−1)
MWL

. It now suffices to observe that µµµ(t)
v = µµµ

(t)
w implies that the corresponding linear

combinations, as described in (11), satisfy:

peρ(v) +

m�

i=1

|NG(v, i)|ei = peρ(w) +

m�

i=1

|NG(w, i)|ei.

We can assume, without loss of generality, that (���(t−1)
M )v = a1 and (���

(t−1)
M )w = a2. Recall that a1 and a2 are two distinct

labels. Then, the previous equality implies:

(|NG(v, 1)|+p− |NG(w, 1)|) e1 + (|NG(v, 2)|−|NG(w, 2)|−p) e2 +

m�

i=3

(|NG(v, i)|−|NG(w, i)|) ei = 0.

Since e1, . . . , em are linearly independent, this implies that |NG(v, i)|−|NG(w, i)|= 0 for all i = 3, . . . ,m and
|NG(v, 1)|+p − |NG(w, 1)|= 0 and |NG(v, 2)|−|NG(w, 2)|−p = 0. Since |NG(v, 1)|−|NG(w, 1)|∈ Z and 0 < p < 1,
this is impossible. We may thus conclude that case (i) cannot occur.

Suppose next that we are in case (ii). Recall that for case (ii), we have that (���(t−1)
MWL

)v = (���
(t−1)
MWL

)w and thus also (���
(t−1)
M )v =

(���
(t−1)
M )w. Using the same notation as above, we may assume that (���(t−1)

M )v = (���
(t−1)
M )w = a1. In case (ii), however, we

have that {{(���(t−1)
MWL

)u | u ∈ NG(v)}} �= {{(���(t−1)
MWL

)u | u ∈ NG(w)}} and thus also {{(���(t−1)
M )u | u ∈ NG(v)}} �= {{(���(t−1)

M )u |
u ∈ NG(w)}}. That is, there must exist a label assigned by ���

(t−1)
M that does not occur the same number of times in the

neighbourhoods of v and w, respectively. Suppose that this label is a2. The case when this label is a1 can be treated similarly.
It now suffices to observe that µµµ(t)

v = µµµ
(t)
w implies that the corresponding linear combinations, as described in (11), satisfy:

(|NG(v, 1)|+p) e1 + |NG(v, 2)|e2 +
m�

i=3

|NG(v, i)|ei = (|NG(w, 1)|+p) e1 + |NG(w, 2)|e2 +
m�

i=3

|NG(w, i)|ei.

Using a similar argument as before, based on the linear independence of e1, . . . , em, we can infer that |NG(v, 2)|=
|NG(w, 2)|. We note, however, that a2 appeared a different number of times among the neighbours of v and w. Hence, also
case (ii) is ruled out and our assumption (12) is invalid. This implies µµµ(t) � ���

(t)
MWL

, as desired and thus concludes the proof
of the lemma.

From here, to continue with the proof of Theorem 11, we still need to take care of the ReLU activation function. Importantly,
its application should ensure row-independence modulo equality and make sure the labelling “refines” ���(t)MWL

. To do so, we
again follow closely the proof strategy of Morris et al. (2019). More specifically, we will need an analogue of the following
result. In the sequel we denote by J a matrix with all entries having value 1 and whose size will be determined from the
context.

Lemma 23 (Lemma 9 from Morris et al., 2019). Let C ∈ Am×w be a matrix in which all entries are non-negative and
all rows are pairwise disjoint. Then there exists a matrix X ∈ Aw×m such that sign(CX− J) is a non-singular matrix in
Am×m.



Comparing GCNs in the Message-Passing Framework

We prove the following for the ReLU function.

Lemma 24. Let C ∈ Am×w be a matrix in which all entries are non-negative, all rows are pairwise disjoint and such
that no row consists entirely out of zeroes8. Then there exists a matrix X ∈ Aw×m and a constant q ∈ A such that
ReLU(CX− qJ) is a non-singular matrix in Am×m.

Proof. Let C be the maximal entry in C and consider the column vector z = (1, C, C2, . . . , Cw−1)T ∈ Aw×1. Then
each entry in c = Cz ∈ Am×1 is positive and all entries in c are pairwise distinct. Let P be a permutation matrix
in Am×m such that c� = Pc is such that c� = (c�1, c

�
2, . . . , c

�
m)T ∈ Am×1 with c�1 > c�2 > · · · > c�m > 0. Consider

x =
�

1
c�1
, . . . , 1

c�m

�
∈ A1×m. Then, for E = c�x ∈ Am×m

Eij =
c�i
c�j

and Eij =





1 if i = j

> 1 if i < j

< 1 if i > j.

Let q be the greatest value in E smaller than 1. Consider F = E− qJ. Then,

Fij =
c�i
c�j

− q and Fij =





1− q if i = j

> 0 if i < j

≤ 0 if i > j.

As a consequence,

ReLU(F)ij =





1− q if i = j

> 0 if i < j

0 if i > j.

This is an upper triangular matrix with (nonzero) value 1− q on its diagonal. It is therefore non-singular.

We now observe that QReLU(F) = ReLU(QF) for any row permutation Q. Furthermore, non-singularity is preserved
under row permutations and QJ = J. Hence, if we define X = zx and use the permutation matrix P, then:

PReLU(CX− qJ) = ReLU(PCzx− qPJ) = ReLU(E− qJ) = ReLU(F),

and we have that ReLU(CX− qJ) is non-singular, as desired. This concludes the proof of the lemma.

We now apply this lemma to the matrix uniq(M(t)), with M(t) ∈ An×m consisting of the rows µµµ(t)
v , for v ∈ V . In-

specting the expression from Equation (11) for µµµ(t)
v we see that each row in M(t) holds non-negative values and no

row consists entirely out of zeroes. Let X(t) and q(t) be the matrix and constant returned by Lemma 24 such that
ReLU

�
uniq(M(t))X(t) − q(t)J

�
is an m×m non-singular matrix. We now define

���
(t)
M := ReLU

�
M(t)X(t) − q(t)J

�
.

From the non-singularity of ReLU
�
uniq(M(t))X(t) − q(t)J

�
we can immediately infer that ���(t)M is row-independent modulo

equality. It remains to argue that ���(t)M ≡ ���
(t)
MWL

. This now follows from the fact that µµµ(t) ≡ ���
(t)
MWL

and each of the m unique

labels assigned by µµµ(t) uniquely corresponds to a row in uniq(M(t)), which in turn can be mapped bijectively to a row in
ReLU

�
uniq(M(t))X(t) − q(t)J

�
. We conclude by observing that the desired weight matrices and bias vector at round t for

M are now given by W(t) := U(t)X(t) and b(t) := −q(t)1. This concludes the proof of Theorem 11.
8Compared to Lemma 23, we additionally require non-zero rows.
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D. Refining Theorem 11 for the sign activation function

We remark that the proof of Theorem 11 can be used for Msign
GNN as well. One just has to use Lemma 23 instead of Lemma 24.

It is interesting to note that the bias vector for the sign activation function in Lemma 23 is the same for every t. A similar
statement holds for the ReLU function. Indeed, we recall that we apply Lemma 24 to uniq(M(t)). For every t, the entries in
this matrix are of the form i+ p (which is smaller than i+ 1) or i, for i ∈ {1, 2, . . . , n}. Hence, for every t, the maximal
entry (denoted by C in the proof of Lemma 24) is upper bounded by n+ 1. The value q(t) relates to the largest possible
ratios, smaller than 1, of elements in the matrix constructed in Lemma 24.

When the lemma is applied to an m × w matrix, this ratio is upper bounded by (n+1)w−1
(n+1)w . Note that, since the lemma

is applied to matrices arising from µµµ(t), w will always be at most n. Hence, taking any q(t) := q for (n+1)n−1
(n+1)n < q < 1

suffices. We can take q to be arbitrarily close to 1, but not 1 itself.

We can thus strengthen Theorem 10, as follows. We denote by MGNN− the class of aMPNNs using message and update
functions of the form:

MSG(t)(x,y,−,−) := yW(t) and UPD(t)(x,y) := σ
�
pxW(t) + y − q1

�
, (13)

parameterised with values p, q ∈ A, 0 ≤ p, q ≤ 1 and weight matrices W(t) ∈ Ast−1×st , and where σ can be either the
sign or ReLU function.

Corollary 25. The class MGNN− is equally strong as MGNN and is equally strong as MWL.

E. Proof of Proposition 13
To prove the first part of the claim notice that Manon is weaker than Mdeg, simply because any aMPNN is a dMPNN. Then
the result follows from Theorem 7.

For the second part it suffices to provide a dMPNN M and a labelled graph (G,ννν) such that there exists a round t ≥ 0 for
which ���

(t)
MWL

�� ���
(t)
M holds. We construct such an M originating from a GCN (Kipf & Welling, 2017) defined in Example 3.

That is, M is a dMPNN in MdGNN4
. Consider the labelled graph (G,ννν) with vertex labelling νννv1 = νννv2 = (1, 0, 0),

νννv3 = νννv6 = (0, 1, 0) and νννv4 = νννv5 = (0, 0, 1), and edges {v1, v3}, {v2, v3}, {v3, v4}, {v4, v5}, and {v5, v6}, as depicted
in Figure 3.

v1

v2
v3 v4 v5 v6

Figure 3. Graph G.

Recall that ���(0) = ννν and

(���
(1)
M )v := ReLU



�

1

1 + dv

�
���(0)v W(1) +

�

u∈NG(v)

�
1√

1 + dv

��
1√

1 + du

�
���(0)u W(1)


 .
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We next define W(1) :=
�

1 0 0
0 1 0
0 0 1

�
. It can be verified that

���
(1)
M =




1
2 0 0

1
2 0 0

0 1
4 0

0 0 1
3

0 0 1
3

0 1
2 0




+




0 1
2
√
2

0

0 1
2
√
2

0
1√
2

0 1
2
√
3

0 1
2
√
3

1
3

0 1√
6

1
3

0 0 1√
6




=




1
2

1
2
√
2

0
1
2

1
2
√
2

0
1√
2

1
4

1
2
√
3

0 1
2
√
3

2
3

0 1√
6

2
3

0 1
2

1√
6




.

We observe that (���(1)M )v4
�= (���

(1)
M )v5 . We note, however, that (���(1)MWL

)v4 = HASH((0, 0, 1), {{(0, 0, 1), (0, 1, 0)}}) =

(���
(1)
MWL

)v5 . Hence, ���(1)MWL
�� ���

(1)
M .

F. Proof of Lemma 15
We define the aMPNN Md with the following message and update functions. For each x, y ∈ As, z ∈ A, and vertices
v, u ∈ NG(v) we define:

MSG(1)(x,y,−,−) := 1 and UPD(1)(x, z) := (x, z) .

Then, m(1)
v :=

�
u∈NG(v) 1 = dv and (���

(1)
Md

)v := UPD(1)(νννv, dv) = (νννv, dv) ∈ As+1, as desired.

G. Proof of Proposition 14
By Theorem 7 it suffices to prove that the class Mdeg is weaker than Manon, with 1 step ahead. Let (G,ννν) be a labelled
graph with ννν : V → As0 . Take an arbitrary dMPNN M1 such that for every round t ≥ 1 the message function is

MSG
(t)
M1

(x,y, dv, du) ∈ As�t

and UPD
(t)
M1

(x, z) is the update function.

We construct an aMPNN M2 such that ���(t+1)
M2

� ���
(t)
M1

holds, as follows. We denote the message and update functions of M2 by

MSG
(t)
M2

and UPD
(t)
M2

, respectively. We will keep as an invariant (I1) stating that for all v if we have x� = (���
(t−1)
M1

)v ∈ Ast−1

then x = (x�, dv) = (���
(t)
M2

)v ∈ Ast−1+1.

For t = 1, we let MSG
(1)
M2

and UPD
(1)
M2

be the functions defined by Lemma 15. As a consequence, (���(1)M2
)v = (νννv, dv) ∈

As0+1 for every vertex v. We clearly have that ���(1)M2
� ���

(0)
M1

and the invariant (I1) trivially holds.

For t ≥ 2, we define the message and update functions of M2 as follows:

MSG
(t)
M2

(x,y,−,−) := MSG
(t−1)
M1

(x�,y�, x, y)

where x = (x�, x) and y = (y�, y) and by invariant (I1) x = dv and y = du. Notice that the message function remains
anonymous as du and dv are not obtained by setting f(v) = dv and f(u) = du but instead were computed once by the first
message aggregation and encoded in the labels of v and u. The update function is defined as follows:

UPD
(t)
M2

(x, z) :=
�

UPD
(t−1)
M1

(x�, z�), x
�
∈ Ast−1+1,

where x = (x�, x) and by invariant (I1) x = dv . In other words, in each round t ≥ 2, M2 extracts the degrees from the last
entries in the labels and simulates round t− 1 of M1. It is readily verified that ���(t)M2

� ���
(t−1)
M1

for every t, as desired and that
the invariant (I1) holds.
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H. GCNs as dGNNs of the form (5)

Example 26. The GCN architecture of Kipf & Welling (2017) corresponds to graph neural networks of the form (5),
with W

(t)
1 = 0 ∈ Ast−1×st , p = 1, b(t) = 0 ∈ As, and where g = h are defined by the function g(n) = h(n) =

(1 + n)−1/2.

I. Proof of Proposition 16
We first show a more general result, related to graph neural networks of the form (5) in which diag(h) = I. In other words,
the function h : N+ → A underlying h is the constant one function, i.e., h(n) = 1 for all n ∈ N+.

Proposition 27. The subclass of MdGNN, in which the function h is the constant one function, is weaker than MWL.

Proof. We show that any MPNN M in this class is an anonymous MPNNs. To see this, it suffices to observe that any
dMPNN in MdGNN, and thus also M in particular, is equivalent to a dMPNN with message and update functions defined as
follows. For every round t ≥ 1, every x,y ∈ Ast−1 , z = (z�, z) ∈ Ast+1, and every vertex v and u ∈ NG(v):

MSG(t)(x,y, dv, du) :=
�
h(du)yW

(t)
2 , 1

�
∈ Ast+1 (14)

and

UPD(t)(x, z) := σ
�
xW

(t)
1 + g(z)z� + pg(z)h(z)xW

(t)
2 + b(t)

�
∈ Ast , (15)

where z ∈ A will hold the degree information of the vertex under consideration (i.e., dv) after message passing. That is,
we use a similar trick as in Lemma 15. Since we consider MPNNs in which h(du) = 1, the message function (14) indeed
only depends on y. As a consequence, M is equivalent to an anonymous MPNN. From Theorem 7 and in particular from
Manon � MWL, the proposition follows.

The architectures MdGNN1
and MdGNN3

from Table 1 clearly satisfy the assumption in the previous proposition and hence
MdGNN1 ,MdGNN3 � MWL.

We thus have shown the remaining part of the third item in Theorem 12.

J. Proof of Proposition 18
The proof consists of a number of counterexamples related to the various classes of dMPNNs under consideration. For
convenience, we describe the counterexamples in terms of graph neural networks rather than in their dMPNN form.

We first prove the proposition for classes of dMPNNs related to graph neural networks of the form:

L(t) := σ
�
diag(g)Adiag(h)L(t−1)W(t) +B(t)

�
.

This includes MdGNNi
, for i = 1, 2. Consider the labelled graph (G1,ννν) with vertex labelling νννv1 = (1, 0, 0), νννv2 = νννv3 =

(0, 1, 0) and νννv4 = (0, 0, 1), and edges {v1, v2}, {v1, v3}, {v4, v2} and {v4, v3}, as depicted in Figure 4.

v2

v3

v4v1

Figure 4. Graph G1.

By definition, L(0) :=

�
1 0 0
0 1 0
0 1 0
0 0 1

�
. We note that

(���
(1)
MWL

)v1 = HASH((1, 0, 0), {{(0, 1, 0), (0, 1, 0)}}) �= (���
(1)
MWL

)v4 = HASH((0, 0, 1), {{(0, 1, 0), (0, 1, 0)}}).
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We next show that there exist no W(1),B(1) such that L(1) � ���
(1)
MWL

. Indeed, since the degree of all vertices is 2 the
computation is quite simple

L(1) := σ


diag(g)




0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0


 diag(h)L(0)W(1) +B(1)




= σ







0 g(2)h(2) g(2)h(2) 0
g(2)h(2) 0 0 g(2)h(2)
g(2)h(2) 0 0 g(2)h(2)

0 g(2)h(2) g(2)h(2) 0







1 0 0
0 1 0
0 1 0
0 0 1


W(1) +B(1)




= σ







0 2g(2)h(2) 0
g(2)h(2) 0 g(2)h(2)
g(2)h(2) 0 g(2)h(2)

0 2g(2)h(2) 0


W(1) +B(1)


 .

Finally, we recall that B(1) consists of n copies of the same row. Hence, independently of the choice of W(1) and B(1),
vertices v1 and v4 will be assigned the same label, and thus L(1) �� ���

(1)
MWL

.

The second class of dMPNNs we consider are those related to graph neural networks of the form:

L(t) := σ
�
diag(g)(A+ I)diag(h)L(t−1)W(t) +B(t)

�
.

This includes MdGNNi
, for i = 3, 4. Indeed, consider the labelled graph (G2,ννν) with one edge {v1, v2}, as depicted in

Figure 5, and vertex labelling νννv1 = (1, 0) and νννv2 = (0, 1).

v1 v2

Figure 5. Graph G2.

By definition, L(0) := ( 1 0
0 1 ). We also note that

(���
(1)
MWL

)v1 = HASH((1, 0), {{(0, 1)}}) �= (���
(1)
MWL

)v2 = HASH((0, 1), {{(1, 0)}}).

We next show that there exist no W(1),B(1) such that L(1) � ���
(1)
MWL

. Indeed,

F(1) := σ

�
diag(g)

��
0 1
1 0

�
+

�
1 0
0 1

��
diag(h)L(0)W(1) +B(1)

�

= σ

��
g(1) 0
0 g(1)

��
1 1
1 1

��
h(1) 0
0 h(1)

��
1 0
0 1

�
W(1) +B(1)

�

= σ

��
g(1)h(1) g(1)h(1)
g(1)h(1) g(1)g(1)

�
W(1) +B(1)

�
.

Hence, independently of the choice of W(1) and B(1), both vertices will be assigned the same label, and thus L(1) �� ���
(1)
MWL

.

Finally, we deal with the class MdGNN5
, i.e., dMPNNs related to graph neural networks of the form

L(t) := σ
�
(D−1/2AD−1/2 + I)L(t−1)W(t) +B(t)

�
.

We consider the labelled graph (G3,ννν) with vertex labelling νννv1 = νννw2
= νννw3

= (1, 0, 0), νννw1
= νννv2

= νννv3 = (0, 1, 0)
and νννv4 = νννv5 = νννw4 = νννw5 = (0, 0, 1) and edges {v1, v2}, {v1, v3}, {v1, v4}, {v1, v5} and {w1, w2}, {w1, w3},
{w1, w4}, {w1, w5}, as depicted in Figure 6.
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v1

v2

v3

v4

v5 w1

w2

w3

w4

w5

Figure 6. Graph G3.

By definition, L(0) :=




1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 1 0
1 0 0
1 0 0
0 0 1
0 0 1


. We also note that

(���
(1)
MWL

)v1 = HASH((1, 0, 0), {{(0, 1, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1)}})

�=(���
(1)
MWL

)w1
= HASH((0, 1, 0), {{(1, 0, 0), (1, 0, 0), (0, 0, 1), (0, 0, 1)}}).

We next show that there exist no W(1),B(1) such that L(1) � ���
(1)
MWL

. Indeed,

L(1) := σ







diag







1
2
1
1
1
1
1
2
1
1
1
1










0 1 1 1 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0




diag







1
2
1
1
1
1
1
2
1
1
1
1







+ I




L(0)W(1) +B(1)




= σ







0 1
2

1
2

1
2

1
2 0 0 0 0 0

1
2 0 0 0 0 0 0 0 0 0
1
2 0 0 0 0 0 0 0 0 0
1
2 0 0 0 0 0 0 0 0 0
1
2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1

2
1
2

1
2

1
2

0 0 0 0 0 1
2 0 0 0 0

0 0 0 0 0 1
2 0 0 0 0

0 0 0 0 0 1
2 0 0 0 0

0 0 0 0 0 1
2 0 0 0 0







1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 1 0
1 0 0
1 0 0
0 0 1
0 0 1




W(1)




= σ







1 1 1
1
2 1 0
1
2 1 0
1
2 0 1
1
2 0 1
1 1 1
1 1

2 0
1 1

2 0
0 1

2 1
0 1

2 1




W(1) +B(1)




.

Hence, independently of the choice of W(1) and B(1), vertices v1 and w1 will be assigned the same label, and thus
L(1) �� ���

(1)
MWL

.

K. Proof of Proposition 19
We recall that dMPNNs in MdGNN6 correspond to graph neural network architectures of the form

L(t) := σ(diag(g)(A+ pI)diag(h)L(t−1)W(t) +B(t)), (16)

where diag(g) = diag(h) = (rI + (1 − r)D)−1/2 and σ is ReLU or sign. In fact, our proof will work for any degree-
determined g and h.

The argument closely follows the proof of Theorem 11. More specifically, we construct a dMPNN M corresponding to (16)
such that ���(t)M � ���

(t)
MWL

for all t ≥ 0. The induction hypothesis is that ���(t)M � ���
(t)
MWL

and ���
(t)
M is row-independent modulo

equality. This hypothesis is clearly satisfied, by definition, for t = 0.
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For the inductive step we assume that ���(t−1)
M � ���

(t−1)
MWL

and ���
(t−1)
M is row-independent modulo equality. Let us define the

labelling κκκ
(t−1)
M such that (κκκ(t−1)

M )v := h(dv)(���
(t−1)
M )v for all vertices v.

Lemma 28. We have that κκκ(t−1)
M � ���

(t−1)
MWL

and κκκ
(t−1)
M is row-independent modulo equality.

Proof. Suppose that there are two vertices v and w such that

(κκκ
(t−1)
M )v = h(dv)(���

(t−1)
M )v = h(dw)(���

(t−1)
M )w = (κκκ

(t−1)
M )w.

This implies that (���(t−1)
M )v is a (non-zero) scalar multiple of (���(t−1)

M )w. This is only possible when (���
(t−1)
M )v = (���

(t−1)
M )w

because ���(t−1)
M is row-independent modulo equality. In other words, κκκ(t−1)

M � ���
(t−1)
M � ���

(t−1)
MslWL

. Similarly, suppose that

κκκ
(t−1)
M is not row-independent modulo equality then, due to the definition of κκκ(t−1)

M , this implies that ���(t−1)
M is also not

row-independent modulo equality.

Lemma 28 gives us sufficient conditions to repeat a key part of the argument in the proof of Theorem 11. That is, we can
find a matrix U(t) such that the labelling µµµ(t) : v �→

�
(A+ pI)diag(h)L(t−1)U(t)

�
v

satisfies µµµ(t) � ���
(t)
MWL

.

We will now prove that the labelling λλλ(t) defined by λλλ(t)
v := g(dv)µµµ

(t)
v , also satisfies λλλ(t) � ���

(t)
MWL

. We remark that λλλ(t)

coincides with the labelling:
v �→ (diag(g)(A+ pI)diag(h)L(t−1)U(t))v.

Lemma 29. The exists a constant mp, only dependent on g and the number n of vertices, such that λλλ(t) � ���
(t)
MWL

, for every
mp < p < 1.

Proof. We will choose mp at the end of the proof. For now suppose that λλλ(t) �� ���
(t)
MWL

. Then there exist two vertices v and
w such that

λλλ(t)
v = λλλ(t)

w and (���
(t)
MWL

)v �= (���
(t)
MWL

)w.

The latter implies that µµµ(t)
v �= µµµ

(t)
w and thus λλλ(t)

v = λλλ(t)
w implies that g(dv) �= g(dw).

We recall some facts from the proof of Theorem 11, and from equations (10) and (11) in particular. An entry in µµµ
(t)
v is

either 0 or 1, 2, . . . , n or i+ p, for some i ∈ {0, 1, . . . , n}. Furthermore, at least one entry must be distinct from 0. Also,
λλλ(t)
v = λλλ(t)

w implies that the positions of the non-zero entries in µµµ
(t)
v and µµµ

(t)
w coincide. (Recall that the image of g is A+).

Let Z be the positions in µµµ
(t)
v (and thus also in µµµ

(t)
w ) that carry non-zero values.

We can now infer that λλλ(t)
v = λλλ(t)

w implies that for every i ∈ Z:

µµµ
(t)
vi

µµµ
(t)
wi

=
g(dw)

g(dv)
�= 1.

Moreover, both in µµµ
(t)
v and µµµ

(t)
w there are unique positions i1 and i2, respectively, whose corresponding entry contain p. We

now consider three cases:

(a)
µµµ
(t)
vi1

µµµ
(t)
wi1

=
i+ p

j
; (b)

µµµ
(t)
vi2

µµµ
(t)
wi2

=
i

j + p
; (c)

µµµ
(t)
vi1

µµµ
(t)
wi1

=
i+ p

j + p
(this is the case if and only if i1 = i2),

for some i, j ∈ {0, 1, 2, . . . , n}. To define mp, let Γ :=
�

g(dw)
g(dv)

��� g(dv) �= g(dw) and v, w ∈ V
�

and consider

Pa :=

�
αj − i

���� 0 ≤ αj − i < 1, i, j ∈ {0, 1, 2 . . . , n},α ∈ Γ

�

Pb :=

�
i− αj

α

���� 0 ≤ i− αj

α
< 1, i, j ∈ {0, 1, 2, . . . , n},α ∈ Γ

�
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Figure 7. Accuracy of two 2-layer GNN with Arch. (A1) on the validation set plotted for the Citeseer dataset (and a copy enriched with
degree information) for increasing training epochs

Pc :=

�
αj − i

1− α

���� 0 ≤ α(j − i)

1− α
< 1, i, j ∈ {0, 1, 2, . . . , n},α ∈ Γ

�
.

We define mp = max{P1 ∪ P2 ∪ P3 ∪ {0}} and we claim that for all p satisfying mp < p < 1 the lemma holds.

By definition of Pa, αj − i �= p and thus i+p
j �= α for any α ∈ Γ and i, j ∈ {0, 1, . . . , n}. This rules out (a). Similarly, by

definition of Pb, i−αj
α �= p and thus i

j+p �= α for any α ∈ Γ i, j ∈ {0, 1, . . . , n}. This rules out (b). Finally, by definition
of P3, αj−i

1−α �= p and thus i+p
j+p �= α for any α ∈ Γ i, j ∈ {0, 1, . . . , n}. This rules out (c). We conclude, as our initial

assumption cannot be valid for this mp.

From here, we can again follow the proof of Theorem 11 to construct a matrix X(t) such that the labelling ���
(t)
M defined

by σ(diag(g)(A+ pI)diag(h)L(t−1)U(t)X(t) +B(t)) with B(t) = −J if σ is the sign function, and B(t) = −qJ if σ is
the ReLU function, is such that ���(t)M � ���

(t)
MWL

and ���
(t)
M is row-independent modulo equality. This concludes the proof for

dMPNNs arising from graph neural networks of the form (16).

L. Experiments
We explore some practical repercussions of our theoretical analysis. Since the degree-aware MPPNs listed in Table 1 have
been experimentally validated already in the literature, we here focus on anonymous MPNNs. In particular, we address the
following two questions:

Q1 Are the more succinct ReLU-GNNs (4) competitive to the ones proposed in Morris et al. (2019)? Recall that our
ReLU-GNNs require considerably less parameters and need half the number of layers to simulate WL (Theorem 11).

Q2 Do “anonymous” GNNs benefit from the inclusion of degree information in the initial vertex features? Recall that
Proposition 14 implies that the power of degree-aware MPNNs can be matched with that of anonymous MPNNs,
provided that degree information is added to the initial features. Furthermore, Proposition 16 indicates that such degree
information is best added before aggregation, e.g., in the initial features.

Baselines and datasets. We have implemented several GNN variants in Tensorflow 2.0 (Abadi et al., 2016), including the
WL-poweful ReLU-GNNs from Morris et al. (2019). Our implementation is available here: https://github.com/
gaperez64/gnns. For the datasets, we considered Citeseer, Cora, and Pubmed citation networks (Sen et al., 2008) as
pre-processed in the implementation of Kipf & Welling (2017). During training, all feature vectors and 20 labels per vertex
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Figure 8. Accuracy of a 2-layer GNN with Arch. (A2) and a 2-layer GNN with Arch. (A3) on the validation set plotted for the Cora
dataset for increasing training epochs

Architecture Citeseer Cora Pubmed
Arch. (A1) 75.144 84.881 56.884
Arch. (A1)∗ 76.829 73.650 72.275
Arch. (A2) 81.046 86.310 87.923
Arch. (A3) 79.562 85.980 87.321

Table 2. Classification accuracy (percentage) on the test subsets of the considered datasets; ∗ indicates that the model was trained and
evaluated against datasets with degree information

class were used. Finally we added copies of the datasets with feature vectors extended with a single value: the degree of the
vertex.

Experimental setup. We report on the prediction accuracy of 2-layer GNNs with the following architectures, where
Architecture (A1) corresponds to “vanilla” GNNs; (A2) is the double-weight-matrix GNN architecture used in Morris et al.
(2019) to prove Theorem 10; (A3) is our newly proposed architecture from the proof of Theorem 11.

ReLU(AL(t−1)W(t) +B(t)) (A1)
ReLU(AL(t−1)W

(t)
1 + L(t−1)W

(t)
2 +B(t)) (A2)

ReLU((A+ pI)L(t−1)W(t) +B(t)) (A3)

They are all trained using 1K labelled examples. As in Kipf & Welling (2017), we use the data splits given in Yang et al.
(2016) with an extra validation set with 500 labelled examples. We use a dropout rate of 0.5; L2-regularization factor of
5 · 10−4; and 16 hidden units, for all layers. All models are trained for 500 epochs using Adam (Kingma & Ba, 2015) with a
learning rate of 0.01. The matrix weights are initialized following Glorot & Bengio (2010).

Results and discussion. We first observe that, as can be seen in Figure 7 and Table 2, degree information does increase the
accuracy of (same architecture) GNNs in 2/3 datasets. Secondly, Figure 8 and Table 2 confirm that ReLU-GNNs with less
matrices have competitive accuracy if we use the scaling factor p suggested by the proof of Theorem 11. In our experiments
we obtained best results by setting p := 0.5872.

L.1. Additional figures
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Figure 9. Same information as in Figure 7 but for the Pubmed dataset and a degree-information enriched copy
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Figure 10. Same information as in Figure 8 but for the Pubmed dataset


