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1. Proof of Theorem 1 

Proof. We denote the treatment for unit i by Ti and selected 
treatment based on the biasing covariates by Ti

s . For every 
unit i and any treatment t, the biasing covariates Cb arei 
used to probabilistically select a treatment with probability 
P (T s = t|Ci

b).i 

(Ti = t) = P (Ti = t)P (T s = t|Cb (1)PDOSAP O i i ) 

= 1 ∗ P (T s = t|Ci
b) (2)i 

(Ti = t) = P (Ti = t)P (T s = t|Ci
b) (3)PDOSRCT i 

= 0.5 ∗ P (T s = t|Cb (4)i i ) 

Sub-sampling DOSAP O uniformly at random is equivalent to 
multiplying PDOSAP O (Ti = t) by a scaling factor, s. When 

= t).s = 0.5, PDOSRCT (Ti = t) = PDOSAP O (Ti 

2. Proof of Theorem 2 

Proof. Assume binary treatment T ∈ {0, 1}. For any unit 
i with biasing covariates Ci

b , let P (Ti = t) = pt, P (T s = i 
t|Ci

b) = pT s=t|cb , and n = |DRCT |. Indices are omitted 
i 

when clear from context. 

bP (i ∈ DOSRCT ) = p1pT s=1|ci 

b= p1pT s=1|ci 

b+ p0pT s=0|ci 

+ (1 − p1)(1 − pT s =1|cb )
i 

= 2p1pT s=1|cb − p1 − pT s=1|cb + 1 
i i 

nX 
E[|DOSRCT |] = [2p1pT s=1|cb − p1 − pT s=1|cb + 1] 

i i 

i=1 
nX 

= n − np1 + (2p1 − 1) pT s=1|cb 
i 

i=1 PnIf either p1 = 0.5 or i=1 pT s=1|cb = 0.5n, 
E[|D

i 

OSRCT |] = 0.5n. 

3. Using the Complementary Sample for 
Evaluation 

One challenge when evaluating causal inference methods 
on their ability to estimate unit-level effects of interventions 
is the need for a held-out test set. The constructed obser-
vational data is constructed by sub-sampling the original 

1 

RCT data. This means that evaluating on all of the RCT 
data may produce a biased result by testing on a superset 
of the training data. One potential solution is to divide the 
RCT data into separate training and test sets. However, since 
OSRCT necessarily reduces the size of the training data by 
sub-sampling, the extra requirement of holding out a test 
set limits the number of RCTs that can be used, since not 
all randomized experiments will have enough data to learn 
effective models after two rounds of sub-sampling. 

A more data-efficient approach is to use the data rejected 
by the biased sub-sampling. OSRCT sub-samples RCT data 
to create a probabilistic dependence between the biasing 
covariates and treatment. Based on the values of the bias-
ing covariates, a treatment is selected for every unit. If that 
treatment is present in the data, the unit is included in the 
sample; otherwise the unit is rejected. This rejected sam-
ple (which we call the complementary sample) also has a 
causal dependence from the biasing covariates to treatment. 
The only difference is that the form of that dependence is 
the complement of that for the accepted sample, such that 
covariate values that lead to a high probability of treatment 
in the accepted sample would lead to a low probability of 
treatment in the complementary sample. Because we know 
the functional form of this induced bias, we can weight the 
data points in the complementary sample according to their 
probability of being included in the accepted sample. In 
aggregate, this type of weighting allows the complementary 
sample to approximate the distribution of the training data, 
and thus be used for testing. This is equivalent to inverse 
propensity score weighting (Rosenbaum & Rubin, 1983). 

Theorem 3. For binary treatment T ∈ {0, 1}, biasing 
covariates Cb , outcome Y , estimated outcome Ŷ , biased 

¯sample DOSRCT and complementary sample DOSRCT , let 
ps = P (T s = ti|Cb). Then, E[Ŷ − Y ] for DOSRCT = i i 

ps ¯E[(Ŷ − Y ) 1−ps 
] for DOSRCT . 

Proof. For DOSRCT , 

E[Ŷ − Y ]DOSRCT = E[P (Ti
s = ti|Ci

b)(Ŷ  
i − Yi)] 

¯For DOSRCT , 

E[Ŷ − Y ] ̄  = E[(1 − P (T s = ti|Ci
b))(Ŷi − Yi)]DOSRCT i 
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¯If we weight the outcome estimates for DOSRCT by 
P (T s =ti|Cb)i i ,

1−P (T s=ti |Cb)i i 

P (T s = t|Cb)i iE[Ŷ − Y ] ̄  = E[ · DOSRCT 1 − P (T s = ti|Cb)i i 

(1 − P (T s = ti|Ci
b))(Ŷ  

i − Yi)]i 

= E[P (T s = ti|Ci
b)(Ŷi − Yi)]i 

= E[Ŷ − Y ]DOSRCT 

4. Experimental Evaluation of Theorems 1 
and 3 

Intuitively, the procedure outlined in Algorithm 2 works 
because treatment is randomly assigned in RCTs. The data 
is sub-sampled based solely on the value of a probabilistic 
function of the biasing covariates, which selects a value of 
treatment for every unit i. Since the observed treatment is 
randomly assigned, it contains no information about any of 
i’s covariates. The only bias introduced by this sub-sampling 
procedure is the intended bias: a particular form of causal 
dependence from Cb to T . 

To assess OSRCT’s effectiveness at approximating APO 
data, we performed an experiment using an APO data set 
provided by Gentzel et al. (2019), replicating their experi-
mental setup. In this data, units are Postgres queries, inter-
ventions are Postgres settings (such as type of indexing), 
covariates are features of queries (such as the number of 
joins or the number of rows returned), and outcomes are 
measured results of running the query (such as runtime). If 
the Postgres database is queried in a recoverable manner, 
the same query can be run repeatedly while varying the 
treatment, creating APO data. For this analysis, consistent 
with Gentzel et al. (2019), we chose runtime as the outcome, 
indexing level as the treatment, and the number of rows 
returned by the query as the biasing covariate. 

D

D

To compare RCT and APO data, We converted the APO 
Postgres data into RCT-style data by randomly sampling a 
single treatment for every unit. We then created constructed 
observational data from both the original APO data and 
the RCT-style data, creating DOSAP O and DOSRCT . For 

OSRCT , as described in Theorem 3, outcome estimation 
was evaluated by weighting the errors in the complementary 
sample. However, in DOSAP O , no complementary sample 
is created, since the selected treatment is guaranteed to be 
observed for every unit. Instead, we can divide DOSAP O into 
training and test sets. If the RCT-style data is created by 
sub-sampling treatments equally, by Theorem 2, splitting 

OSAP O in half leads to a data set approximately the same 
size as DOSRCT , allowing for comparison with equal train-
ing set size. We estimated errors over 100 trials. Results are 

shown in Figure 1. 

Results are very similar for the APO data and the RCT-style 
data constructed from it. Consistent with Theorem 1, this 
suggests that evaluation with OSRCT data produces equiv-
alent results to OSAPO data. In addition, consistent with 
Theorem 3, the similarity in outcome estimates suggests that 
weighting the complementary sample produces equivalent 
results to an unweighted held-out test set. 

5. Details about RCT Repositories 

We selected data sets from six repositories: (1) Dryad 
(Dryad, 2020); (2) the Yale Institution for Social and Policy 
Studies Repository (Yale Institution for Social and Policy 
Studies Data Archive, 2020); (3) the NIH National Insti-
tute on Drug Abuse Data Share Website (NIH National 
Institute on Drug Abuse Data Share Website, 2020); (4) 
the University of Michigan’s ICPSR repository (University 
of Michigan Institute for Social Research, 2020); (5) the 
UK Data Service (UK Data Service, 2020); and (6) the 
Knowledge Network for Biocomplexity (The Knowledge 
Network for Biocomplexity, 2020). These repositories were 
selected because they contained RCT data, were reasonably 
well-documented, and had a simple access process. None 
of these repositories house RCT data exclusively, so some 
search and filtering was necessary to identify relevant data 
sets. 

Many other repositories exist that contain RCT data but 
have higher access restrictions. Access to these repositories 
generally involves requesting permission for any desired 
data set. For some, this request only involves submitting a 
brief description of the intended use and proving sufficient 
credentials. For others, this request may require a detailed 
data analysis plan and description of the benefits of the 
research. Examples include the National Institute of Dia-
betes and Digestive and Kidney Diseases (National Institute 
of Diabetes and Digestive and Kidney Diseases (NIDDK) 
Central Repository, 2020), Vivli (Vivli Center for Global 
Clinical Research Data, 2020), The National Institute of 
Mental Health Data Archive (The National Institute of Men-
tal Health Data Archive (NDA), 2020), Project Data Sphere 
(Project Data Sphere, 2020), and the Data Observation Net-
work for Earth (Data Observation Network for Earth, 2020). 

6. Details about RCT Data Sets Used in 
Demonstration 

The data sets used in the demonstration came from six repos-
itories, all of which allowed for direct download of the data 
after registering with the repository. Each of these data sets 
met five criteria: 

Random assignment: Treatment must be fully random-
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Figure 1: APO vs RCT sampling on Postgres data. Left: Mean absolute error of ATE estimates, Right: Mean error of 
estimated outcomes The similarity between the RCT and APO data sets suggests that OSRCT and OSAPO produce 
equivalent constructed observational data. 

ized for OSRCT to work as intended. We ensured that 
the selected data sets were created by randomly assign-
ing treatment to each unit. 

Independent units: Many causal inference methods as-
sume independent data instances, so we ensured that 
the units in the data sets could reasonably be assumed 
independent (e.g., no spatial correlation). 

Measured pre-treatment covariate: At least one mea-
sured pre-treatment covariate is necessary to induce 
confounding bias. The data sets we selected all had 
multiple pre-treatment covariates, allowing us to se-
lect one that was correlated with outcome to induce 
confounding bias. 

Reasonably large sample size: Many RCT data sets are 
very small (N < 100). We selected only reasonably 
large data sets (N > 500). 

Ease of use: Some data sets were poorly documented or 
stored the data over many files. We selected data sets 
that would require minimal pre-processing. 

In cases where treatment was not binary, a reasonable binary 
version of treatment was constructed, either by grouping 
merging treatment categories or by selecting a subset of the 
data with only two values of treatment. Details about these 
data sets are given in Table 1. 

We also used some additional data set for the evaluation: 
synthetic-response data sets from the ACIC Competition 
and the IBM Causal Inference Benchmarking Framework 
(Dorie et al., 2019; Shimoni et al., 2018), APO data sets 
from computational systems (Gentzel et al., 2019), and three 
simulators (Guillaume & Rougemont, 2006; Tu et al., 2019; 
Miller et al., 2020). Details about these data sets can be 

found in Tables 1, 2, and 3. For the experimental results 
presented in the paper, 5000 samples were used for the IBM 
Causal Inference Benchmarking Framework data sets, rather 
than 2000, due to the high number of covariates. 

7. Details about Causal Inference Methods 
Evaluated 

For each causal inference method evaluated, we used the 
default implementation. While it may be possible to achieve 
better performance for some of the these methods after 
parameter tuning, we focused our evaluation on default per-
formance rather than best-case. Many practitioners looking 
to apply a causal inference method will default to using the 
initial parameter settings of a method, so it is a useful case 
to compare. Our comparison also includes 37 data sets, and 
individually tuning parameters for seven algorithms across 
37 data sets was beyond the scope of this paper. A deep 
dive into the performance of any individual causal inference 
method, varying parameter settings and implementation de-
tails, is a possible avenue for future work and could produce 
interesting results. 

Propensity-score matching (PSM) learns a model of treat-
ment probability that is used to produce samples with equal 
probabilities of treatment. Then weighted outcome estimates 
of the treatment and control populations are compared to 
estimate ATE. PSM was implemented using the MatchIt 
package in R. 

Inverse probability of treatment weighting (IPTW) is 
similar to propensity score matching, in that both estimate 
the probability of treatment and use that to control for con-
founding. Rather than using the probability of treatment to 
match individuals between the treatment and control pop-
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Table 1: Data sets used in experiments. ‘ID’ denotes the repository-specific ID for each data set, where applicable. ‘Coding’ 
denotes the shortened data set name used in figures. 

Source ID Coding Sample 
Size 

Num 
Covars 

Treatment Outcome Biasing 
Covar 

Dryad 4f4qrfj95 RCT-1 6453 27 Temperature Plant health Species 
Dryad B8KG77 RCT-2 15289 4 Video type Bicycle rating Bike access 
HDV WT4I9N RCT-3 551 5 Fact truth Fact removed Fact cited 

ICPSR 20160213 RCT-4 5573 10 Guest race Accepted Prior black tenants 
ICPSR 23980 RCT-5 10098 7 Age Resume response Volunteer service 
ISPS d037 RCT-6 4859 2 Race Legislator response Party 
ISPS d084 RCT-7 48509 6 E-mail source Voter turnout Prior election turnout 
ISPS d113 RCT-8 10200 4 Mailing Voter turnout Gender 
KNB 1596312 RCT-9 760 4 Soil heating C02 levels Depth 
KNB f1qf8r51t RCT-10 8063 4 Plant protection Plant survival Location 

musiclab - RCT-11 3719 13 peer-influence average rating music knowledge 
NIDA P1S1 RCT-12 776 5 Nicotine levels Cigarettes per day Weight 

UK Data Service 852874 RCT-13 343 5 Shown video Response Ethnicity 
UK Data Service 853369 RCT-14 4210 3 Biasing instruction Line-up identification Recruitment method 
UK Data Service 854092 RCT-15 691 5 Fact check validity Reaction Political activity 

JDK - APO-1 473 5 Obfuscate Num bytecode ops Test javadocs 
Networking - APO-2 2599 1 Proxy Elapsed time Server class 

Postgres - APO-3 11128 8 Index level Runtime Rows returned 
Nemo - Sim-1 10000 9 Breeding Adult viability Deleterious loci 
Nemo - Sim-2 10000 9 Deleterious model Deleterious frequency Mutation rate 
Nemo - Sim-3 10000 10 Dispersal rate Survival Deleterious loci 

Neuropathic pain - Sim-4 10000 25 DLS L4-L5 Lumbago DLS L5-S1 
Neuropathic pain - Sim-5 10000 25 DLS C5-C6 Right Skull pain DLS C3-C4 
Neuropathic pain - Sim-6 10000 25 DLS C4-C5 Right Shoulder pain DLS C6-C7 

Whynot opiod Sim-7 10000 3 Abuse Overdose deaths Illicit users 
Whynot world2 Sim-8 10000 6 Capital investiment Population Pollution 
Whynot zika Sim-9 10000 9 Zika control strategy Symptomatic humans Exposed mosquitoes 

ulations, IPTW weights the outcomes of every individual 
according to their probability of treatment and uses these 
weighted outcomes to estimate ATE (Rosenbaum & Rubin, 
1983). 

Outcome regression is one simple approach for effect es-
timation that models outcome given treatment and all mea-
sured covariates. Unlike the potential outcomes approaches 
discussed above, outcome regression makes no attempt to 
model the treatment mechanism, focusing solely on effec-
tively modeling outcome. Recent studies have suggested that 
effectively modeling outcome may be more important than 
trying to account for differences in treatment assignment 
(Dorie et al., 2019). 

Bayesian Additive Regression Trees (BART) use a tree-
based model to estimate the response surface, allowing for 
estimation of both ATE and individual outcomes (Chipman 
et al., 2007). Regression trees are a type of tree used when 
the outcome is continuous, which partition the input data 
into subgroups with similar outcomes. BART creates an 
ensemble of sequentially-learned regression trees, with a 

regularization prior to keep the effects of individual trees 
small. Estimates for the ensemble are obtained by summing 
the outputs of all the trees. When used for causal modeling, 
all observed covariates and treatment are used as predictors 
of outcome, and estimates of ATE can be obtained by es-
timating outcome for all individuals with both T = 1 and 
T = 0 and calculating the mean difference. BART was 
implemented using the bartMachine R package. 

Causal forests are random forests that specifically estimate 
ATE (Wager & Athey, 2017). They make use of causal 
trees (Athey & Imbens, 2016), which estimate ATE at the 
leaf nodes by splitting such that the the number of training 
points at the leaf node is small enough to be treated as 
though they came from a randomized experiment. A causal 
forest then averages the ATE estimates from the causal trees 
in the ensemble to get an overall estimate of ATE. This 
was implemented using the grf R package, with the default 
parameters. 

The above methods focus on modeling either treatment or 
outcome. However, if this model is misspecified, the effect 
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Table 2: ACIC Data sets used in experiments. ‘ID’ denotes the ACIC ID for each data set. ‘Coding’ denotes the shortened 
data set name used in figures. 

ID Coding Sample Num Treatment Percent Outcome Alignment Treatment Effect 
Size Covars Function Treated Function Heterogeneity 

4 SR-1 4802 56 Polynomial 35% Exponential 75% high 
27 SR-2 4802 56 Polynomial 35% Step 25% Medium 
47 SR-3 4802 56 Polynomial 65% Exponential 75% High 
65 SR-4 4802 56 Step 65% Step 75% Medium 
71 SR-5 4802 56 Step 65% Step 25% High 

Table 3: IBM Data sets used in experiments. ‘ID’ denotes the IBM ID for each data set. ‘Coding’ denotes the shortened data 
set name used in figures. 

ID Coding Sample Num Percent Effect Link 
Size Covars Treated Size Type 

1b50aae9f0e34b03bdf03ac195a5e7e9 SR-6 10000 151 69% -3.2 Polynomial 
2b6d1d419de94f049d98c755beea4ae2 SR-7 10000 151 23% -0.13 Log 
19e667b985624159bae940919078d55f SR-8 10000 151 17% 0.06 Exponential 
7510d73712fe40588acdb129ea58339b SR-9 10000 151 27% 0.017 Log 
c55cbee849534815ba80980975c4340b SR-10 10000 151 19% -0.23 Exponential 

estimate will be biased. Doubly-robust methods are de-
signed to avoid this issue, producing an unbiased estimate 
of ATE as long as either the treatment or the outcome model 
is correctly specified. This is commonly implemented as a 
combination of IPTW weighting and outcome regression 
(Funk et al., 2011). Doubly-robust estimation was imple-
mented using the fastDR R package. 

Shi et al. (Shi et al., 2019) propose a neural-network-based 
method, using a new proposed architecture called Drag-
onnet. This approach uses a deep neural network to produce 
a representation layer of the covariates. This representation 
layer is then used to predict both treatment and outcome. 
The prediction of treatment acts as a propensity score, which 
is used to adjust for confounding when estimating treatment 
effect. Dragonnet net is one example of a class of neural-
network-based approaches for causal modeling, which gen-
erally follow a similar approach. (Johansson et al., 2016; 
Shalit et al., 2017; Schwab et al., 2018; Louizos et al., 2017; 
Yoon et al., 2018) 

8. Additional results 

8.1. Neural-network results 

We also ran experiments comparing against a neural-
network-based method (Shi et al., 2019). 1 This method 

1We tried neural-network method implementations by Shi et 
al.: Dragonnet, Dragonet + TMLE, Tarnet, and Tarnet+TMLE. The 
performance was comparable between all four, so only results for 
Dragonnet+TMLE are reported. 

has significantly higher variability than the other methods. 
There are a couple of possible explanations for this. As we 
initialize different random weights in each run, the model 
might be sensitive to the initialization weights and converge 
to different local optima. In addition, sample size for most of 
the data sets is less than 5000, which is significantly lower 
than is typically used for neural network based methods. 
This might be causing overfitting and high variability. We 
ran the neural network method using the experimental set 
up described in the main paper, (as in Figures 3 and 4 in the 
main paper). The results are shown in Figures 2 and 3. 

8.2. Outcome estimation results 

For APO data sets and synthetic response data sets, a held 
out test set can be used instead, which, by Theorem 3, is 
equivalent to using the weighted complementary sample. 
However, many of the algorithms we are evaluating here 
are not capable of producing individual-level outcome esti-
mates, so this evaluation is limited to only BART, outcome 
regression., and the neural-network method. Results for data 
sets with binary outcomes are shown in Figure 4, and results 
for data sets with continuous outcomes are shown in Figure 
5. (Figure 6 contains the continuous outcome results but 
zoomed in, cutting off some extreme neural network results 
to show details). 

Unsurprisingly, BART consistently outperforms outcome 
regression. Both of these methods focus on modeling the 
response surface, but BART uses a higher capacity tree-
based model rather than a simple regression. The difference 
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Figure 2: Normalized error in estimating ATE for data sets with continuous outcome 

Figure 3: Error in estimating risk difference for data sets with binary outcome 
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Figure 4: Error in estimating a binary outcome 

is far stronger for data sets with a continuous outcome, 
compared to those with a binary outcome. The difference is 
also minimal for the RCT data sets. This trend is constant as 
we increase the strength of the biasing and when two biasing 
covariates are used. The neural network has significantly 
higher variability than BART and outcome regression. Since 
no hyperparameter tuning was performed for the neural-
network method, and many data sets have low sample size, it 
is not surprising that the neural-network method sometimes 
does very poorly. However, in many cases, the mean error 
is similar, and for many data sets with continuous outcome, 
performance is equivalent to BART and outcome regression. 
This evaluation is unfortunately limited since none of the 
other algorithms we evaluated are capable of producing 
individual-level outcome estimates. In general, methods 
that model outcome are more likely to provide this as an 
option, making this a useful evaluation tool when comparing 
multiple outcome estimation-based methods. 

8.3. Comparison between Sub-sampling and Weighting 

An alternative approach to sub-sampling, as mentioned in 
Section 2.1 of the paper, is to reweight the units, according 
to P (T s = ti|Cb). This approach requires that the causal in-i i 
ference method under evaluation accepts unit-level weights. 
Among the methods we used for evaluation, only causal 
forests and outcome regression accept unit-level weights. 
To assess the similarity between the two approaches, we 
compared the causal effect estimates obtained using sub-
sampling to those obtained using weighting. Results for 
binary outcomes can be seen in Figure 7, and results for 
continuous outcomes can be seen in Figure 8. Naive, OR-
subsampled, CF-subsampled estimates are calculated using 
the sub-sampling approach, while OR-weighted and CF-
weighted estimates are calculated using the weighting ap-
proach. We observe that the weighted estimates have low 
(almost zero) variability across different runs. This is ex-
pected as the weighting approach uses all the units for cal-

culating estimates, and biasing function used in the experi-
ments produces deterministic probabilities. The variability 
in sub-sampled estimates comes from sub-sampling differ-
ent samples of data in every run. Overall, we see that the 
estimates for weighting estimates are in the range of the 
estimates obtained by sub-sampling, suggesting an overall 
equivalence of the approaches. 

8.4. Correlation Analysis 

While the ranges of variability for most methods are the 
same, this doesn’t guarantee that each method is produc-
ing the same result for each of the 30 trials. Error for each 
method could be uncorrelated with the others, suggesting 
that an ensemble approach might improve performance. To 
test this, we computed a correlation matrix for each data set, 
calculating correlation across the 30 trials for each method. 
Results for a few representative data sets are shown in Fig-
ure 9. In most cases, the correlation is the weakest with 
the neural network method, and is generally weaker with 
propensity score matching. For all other methods, though, 
errors are highly correlated. There are some exceptions, as 
in SR-7. The reason for these varies. In the case of SR-7, 
this is likely a result of the low variability across the 30 
trials. 

8.5. Overall Mean 

Figure 10 shows overall mean performance for each algo-
rithm. As observed above, propensity score matching has 
the highest error overall. In addition, doubly-robust estima-
tion appears to have higher error for data sets with binary 
outcomes. More nuance can be seen in Figure 11, which 
shows mean error by data source. The higher error for dou-
bly robust estimation appears to be primarily for simulator 
data sets. For the other data sources, mean performance is 
fairly consistent across algorithms. 
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Figure 5: Normalized absolute error in estimating a continuous outcome 

Figure 6: Normalized absolute error in estimating a continuous outcome, zoomed in to show details 
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Figure 7: Comparison between weighting and sub-sampling approach in estimating a binary outcome 

Figure 8: Comparison between weighting and sub-sampling approach in estimating a continuous outcome 
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Figure 9: Correlation matrices for four data sets. In most cases, error is highly correlated 
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Figure 10: Overall mean absolute error by algorithm 
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