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1. Proof of Theorem 1

Proof. We denote the treatment for unit ¢ by 7; and selected
treatment based on the biasing covariates by 7. For every
unit 7 and any treatment ¢, the biasing covariates C? are
used to probabilistically select a treatment with probability
P(T} = 1]CY).

Pposaro (TZ = t) = P(Ti = t)P(Tis = t|Cf> (1)

= 1% P(T7 = t|CY) )
Pposror (Tl = t) = P(Ti = t)P(Tis = t|Czb) (3)
=0.5% P(Tf =t|C?) 4)

Sub-sampling D, s po Uniformly at random is equivalent to
multiplying Pp, , »., (T; = t) by a scaling factor, s. When
5= 0.5, Pposper (Tl = t) = Pposaro (Tl = t)' 0

2. Proof of Theorem 2

Proof. Assume binary treatment 7' € {0, 1}. For any unit

i with biasing covariates C?, let P(T; = t) = p;, P(T} =

t|C?) = prs—yje, and n = |[Dyorl. Indices are omitted

when clear from context.

P(i S DOSRCT) = D1Prs=1|ct +pOpr:O|cb
=p1pri=1)e + (1 = p1)(1 = prozyjer)
= 2p1Prs=1)cb — P1 — Pro=1)e> + 1

n
EHDOSRCTH = Z[QplpT;:ch —P1 — Prs=1]ct + 1]
i=1

=n—np1+(2p1 — 1) ZPT;:ucb
i1
If either p1 = 0.5 or X' prs_ye = 0.5n,
E[|Dosrerl] = 0.5n. O

3. Using the Complementary Sample for
Evaluation

One challenge when evaluating causal inference methods
on their ability to estimate unit-level effects of interventions
is the need for a held-out test set. The constructed obser-

vational data is constructed by sub-sampling the original |

RCT data. This means that evaluating on all of the RCT
data may produce a biased result by testing on a superset
of the training data. One potential solution is to divide the
RCT data into separate training and test sets. However, since
OSRCT necessarily reduces the size of the training data by
sub-sampling, the extra requirement of holding out a test
set limits the number of RCTs that can be used, since not
all randomized experiments will have enough data to learn
effective models after two rounds of sub-sampling.

A more data-efficient approach is to use the data rejected
by the biased sub-sampling. OSRCT sub-samples RCT data
to create a probabilistic dependence between the biasing
covariates and treatment. Based on the values of the bias-
ing covariates, a treatment is selected for every unit. If that
treatment is present in the data, the unit is included in the
sample; otherwise the unit is rejected. This rejected sam-
ple (which we call the complementary sample) also has a
causal dependence from the biasing covariates to treatment.
The only difference is that the form of that dependence is
the complement of that for the accepted sample, such that
covariate values that lead to a high probability of treatment
in the accepted sample would lead to a low probability of
treatment in the complementary sample. Because we know
the functional form of this induced bias, we can weight the
data points in the complementary sample according to their
probability of being included in the accepted sample. In
aggregate, this type of weighting allows the complementary
sample to approximate the distribution of the training data,
and thus be used for testing. This is equivalent to inverse
propensity score weighting (Rosenbaum & Rubin, 1983).

Theorem 3. For binary treatment T € {0, 1}, biasing
covariates C®, outcome Y, estimated outcome Y, biased
sample Dogror and complementary sample Dogsper, let
ps = P(I} = ti|C§’). Then, E[Y — Y] for Dosper =

E((Y = Y) 2] for Dosnenr-

Proof. For Dosper,

E[Y ~ V] — B[P(T} = t|CH)(Y: - V)]

DosrcT

For Dosrers

E[Y —Y] = E[(1 - P(T} = t;|C?))(Y; — V)]

DosrcT



If we weight the outcome estimates for Dosrer by
P(T7=t:|CY)
1-P(TF=t;|C?)’

— L P(TF =)
ElY Y]DoSRCT - E[l —P(Tf = tz‘czb)
(1 - P(T} =4,|C)(Y; - V7))

= E[P(TF = ;|CY)(V; - Y))]
= E[Y —Y]

DosrcT

4. Experimental Evaluation of Theorems 1
and 3

Intuitively, the procedure outlined in Algorithm 2 works
because treatment is randomly assigned in RCTs. The data
is sub-sampled based solely on the value of a probabilistic
function of the biasing covariates, which selects a value of
treatment for every unit i. Since the observed treatment is
randomly assigned, it contains no information about any of
1’s covariates. The only bias introduced by this sub-sampling
procedure is the intended bias: a particular form of causal
dependence from C? to 7.

To assess OSRCT’s effectiveness at approximating APO
data, we performed an experiment using an APO data set
provided by Gentzel et al. (2019), replicating their experi-
mental setup. In this data, units are Postgres queries, inter-
ventions are Postgres settings (such as type of indexing),
covariates are features of queries (such as the number of
joins or the number of rows returned), and outcomes are
measured results of running the query (such as runtime). If
the Postgres database is queried in a recoverable manner,
the same query can be run repeatedly while varying the
treatment, creating APO data. For this analysis, consistent
with Gentzel et al. (2019), we chose runtime as the outcome,
indexing level as the treatment, and the number of rows
returned by the query as the biasing covariate.

To compare RCT and APO data, We converted the APO
Postgres data into RCT-style data by randomly sampling a
single treatment for every unit. We then created constructed
observational data from both the original APO data and
the RCT-style data, creating Dosapo and Dogper. For
Dosrer, as described in Theorem 3, outcome estimation
was evaluated by weighting the errors in the complementary
sample. However, in D540, N0 complementary sample
is created, since the selected treatment is guaranteed to be
observed for every unit. Instead, we can divide D¢ 4 po into
training and test sets. If the RCT-style data is created by
sub-sampling treatments equally, by Theorem 2, splitting
Dy s apo in half leads to a data set approximately the same
size as Do srcor, allowing for comparison with equal train-
ing set size. We estimated errors over 100 trials. Results are

shown in Figure 1.

Results are very similar for the APO data and the RCT-style
data constructed from it. Consistent with Theorem 1, this
suggests that evaluation with OSRCT data produces equiv-
alent results to OSAPO data. In addition, consistent with
Theorem 3, the similarity in outcome estimates suggests that
weighting the complementary sample produces equivalent
results to an unweighted held-out test set.

5. Details about RCT Repositories

We selected data sets from six repositories: (1) Dryad
(Dryad, 2020); (2) the Yale Institution for Social and Policy
Studies Repository (Yale Institution for Social and Policy
Studies Data Archive, 2020); (3) the NIH National Insti-
tute on Drug Abuse Data Share Website (NIH National
Institute on Drug Abuse Data Share Website, 2020); (4)
the University of Michigan’s ICPSR repository (University
of Michigan Institute for Social Research, 2020); (5) the
UK Data Service (UK Data Service, 2020); and (6) the
Knowledge Network for Biocomplexity (The Knowledge
Network for Biocomplexity, 2020). These repositories were
selected because they contained RCT data, were reasonably
well-documented, and had a simple access process. None
of these repositories house RCT data exclusively, so some
search and filtering was necessary to identify relevant data
sets.

Many other repositories exist that contain RCT data but
have higher access restrictions. Access to these repositories
generally involves requesting permission for any desired
data set. For some, this request only involves submitting a
brief description of the intended use and proving sufficient
credentials. For others, this request may require a detailed
data analysis plan and description of the benefits of the
research. Examples include the National Institute of Dia-
betes and Digestive and Kidney Diseases (National Institute
of Diabetes and Digestive and Kidney Diseases (NIDDK)
Central Repository, 2020), Vivli (Vivli Center for Global
Clinical Research Data, 2020), The National Institute of
Mental Health Data Archive (The National Institute of Men-
tal Health Data Archive (NDA), 2020), Project Data Sphere
(Project Data Sphere, 2020), and the Data Observation Net-
work for Earth (Data Observation Network for Earth, 2020).

6. Details about RCT Data Sets Used in
Demonstration

The data sets used in the demonstration came from six repos-

itories, all of which allowed for direct download of the data

after registering with the repository. Each of these data sets
met five criteria:

Random assignment: Treatment must be fully random-
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Figure 1: APO vs RCT sampling on Postgres data. Left: Mean absolute error of ATE estimates, Right: Mean error of
estimated outcomes The similarity between the RCT and APO data sets suggests that OSRCT and OSAPO produce

equivalent constructed observational data.

ized for OSRCT to work as intended. We ensured that
the selected data sets were created by randomly assign-
ing treatment to each unit.

Independent units: Many causal inference methods as-
sume independent data instances, so we ensured that
the units in the data sets could reasonably be assumed
independent (e.g., no spatial correlation).

Measured pre-treatment covariate: At least one mea-
sured pre-treatment covariate is necessary to induce
confounding bias. The data sets we selected all had
multiple pre-treatment covariates, allowing us to se-
lect one that was correlated with outcome to induce
confounding bias.

Reasonably large sample size: Many RCT data sets are
very small (N < 100). We selected only reasonably
large data sets (/N > 500).

Ease of use: Some data sets were poorly documented or
stored the data over many files. We selected data sets
that would require minimal pre-processing.

In cases where treatment was not binary, a reasonable binary
version of treatment was constructed, either by grouping
merging treatment categories or by selecting a subset of the
data with only two values of treatment. Details about these
data sets are given in Table 1.

We also used some additional data set for the evaluation:
synthetic-response data sets from the ACIC Competition
and the IBM Causal Inference Benchmarking Framework
(Dorie et al., 2019; Shimoni et al., 2018), APO data sets
from computational systems (Gentzel et al., 2019), and three
simulators (Guillaume & Rougemont, 2006; Tu et al., 2019;
Miller et al., 2020). Details about these data sets can be

found in Tables 1, 2, and 3. For the experimental results
presented in the paper, 5000 samples were used for the IBM
Causal Inference Benchmarking Framework data sets, rather
than 2000, due to the high number of covariates.

7. Details about Causal Inference Methods
Evaluated

For each causal inference method evaluated, we used the
default implementation. While it may be possible to achieve
better performance for some of the these methods after
parameter tuning, we focused our evaluation on default per-
formance rather than best-case. Many practitioners looking
to apply a causal inference method will default to using the
initial parameter settings of a method, so it is a useful case
to compare. Our comparison also includes 37 data sets, and
individually tuning parameters for seven algorithms across
37 data sets was beyond the scope of this paper. A deep
dive into the performance of any individual causal inference
method, varying parameter settings and implementation de-
tails, is a possible avenue for future work and could produce
interesting results.

Propensity-score matching (PSM) learns a model of treat-
ment probability that is used to produce samples with equal
probabilities of treatment. Then weighted outcome estimates
of the treatment and control populations are compared to
estimate ATE. PSM was implemented using the Matchlit
package in R.

Inverse probability of treatment weighting (IPTW) is
similar to propensity score matching, in that both estimate
the probability of treatment and use that to control for con-
founding. Rather than using the probability of treatment to
match individuals between the treatment and control pop-



Table 1: Data sets used in experiments. ‘ID’ denotes the repository-specific ID for each data set, where applicable. ‘Coding’
denotes the shortened data set name used in figures.

Source ID Coding | Sample | Num Treatment Outcome Biasing
Size Covars Covar
Dryad 4f4qrfj95 | RCT-1 6453 27 Temperature Plant health Species
Dryad B8KG77 | RCT-2 15289 4 Video type Bicycle rating Bike access
HDV WT4I9N | RCT-3 551 5 Fact truth Fact removed Fact cited
ICPSR 20160213 | RCT-4 5573 10 Guest race Accepted Prior black tenants
ICPSR 23980 RCT-5 10098 7 Age Resume response Volunteer service
ISPS do37 RCT-6 4859 2 Race Legislator response Party
ISPS dogs4 RCT-7 48509 6 E-mail source Voter turnout Prior election turnout
ISPS d113 RCT-8 10200 4 Mailing Voter turnout Gender
KNB 1596312 | RCT-9 760 4 Soil heating C02 levels Depth
KNB f1qf8r51t | RCT-10 8063 4 Plant protection Plant survival Location
musiclab - RCT-11 3719 13 peer-influence average rating music knowledge
NIDA P1S1 RCT-12 776 5 Nicotine levels Cigarettes per day Weight
UK Data Service 852874 | RCT-13 343 5 Shown video Response Ethnicity
UK Data Service 853369 | RCT-14 4210 3 Biasing instruction | Line-up identification | Recruitment method
UK Data Service 854092 | RCT-15 691 5 Fact check validity Reaction Political activity
JDK - APO-1 473 5 Obfuscate Num bytecode ops Test javadocs
Networking - APO-2 2599 1 Proxy Elapsed time Server class
Postgres - APO-3 11128 8 Index level Runtime Rows returned
Nemo - Sim-1 10000 9 Breeding Adult viability Deleterious loci
Nemo - Sim-2 10000 9 Deleterious model | Deleterious frequency Mutation rate
Nemo - Sim-3 10000 10 Dispersal rate Survival Deleterious loci
Neuropathic pain - Sim-4 10000 25 DLS L4-L5 Lumbago DLS L5-S1
Neuropathic pain - Sim-5 10000 25 DLS C5-C6 Right Skull pain DLS C3-C4
Neuropathic pain - Sim-6 10000 25 DLS C4-C5 Right Shoulder pain DLS C6-C7
Whynot opiod Sim-7 10000 3 Abuse Overdose deaths Ilicit users
Whynot world2 Sim-8 10000 6 Capital investiment Population Pollution
Whynot zika Sim-9 10000 9 Zika control strategy | Symptomatic humans | Exposed mosquitoes

ulations, IPTW weights the outcomes of every individual
according to their probability of treatment and uses these
weighted outcomes to estimate ATE (Rosenbaum & Rubin,
1983).

Outcome regression is one simple approach for effect es-
timation that models outcome given treatment and all mea-
sured covariates. Unlike the potential outcomes approaches
discussed above, outcome regression makes no attempt to
model the treatment mechanism, focusing solely on effec-
tively modeling outcome. Recent studies have suggested that
effectively modeling outcome may be more important than
trying to account for differences in treatment assignment
(Dorie et al., 2019).

Bayesian Additive Regression Trees (BART) use a tree-
based model to estimate the response surface, allowing for
estimation of both ATE and individual outcomes (Chipman
et al., 2007). Regression trees are a type of tree used when
the outcome is continuous, which partition the input data
into subgroups with similar outcomes. BART creates an
ensemble of sequentially-learned regression trees, with a

regularization prior to keep the effects of individual trees
small. Estimates for the ensemble are obtained by summing
the outputs of all the trees. When used for causal modeling,
all observed covariates and treatment are used as predictors
of outcome, and estimates of ATE can be obtained by es-
timating outcome for all individuals with both 7" = 1 and
T = 0 and calculating the mean difference. BART was
implemented using the bartMachine R package.

Causal forests are random forests that specifically estimate
ATE (Wager & Athey, 2017). They make use of causal
trees (Athey & Imbens, 2016), which estimate ATE at the
leaf nodes by splitting such that the the number of training
points at the leaf node is small enough to be treated as
though they came from a randomized experiment. A causal
forest then averages the ATE estimates from the causal trees
in the ensemble to get an overall estimate of ATE. This
was implemented using the grf R package, with the default
parameters.

The above methods focus on modeling either treatment or
outcome. However, if this model is misspecified, the effect



Table 2: ACIC Data sets used in experiments. ‘ID’ denotes the ACIC ID for each data set. ‘Coding’ denotes the shortened

data set name used in figures.

ID | Coding | Sample | Num | Treatment | Percent | Outcome | Alignment | Treatment Effect
Size Covars | Function | Treated | Function Heterogeneity

4 SR-1 4802 56 Polynomial 35% Exponential 75% high

27 SR-2 4802 56 Polynomial 35% Step 25% Medium

47 SR-3 4802 56 Polynomial 65% Exponential 75% High

65 SR-4 4802 56 Step 65% Step 75% Medium

71 SR-5 4802 56 Step 65% Step 25% High

Table 3: IBM Data sets used in experiments. ‘ID’ denotes the IBM ID for each data set. ‘Coding’ denotes the shortened data

set name used in figures.

ID Coding | Sample | Num | Percent | Effect Link
Size Covars | Treated | Size Type
1b50aae9f0e34b03bdf03ac195a5¢7e¢9 SR-6 10000 151 69% -3.2 | Polynomial
2b6d1d419de94f049d98c755beeadae?2 SR-7 10000 151 23% -0.13 Log
19e667b985624159bae940919078d55f | SR-8 10000 151 17% 0.06 | Exponential
7510d73712fe40588acdb129ea58339b SR-9 10000 151 27% 0.017 Log
c55cbee849534815ba80980975¢4340b | SR-10 10000 151 19% -0.23 | Exponential

estimate will be biased. Doubly-robust methods are de-
signed to avoid this issue, producing an unbiased estimate
of ATE as long as either the treatment or the outcome model
is correctly specified. This is commonly implemented as a
combination of IPTW weighting and outcome regression
(Funk et al., 2011). Doubly-robust estimation was imple-
mented using the fastDR R package.

Shi et al. (Shi et al., 2019) propose a neural-network-based
method, using a new proposed architecture called Drag-
onnet. This approach uses a deep neural network to produce
a representation layer of the covariates. This representation
layer is then used to predict both treatment and outcome.
The prediction of treatment acts as a propensity score, which
is used to adjust for confounding when estimating treatment
effect. Dragonnet net is one example of a class of neural-
network-based approaches for causal modeling, which gen-
erally follow a similar approach. (Johansson et al., 2016;
Shalit et al., 2017; Schwab et al., 2018; Louizos et al., 2017;
Yoon et al., 2018)

8. Additional results
8.1. Neural-network results

We also ran experiments comparing against a neural-
network-based method (Shi et al., 2019). ' This method

"We tried neural-network method implementations by Shi et
al.: Dragonnet, Dragonet + TMLE, Tarnet, and Tarnet+TMLE. The
performance was comparable between all four, so only results for
Dragonnet+TMLE are reported.

has significantly higher variability than the other methods.
There are a couple of possible explanations for this. As we
initialize different random weights in each run, the model
might be sensitive to the initialization weights and converge
to different local optima. In addition, sample size for most of
the data sets is less than 5000, which is significantly lower
than is typically used for neural network based methods.
This might be causing overfitting and high variability. We
ran the neural network method using the experimental set
up described in the main paper, (as in Figures 3 and 4 in the
main paper). The results are shown in Figures 2 and 3.

8.2. Outcome estimation results

For APO data sets and synthetic response data sets, a held
out test set can be used instead, which, by Theorem 3, is
equivalent to using the weighted complementary sample.
However, many of the algorithms we are evaluating here
are not capable of producing individual-level outcome esti-
mates, so this evaluation is limited to only BART, outcome
regression., and the neural-network method. Results for data
sets with binary outcomes are shown in Figure 4, and results
for data sets with continuous outcomes are shown in Figure
5. (Figure 6 contains the continuous outcome results but
zoomed in, cutting off some extreme neural network results
to show details).

Unsurprisingly, BART consistently outperforms outcome
regression. Both of these methods focus on modeling the
response surface, but BART uses a higher capacity tree-
based model rather than a simple regression. The difference
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Figure 4: Error in estimating a binary outcome

is far stronger for data sets with a continuous outcome,
compared to those with a binary outcome. The difference is
also minimal for the RCT data sets. This trend is constant as
we increase the strength of the biasing and when two biasing
covariates are used. The neural network has significantly
higher variability than BART and outcome regression. Since
no hyperparameter tuning was performed for the neural-
network method, and many data sets have low sample size, it
is not surprising that the neural-network method sometimes
does very poorly. However, in many cases, the mean error
is similar, and for many data sets with continuous outcome,
performance is equivalent to BART and outcome regression.
This evaluation is unfortunately limited since none of the
other algorithms we evaluated are capable of producing
individual-level outcome estimates. In general, methods
that model outcome are more likely to provide this as an
option, making this a useful evaluation tool when comparing
multiple outcome estimation-based methods.

8.3. Comparison between Sub-sampling and Weighting

An alternative approach to sub-sampling, as mentioned in
Section 2.1 of the paper, is to reweight the units, according
to P(T? = t;|C?). This approach requires that the causal in-
ference method under evaluation accepts unit-level weights.
Among the methods we used for evaluation, only causal
forests and outcome regression accept unit-level weights.
To assess the similarity between the two approaches, we
compared the causal effect estimates obtained using sub-
sampling to those obtained using weighting. Results for
binary outcomes can be seen in Figure 7, and results for
continuous outcomes can be seen in Figure 8. Naive, OR-
subsampled, CF-subsampled estimates are calculated using
the sub-sampling approach, while OR-weighted and CF-
weighted estimates are calculated using the weighting ap-
proach. We observe that the weighted estimates have low
(almost zero) variability across different runs. This is ex-
pected as the weighting approach uses all the units for cal-

culating estimates, and biasing function used in the experi-
ments produces deterministic probabilities. The variability
in sub-sampled estimates comes from sub-sampling differ-
ent samples of data in every run. Overall, we see that the
estimates for weighting estimates are in the range of the
estimates obtained by sub-sampling, suggesting an overall
equivalence of the approaches.

8.4. Correlation Analysis

While the ranges of variability for most methods are the
same, this doesn’t guarantee that each method is produc-
ing the same result for each of the 30 trials. Error for each
method could be uncorrelated with the others, suggesting
that an ensemble approach might improve performance. To
test this, we computed a correlation matrix for each data set,
calculating correlation across the 30 trials for each method.
Results for a few representative data sets are shown in Fig-
ure 9. In most cases, the correlation is the weakest with
the neural network method, and is generally weaker with
propensity score matching. For all other methods, though,
errors are highly correlated. There are some exceptions, as
in SR-7. The reason for these varies. In the case of SR-7,
this is likely a result of the low variability across the 30
trials.

8.5. Overall Mean

Figure 10 shows overall mean performance for each algo-
rithm. As observed above, propensity score matching has
the highest error overall. In addition, doubly-robust estima-
tion appears to have higher error for data sets with binary
outcomes. More nuance can be seen in Figure 11, which
shows mean error by data source. The higher error for dou-
bly robust estimation appears to be primarily for simulator
data sets. For the other data sources, mean performance is
fairly consistent across algorithms.
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