
Strategic Classification in the Dark

A. Missing Proofs
Before we proceed to the proofs, we recall the definitions of S, E, S−1,1, S1,−1, E−1,1, and E1,−1 below:

S = {x | f(x) 6= f̂(x)}, E = {x | f(∆f (x)) 6= f(∆f̂ (x))},

S−1,1 = {x | f(x) = −1, f̂(x) = 1}, S1,−1 = {x | f(x) = 1, /f̂(x) = −1},

E−1,1 = {x | ∆f̂ (x) ∈ S−1,1, f(∆f (x)) = 1}, E1,−1 = {x | ∆f (x) ∈ S1,−1 \ {x}, ∆f̂ (x) = x} .

A.1. Proofs of Theorems in Section 3.2

Theorem 2. The price of opacity is strictly positive, i.e., POP > 0, if the following condition holds:

Px∼D{x ∈ E} > 2err(f?, f?) + 2ε1. (6)

Proof of Theorem 2. From Eq. (5) and Lemma 1, we have Px∼D{x ∈ E} = POP + 2POP−. Notice that points in E−

contribute to the error of f , implying POP− ≤ err(f, f). Recall that err(f, f) = err(f?, f?)+ε1. Since POP+2POP− >
2(err(f?, f?) + ε1), we have POP > 0, completing the proof.

Theorem 3. The enlargement set can be partitioned as E = E−1,1 ] E1,−1.

Proof. First, recall S−1,1 = {x | f(x) = −1 ∧ f̂(x) = 1}, and S1,−1 = {x | f(x) = 1 ∧ f̂(x) = −1}. Further,

E−1,1 = {x | ∆f̂ (x) ∈ S−1,1, f(∆f (x)) = 1};

E1,−1 = {x | ∆f (x) ∈ S1,−1 \ {x}, ∆f̂ (x) = x}.

Suppose y = ∆f (x), and z = ∆f̂ (x). First assuming f(y) 6= f(z), we show that x ∈ E.

Case a (y = x and z 6= x): Since y = x, either f(x) = 1 or {u | c(x, u) < 2 and f(u) = 1} = ∅. Moreover, as
z 6= x, f̂(x) = −1, and z = argminu{c(x, u) | c(x, u) < 2 and f̂(u) = 1}. We first argue in this case that f(x) = 1.
Suppose f(x) = −1. Then {u | c(x, u) < 2 and f(u) = 1} = ∅ implying f(z) = −1. Since f(x) 6= f(z), this gives a
contradiction. If f(x) = 1 and f(z) = −1 then as f̂(z) = 1, z ∈ S−1,1 and hence x ∈ E−1,1.

Case b (y 6= x and z = x): Again as z = x, either f̂(x) = 1 or {u | c(x, u) < 2 and f̂(u) = 1} = ∅. Also as y 6= x,
f(x) = −1 and y = argminu{c(x, u) | c(x, u) < 2 and f(u) = 1}. If f̂(x) = 1 then as f(x) = −1, x ∈ S−1,1. Since
f(y) = 1 we have x ∈ E−1,1. If f̂(x) = −1 and {u | c(x, u) < 2 and f̂(u) = 1} = ∅ then f̂(y) = −1 and f(y) = 1
implying x ∈ E1,−1.

Case c (y 6= x and z 6= x): Hence, y = {u | c(x, u) < 2 and f(u) = 1} and z = argminu{c(x, u) | c(x, u) <

2 and f̂(u) = 1}. Since f(y) = 1, by assumption it follows that f(z) = −1. This implies z ∈ S−1,1 and x ∈ E−1,1.

Now we show that if x ∈ E then f(∆f (x)) 6= f(∆f̂ (x)). Suppose x ∈ E−1,1. Then f(∆f̂ (x)) = −1 and f(∆f (x)) = 1.
Similarly if x ∈ E1,−1 then f(∆f (x)) = 1 and f(∆f̂ (x)) = −1.

A.2. Proofs of Propositions and Corollaries in Section 3.3

Proposition 5. The following are sufficient for POP > 0:
(a) Φσ(tf )− Φσ(tf − t) > ` when tf > tf̂
(b) Φσ(tf̂ − t)− Φσ(tf − t) > ` when tf < tf̂
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Figure 5. (Left) Set E when, tf < tf̂ . Blue region represents POP+ and red region represents POP−. (Right) Set E when tf > tf̂ .
Blue color represents POP+ and red color represents POP−.

Proof. Recall ` = 2 · err(f?, f?) + 2ε1. We determine the enlargement set E in both the cases below and then in each case
use Thm. 2 to conclude the proof.

Case a (tf > tf̂ ): Using Theorem 3, E can be determined easily. We note E in this case in the following observation (also
see Fig. 5).

Observation 10. If tf > tf̂ then E = [tf − t, tf ).

From the property of normal distribution we have Px∼D{x ∈ E} = Φσ(tf )−Φσ(tf−t), and the result follows from Thm. 2.

Case b (tf < tf̂ ): The set E in this case is as in Obs. 10 (also see Fig. 5).

Observation 11. If tf < tf̂ then E = [tf − t, tf̂ − t).

Similar to the previous case, we have Px∼D{x ∈ E} = Φσ(tf̂ − t) − Φσ(tf − t) , and again the proof follows from
Thm. 2.

Proposition 7. Let h be realizable and ε2 > 2ε1. Then, there exists σ0 > 0 such that for all σ < σ0 it holds that:

POP =

{
Φσ(tf̂ − t)− Φσ(|t− tf |) if tf < tf̂
Φσ(tf )− Φσ(|t− tf |) if tf > tf̂

(8)

Proof. Since h is realizable by a threshold classifier there is an α ∈ R such that h(x) = 1 if and only if x ≥ α. Without
loss of generality, let α = 0 (otherwise we consider distribution N (α, σ)). Observe that, in this case the optimal classifier
f? is defined as f?(x) = 1 for x ≥ t and −1 otherwise and satisfies err(f?, f?) = 0. Further, let ε1 = err(f, f), and
ε2 = Px∼D{f(x) 6= f̂(x)}. We define σ0 > 0 such that Φσ0

( t2 ) = 1
2 + ε1.

We show in the lemma below that tf > t
2 for the chosen values of σ.

Lemma 12. For all 0 < σ < σ0, tf > t
2 > 0.

Proof. Suppose for contradiction tf ≤ t
2 . Then t− tf ≥ t

2 . This implies

ε1 := err(f, f) =
1

2
− Φσ(tf − t)

=
(i)

Φσ(t− tf )− 1

2
≥
(ii)

Φσ(
t

2
)− 1

2
>
(iii)

Φσ0
(
t

2
)− 1

2
= ε1

In the above, (i) follows from the symmetry property of Normal distribution, (ii) is an immediate consequence of
monotonicity property of CDF function Φ(.) and finally (iii) follows from the choice of σ. This completes the proof.
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Hence, we assume throughout the proof tf > t
2 > 0. Now we determine POP and show that it greater than 0 for the two

cases.

Case 1 (tf < tf̂ ): The enlargement set E = [tf − t, tf̂ − t] (determined in the proof of Prop. 5, see Obs. 11). Now in
Obs. 13, we show that t < tf̂ in this case.

Observation 13. If tf < tf̂ then t < tf̂ .

Proof. Note that ε1 = 1
2 − Φσ(tf − t). Further, from definition ε2 = Φσ(tf̂ )− Φσ(tf ). Suppose t ≥ tf̂ . Then as tf > 0

Φσ(tf̂ )− Φσ(tf ) < Φσ(t− tf )− Φσ(0) = ε1

If ε2 < ε1 < 2ε1 then this contradicts the assumption that ε2 ≥ 2ε1.

Hence, either tf < t < tf̂ or t < tf < tf̂ . First, we analyse the case when tf < t < tf̂ . Recall that the price of opacity is

defined as POP = err(f, f̂)− err(f, f). Observe that for all x ∈ [0, tf̂ − t), h(x) = f(∆f (x)) and for all x ∈ [tf − t, 0),
h(x) 6= f(∆f (x)). In particular, the points in [0, tf̂ − t) contribute positively to the price of opacity, and the points in
[tf − t, 0) contribute negatively to the price of opacity. Hence,

POP = (Φσ(tf̂ − t)− Φσ(0))− (Φσ(0)− Φσ(tf − t))

= (Φσ(tf̂ − t)− Φσ(0))− (Φσ(t− tf )− Φσ(0))

= Φσ(tf̂ − t)− Φσ(t− tf )

Finally, in this case POP is at least 0 follows from the following observation.

Observation 14. tf̂ − t > t− tf

Proof. By assumption we have ε2 ≥ 2ε1. This implies that

Φσ(tf̂ ) ≥ Φσ(tf ) + 2(Φσ(t− tf )− 1/2)

> Φσ(tf ) + Φσ(2t− tf )− Φσ(tf )

= Φσ(2t− tf )

The second line in the above equation follows for any σ > 0 as 0 < tf < t < tf̂ . This completes the proof.

Similarly, when t < tf < tf̂ , it can be shown that E = [tf − t, tf̂ − t), and POP = Φσ(tf̂ − t)− Φσ(tf − t) > 0.

Case 2 (tf > tf̂ ): The set E = [tf − t, tf ) in this case (see Observation 10). If tf > t then it is easy to show that
POP = Φσ(tf ) − Φσ(tf − t) > 0. Next we analyse the price of opacity for tf < t. Observe that for all x ∈ [0, tf )
h(x) = f(∆f (x)) = 1, and for all x ∈ [tf − t, 0), h(x) = −1 and f(∆f (x)) = 1. In particular the points in [0, tf )
contribute positively to the price of opacity, whereas the points in [tf − t, 0) contribute negatively to the price of opacity
(see Fig. 5). Hence,

POP = (Φσ(tf )− Φσ(0))− (Φσ(0)− Φσ(tf − t))
= (Φσ(tf )− Φσ(0))− (Φσ(t− tf )− Φσ(0))

= Φσ(tf )− Φσ(t− tf ) .

Since tf > t
2 (from Lem. 12), tf > t− tf , and hence, POP > 0.

Corollary 6. Suppose h is realizable, tf < t, and ε2 > 2ε1. Then there exists σ0 > 0 such that for all σ < σ0, POP > 0 if
and only if Px∼D{E} > 2ε1.
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Proof. Similar to Prop. 6, without loss of generality we have h(x) = 1 if and only if x ≥ α. Hence, the optimal classifier
f? is defined as f?(x) = 1 for x ≥ t and −1 otherwise and satisfies err(f?, f?) = 0. It follows from Thm. 2 that if
Px∼D{E} > 2ε1 then POP > 0. Now we prove the other direction.

In Props. 5 and 6 we showed that if tf > tf̂ then

Px∼D{x ∈ E} = Φσ(tf )− Φσ(tf − t)

POP = Φσ(tf )− Φσ(t− tf ) .

Similarly, we also showed that if tf < tf̂

Px∼D{x ∈ E} = Φσ(tf̂ − t)− Φσ(tf − t)

POP = Φσ(tf̂ − t)− Φσ(t− tf ) .

From the two equations in each case we conclude the following holds in both the cases:

POP = Px∼D{x ∈ E}+ Φσ(tf − t)− Φσ(t− tf ) .

Also, note that ε1 = 1/2− Φσ(tf − t). If POP > 0 then

Px∼D{x ∈ E}+ Φσ(tf − t)− Φσ(t− tf ) > 0

Px∼D{x ∈ E} > Φσ(t− tf )− Φσ(tf − t)
> 1− 2Φσ(tf − t) = 2ε1

The first inequality in the last line of the above equation follows from the property of normal distribution centered at 0.

Corollary 8. Suppose ε2 > 2
√

log 4
δ /n, where δ ∈ (0, 1). Then with probability at least 1− δ, POP is as in Eq. (7).

Proof. As the strategic VC dimension of the threshold classifier for an admissible cost function is at most 2, from the strategic-

PAC generalization error bound we have with probability at most δ (over the samples in TJ ), err(f, f) = ε1 ≤
√

log 8
δ

n .
Using this the corollary follows from Prop. 7.

B. Experiments
B.1. Synthetic experiments: additional results

B.1.1. MULTI-VARIATE NORMAL DISTRIBUTION

Our theoretical results in Sec. 3.3 consider a 1D Normal distribution. In this section we empirically study POP under a
split multi-variate Normal distribution with means µ = and diagonal covariance matrix Σ = 2I . We set the cost to be
linear-separable with weight vector α = (1, 0, . . . , 0). We measure pop for increasing dimensionality d. Across d we fix εd
by choosing m(d) for which the error is at most 0.01 w.p. at least 0.95 over sample sets (i.e., as in PAC), and to simplify,
mimic a setting with large n by fixing f = f∗ (which thresholds along the x1 axis at 2). Results for were averaged over 50
random draws of n = 100 test points moved by a learned f̂ .

Figure 6 (left, center) shows results for increasing d. As can be seen POP remains quite large even for large d. Interestingly,
POP begins lower for d = 1 (the canonical case), then increases abruptly at d = 2, only to then slowly decrease until
plateauing at around d = 150. Interestingly, the low POP at d = 1 is due to high variance: roughly half of the time
POP ≈ 0.35, whereas the other half POP = 0. This behavior virtually diminishes for d > 1.

B.1.2. NEGATIVE POP

As noted in Sec. 3.1, POP can also be negative. Fig. 6 (right) presents such a case, in which we used a mixture of two
1D Normals centered at 0 and 1 and with diagonal unit covariances. Here, as m increases, f̂ better estimates f , but POP
remains significantly negative throughout.
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Figure 6. (Left, center) POP for split MVNs of increasing dimension d (center: high-resolution for small d; right: low-resolution for
large d). (Right) Mixture of 1D Normals giving strictly negative POP.

B.2. Loans experiment: details

B.2.1. DATA

Our experiments makes use of data cross-referenced from two distinct datasets related to the Prosper.com peer-to-peer
loans platform. The first dataset7 includes n = 113, 937 examples having d = 81 features (not all useful for classification
purposes; see below). Examples include only loan requests that have been approved, i.e., that sufficient funds were allocated
by borrowers on the platform to support the request. This dataset has informative features that are useful for predictive
purposes, but does not include any information on social connections. To complement this, we use a second dataset8, which
includes a full data-dump of all data available on the platform, including: loan request (both approved and disapproved), bid
history, user profiles, social groups, and social connections.9 This dataset is richer in terms of available data types, but is
missing several highly informative features that appear in the first dataset. Hence, we take the intersection of both datasets
(entries were matched based on user-identifying member keys). Our merged dataset includes n = 20, 222 examples of loan
requests that are described by informative features and whose corresponding users can be linked to others within the social
network.

Labels. Labels in our data are determined based on a loan request’s credit grade (cg), a feature indicating the risk level of
the request as forecasted by the platform (for which they use proprietary tools and information that is not made public).
Values of cg are in the range AA,A,B,C,D,E,HR, with each level corresponding to a risk value indicating the likelihood of
default.10 Because cg is essentially a prediction of loan default made by the platform, we use it as labels, which we binarize
via y = 1{cg ≥ B} to obtain a roughly balanced dataset. In this way, learning f mimics the predictive process undertaken
by the platform and for the same purposes (albeit with access to more data).

Features. Although the data includes many features, most of them are redundant for predictive purposes, others contain
many missing entries, and yet others are linked directly to y in ways that make them inappropriate to use as input (e.g.,
borrower rate, which is fixed by the platform using a one-to-one mapping from cg, makes prediction trivial). Due to this,
and because we also study cases in which the number of user-held examples m is small, we choose to work with a subset of
six features, chosen through feature selection for informativeness and relevance. available credit, amount to loan, percent
trades not delinquent, bank card utilization, total number of credit inquiries, credit history length. These remain sufficiently
informative of y: as noted, a non-strategic linear baseline (on non-strategic data) achieves 84% accuracy. Fig. 2 (inlay)
shows that errors in the estimation of f̂ (i.e., ε2) are manageable even for small m.

Social network. In its earlier days, the Prosper.com platform included a social network that allowed users to form social
ties beyond those derived from financial actions. In our final experiment in Sec. 4, we use the social network to determine
the set of examples available for each user x for training f̂x, and in particular, include in the sample set all loan requests of

7https://www.kaggle.com/yousuf28/prosper-loan
8Provided to us upon request by the authors of Kumar & Zinger (2014).
9The data dump is dated to 2009, shortly before Prosper.com underwent significant changes. These included changes in how loan

requests are processed and attended, how credit risk is evaluated by the platform, and how users can interact. As part of these changes,
Prosper.com discontinued public access to its API for obtaining data.

10https://www.prosper.com/invest/how-to-invest/prosper-ratings/?mod=article_inline

https://www.kaggle.com/yousuf28/prosper-loan
https://www.prosper.com/invest/how-to-invest/prosper-ratings/?mod=article_inline
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Figure 7. POP and estimation error for f̂ (ε2) in the safe Contestant setting, for safety budgets k = 0.02 (1% of the total budget) and
k = 0.2 (10% of the total budget).

any user that is at most at distance two from x (i.e., a friend or a friend-of-a-friend). The social network is in itself quite
large; however, since we have informative features only for loan requests that have been approved (see above), in effect we
can only make use of a smaller subset of the network which includes 994 users that have at least one social connection.

B.2.2. EXPERIMENTAL DETAILS

Preprocessing. All features were standardized (i.e., scaled to have zero mean and unit standard deviation).

Training. The data was split 85-15 into train and test sets, respectively. The train set was further partitioned for tuning the
amount of regularization, but optimal regularization proved to be negligible, and final training was performed on the full
train set. Evaluation was done on points in the held-out test set, and for settings in which f̂ is used, training sets for f̂ were
sampled from the train set and labeled by f . As noted, rejection sampling was used to ensure that sample sets include at
least one example from each class.

Learning algorithms. For the non-strategic baseline we used the scikit-learn implementation of SVM. For the strategic
learning algorithm we used our own implementation of the algorithm of Hardt et al. (2016).

Computational infrastructure. All experiments were run on a single laptop (Intel(R) Core(TM) i7-9850H CPU 2.6GHz,
2592 Mhz, 6 core, 15.8GB RAM).

Code. Code is publicly available at https://github.com/staretgicclfdark/strategic_rep

B.2.3. VISUALIZATION

For visualization purposes, we embed points x ∈ R6 in R2. Our choice of embedding follows from the need to depict
relations between the position of points in embedded space and how they are classified, i.e., their value under f(x). To achieve
this, we embed by partitioning features into two groups, A1, A2 ⊂ {1, . . . , 6}, and decompose f(x) = f1(x) + f2(x)
where f1 operates only on the subset of features in A1 and f2 on features in A2. We then set the embedding ρ to be
ρ(x) = (f1(x), f2(x)), i.e., values for the x-axis correspond to f1, and values for the y-axis correspond to f2. In this way,
embedded points lie above the line f(x) = 0 iff they are classified as positive (note that this holds for any partitioning of
features). However, such a projection does not preserve distances or directions, and so the distance of points from f and the
direction and distance of point movement do not necessary faithfully represent those in the original feature space.

B.3. Loans experiment: additional results

Our main results relate to a Contestant playing f̂ exactly. Here we empirically study a variation on this model. If Contestant
knows that f̂ only approximates f , she may be willing to make up for possible errors in estimation by incurring an additional
cost. We refer to such a Contestant as safe, and model her behavior as follows. First, Contestant computes her best-response
w.r.t. f̂ , denoted x′. This provides a direction of movement r = x′ − x. Recalling that the distance of movement was set to

https://github.com/staretgicclfdark/strategic_rep
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Figure 8. Social inequality for f̂ (ε2) in the safe Contestant setting, for safety budgets k = 0.02 (1% of the total budget) and k = 0.2
(10% of the total budget).

minimize the cost, the safe Contestant then invests an additional k units of cost (at most, without exceeding her overall cost
budget of 2) to move further in the same direction r.

Figure 7 show POP behavior for the safe Contestant setting for ‘safety’ budgets k = 0.02 (1% of the total budget) and
k = 0.2 (10% of the total budget). As can be seen, the main trends in the results match those in Sec. 4.2 (Fig. 2). Notice
that for large m, POP is now smaller, as the increased distances can now move points beyond the region of disagreement.
However, closing the POP gap requires many samples (m ≈ 1, 000) and a large safety budget (10% of total). Figure 8
shows social inequality measures for the safe Contestant setting, with matching results indicating that large m and k are
necessary to maintain social equality.


