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Abstract
The shuffle model of differential privacy has at-
tracted attention in the literature due to it being
a middle ground between the well-studied cen-
tral and local models. In this work, we study the
problem of summing (aggregating) real numbers
or integers, a basic primitive in numerous ma-
chine learning tasks, in the shuffle model. We
give a protocol achieving error arbitrarily close
to that of the (Discrete) Laplace mechanism in
central differential privacy, while each user only
sends 1 + o(1) short messages in expectation.

1. Introduction
A principal goal within trustworthy machine learning is the
design of privacy-preserving algorithms. In recent years,
differential privacy (DP) (Dwork et al., 2006b;a) has gained
significant popularity as a privacy notion due to the strong
protections that it ensures. This has led to several practical
deployments including by Google (Erlingsson et al., 2014;
Shankland, 2014), Apple (Greenberg, 2016; Apple Differ-
ential Privacy Team, 2017), Microsoft (Ding et al., 2017),
and the U.S. Census Bureau (Abowd, 2018). DP properties
are often expressed in terms of parameters " and �, with
small values indicating that the algorithm is less likely to
leak information about any individual within a set of n peo-
ple providing data. It is common to set " to a small positive
constant (e.g., 1), and � to inverse-polynomial in n.

DP can be enforced for any statistical or machine learning
task, and it is particularly well-studied for the real sum-

mation problem, where each user i holds a real number
xi 2 [0, 1], and the goal is to estimate

P
i xi. This con-

stitutes a basic building block within machine learning,
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with extensions including (private) distributed mean esti-
mation (see, e.g., Biswas et al., 2020; Girgis et al., 2021),
stochastic gradient descent (Song et al., 2013; Bassily
et al., 2014; Abadi et al., 2016; Agarwal et al., 2018), and
clustering (Stemmer & Kaplan, 2018; Stemmer, 2020).

The real summation problem, which is the focus of this
work, has been well-studied in several models of DP. In the
central model where a curator has access to the raw data
and is required to produce a private data release, the small-
est possible absolute error is known to be O(1/"); this can
be achieved via the ubiquitous Laplace mechanism (Dwork
et al., 2006b), which is also known to be nearly optimal1
for the most interesting regime of "  1. In contrast, for
the more privacy-stringent local setting (Kasiviswanathan
et al., 2008) (also Warner, 1965) where each message sent
by a user is supposed to be private, the smallest error is
known to be ⇥"(

p
n) (Beimel et al., 2008; Chan et al.,

2012). This significant gap between the achievable central
and local utilities has motivated the study of intermediate
models of DP. The shuffle model (Bittau et al., 2017; Er-
lingsson et al., 2019; Cheu et al., 2019) reflects the setting
where the user reports are randomly permuted before being
passed to the analyzer; the output of the shuffler is required
to be private. Two variants of the shuffle model have been
studied: in the multi-message case (e.g., Cheu et al., 2019),
each user can send multiple messages to the shuffler; in the
single-message setting each user sends one message (e.g.,
Erlingsson et al., 2019; Balle et al., 2019).

For the real summation problem, it is known that the small-
est possible absolute error in the single-message shuffle
model2 is ⇥̃"(n1/6) (Balle et al., 2019). In contrast, multi-
message shuffle protocols exist with a near-central accu-
racy of O(1/") (Ghazi et al., 2020c; Balle et al., 2020), but
they suffer several drawbacks in that the number of mes-
sages sent per user is required to be at least 3, each message
has to be substantially longer than in the non-private case,
and in particular, the number of bits of communication per
user has to grow with log(1/�)/ log n. This (at least) 3-fold
communication blow-up relative to a non-private setting

1Please see the supplementary material for more discussion.
2Here ⇥̃"(·) hides a polylogarithmic factor in 1/�, in addition

to a dependency on ".
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can be a limitation in real-time reporting use cases (where
encryption of each message may be required and the asso-
ciated cost can become dominant) and in federated learning
settings (where great effort is undertaken to compress the
gradients). Our work shows that near-central accuracy and

near-zero communication overhead are possible for real ag-
gregation over sufficiently many users:

Theorem 1. For any 0 < "  O(1), ⇣, � 2 (0, 1/2),
there is an (", �)-DP real summation protocol in the shuf-

fle model whose mean squared error (MSE) is at most the

MSE of the Laplace mechanism with parameter (1 � ⇣)",

each user sends 1 + Õ⇣,"

⇣
log(1/�)p

n

⌘
messages in expecta-

tion, and each message contains
1
2 log n+O(log 1

⇣ ) bits.

Note that Õ⇣," hides a small poly(log n, 1/", 1/⇣) term.
Moreover, the number of bits per message is equal, up to
lower order terms, to that needed to achieve MSE O(1)
even without any privacy constraints.

Theorem 1 follows from an analogous result for the case of
integer aggregation, where each user is given an element
in the set {0, 1, ...,�} (with � an integer), and the goal of
the analyzer is to estimate the sum of the users’ inputs. We
refer to this task as the �-summation problem.

For �-summation, the standard mechanism in the central
model is the Discrete Laplace (aka Geometric) mechanism,
which first computes the true answer and then adds to it a
noise term sampled from the Discrete Laplace distribution3

with parameter "/� (Ghosh et al., 2012). We can achieve
an error arbitrarily close to this mechanism in the shuffle
model, with minimal communication overhead:

Theorem 2. For any 0 < "  O(1), �, � 2 (0, 1/2),� 2
N, there is an (", �)-DP �-summation protocol in the shuf-

fle model whose MSE is at most that of the Discrete Laplace

mechanism with parameter (1 � �)"/�, and where each

user sends 1 + Õ

⇣
� log(1/�)

�"n

⌘
messages in expectation,

with each message containing dlog�e+ 1 bits.

In Theorem 2, the Õ(·) hides a poly log� factor. We also
note that the number of bits per message in the protocol
is within a single bit from the minimum message length
needed to compute the sum without any privacy constraints.
Incidentally, for � = 1, Theorem 2 improves the commu-
nication overhead obtained by Ghazi et al. (2020b) from
O

⇣
log2(1/�)

"2n

⌘
to O

⇣
log(1/�)

"n

⌘
. (This improvement turns

out to be crucial in practice, as our experiments show.)

Using Theorem 1 as a black-box, we obtain the follow-
ing corollary for the 1-sparse vector summation prob-
lem, where each user is given a 1-sparse (possibly high-

3The Discrete Laplace distribution with parameter s, denoted
by DLap(s), has probability mass 1�e�s

1+e�s · e�s|k| at each k 2 Z.

dimensional) vector of norm at most 1, and the goal is to
compute the sum of all user vectors with minimal `2 error.

Corollary 3. For every d 2 N, and 0 < "  O(1), ⇣, � 2
(0, 1/2), there is an (", �)-DP algorithm for 1-sparse vec-

tor summation in d dimensions in the shuffle model whose

`2 error is at most that of the Laplace mechanism with

parameter (1 � ⇣)"/2, and where each user sends 1 +

Õ⇣,"

⇣
d log(1/�)p

n

⌘
messages in expectation, and each mes-

sage contains log d+ 1
2 log n+O(log 1

⇣ ) bits.

1.1. Technical Overview

We will now describe the high-level technical ideas under-
lying our protocol and its analysis. Since the real summa-
tion protocol can be obtained from the �-summation pro-
tocol using known randomized discretization techniques
(e.g., from Balle et al. (2020)), we focus only on the lat-
ter. For simplicity of presentation, we will sometimes be
informal here; everything will be formalized later.

Infinite Divisibility. To achieve a similar performance to
the central-DP Discrete Laplace mechanism (described be-
fore Theorem 2) in the shuffle model, we face several ob-
stacles. To begin with, the noise has to be divided among
all users, instead of being added centrally. Fortunately, this
can be solved through the infinite divisibility of Discrete
Laplace distributions4: there is a distribution D0 for which,
if each user i samples a noise zi independently from D0,
then z1+· · ·+zn has the same distribution as DLap("/�).

To implement the above idea in the shuffle model, each user
has to be able to send their noise zi to the shuffler. Fol-
lowing Ghazi et al. (2020b), we can send such a noise in
unary5, i.e., if zi > 0 we send the +1 message zi times and
otherwise we send the �1 message �zi times. This is in
addition to user i sending their own input xi (in binary6, as
a single message) if it is non-zero. The analyzer is simple:
sum up all the messages.

Unfortunately, this zero-sum noise approach is not shuf-
fle DP for � > 1 because, even after shuffling, the ana-
lyzer can still see uj , the number of messages j, which is
exactly the number of users whose input is equal to j for
j 2 {2, . . . ,�}.

Zero-Sum Noise over Non-Binary Alphabets. To over-
come this issue, we have to ‘noise” the values uj them-
selves, while at the same time preserving the accuracy. We

4See (Goryczka & Xiong, 2017) for a discussion on distributed
noise generation via infinite divisibility.

5Since the distribution D0 has a small tail probability, zi will
mostly be in {0,�1,+1}, meaning that non-unary encoding of
the noise does not significantly reduce the communication.

6If we were to send xi in unary similar to the noise, it would
require possibly as many as � messages, which is undesirable for
us since we later pick � to be O",�(

p
n) for real summation.
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achieve this by making some users send additional mes-
sages whose sum is equal to zero; e.g., a user may send
�1,�1,+2 in conjunction with previously described mes-
sages. Since the analyzer just sums up all the messages, this
additional zero-sum noise still does not affect accuracy.

The bulk of our technical work is in the privacy proof of
such a protocol. To understand the challenge, notice that
the analyzer still sees the uj’s, which are now highly cor-

related due to the zero-sum noise added. This is unlike
most DP algorithms in the literature where noise terms are
added independently to each coordinate. Our main tech-
nical insight is that, by a careful change of basis, we can
“reduce” the view to the independent-noise case.

To illustrate our technique, let us consider the case where
� = 2. In this case, there are two zero-sum “noise
atoms” that a user might send: (�1,+1) and (�1,�1,+2).
These two kinds of noise are sent independently, i.e.,
whether the user sends (�1,+1) does not affect whether
(�1,�1,+2) is also sent. After shuffling, the analyzer sees
(u�1, u+1, u+2). Observe that there is a one-to-one map-
ping between this and (v1, v2, v3) defined by v1 := u�1 �
2·u+2, v2 := u�1�u+1�u+2, v3 := �u�1+u+1+2·u+2,
meaning that we may prove the privacy of the latter in-
stead. Consider the effect of sending the (+1,�1) noise:
v1 is increased by one, whereas v2, v3 are completely un-
affected. Similarly, when we send (�1,�1,+2) noise, v2
is increased by one, whereas v1, v3 are completely unaf-
fected. Hence, the noise added to v1, v2 are now indepen-
dent! Finally, v3 is exactly the sum of all messages, which
was noised by the DLap noise explained earlier.

A vital detail omitted in the previous discussion is that the
DLap noise, which affects u�1, u+1, is not canceled out
in v1, v2. Indeed, in our formal proof we need a special
argument (Lemma 9) to deal with this noise.

Moreover, generalizing this approach to larger values of
� requires overcoming additional challenges: (i) the basis
change has to be carried out over the integers, which pre-
cludes a direct use of classic tools from linear algebra such
as the Gram–Schmidt process, and (ii) special care has to
be taken when selecting the new basis so as to ensure that
the sensitivity does not significantly increase, which would
require more added noise (this complication leads to the
definition of the Q-linear query problem in Section 4).

1.2. Related Work

Summation in the Shuffle Model. Our work is most
closely related to that of Ghazi et al. (2020b) who gave a
protocol for the case where � = 1 (i.e., binary summation)
and our protocol can be viewed as a generalization of theirs.
As explained above, this requires significant novel techni-
cal and conceptual ideas; for example, the basis change was

not (directly) required by Ghazi et al. (2020b).

The idea of splitting the input into multiple additive
shares dates back to the “split-and-mix” protocol of Ishai
et al. (2006) whose analysis was improved in Ghazi et al.
(2020c); Balle et al. (2020) to get the aforementioned shuf-
fle DP algorithms for aggregation. These analyses all cru-
cially rely on the addition being over a finite group. Since
we actually want to sum over integers and there are n users,
this approach requires the group size to be at least n�
to prevent an “overflow”. This also means that each user
needs to send at least log(n�) bits. On the other hand, by
dealing with integers directly, each of our messages is only
dlog�e+ 1 bits, further reducing the communication.

From a technical standpoint, our approach is also different
from that of Ishai et al. (2006) as we analyze the privacy of
the protocol, instead of its security as in their paper. This al-
lows us to overcome the known lower bound of ⌦( log(1/�)logn )
on the number of messages for information-theoretic secu-
rity (Ghazi et al., 2020c), and obtain a DP protocol with
Õ⇣,"

⇣
log(1/�)p

n

⌘
messages (where ⇣ is as in Theorem 1).

The Shuffle DP Model. Recent research on the shuf-
fle model of DP includes work on aggregation mentioned
above (Balle et al., 2019; Ghazi et al., 2020c; Balle et al.,
2020), analytics tasks including computing histograms and
heavy hitters (Ghazi et al., 2021a; Balcer & Cheu, 2020;
Ghazi et al., 2020a;b; Cheu & Zhilyaev, 2021), counting
distinct elements (Balcer et al., 2021; Chen et al., 2021)
and private mean estimation (Girgis et al., 2021), as well as
k-means clustering (Chang et al., 2021).

Aggregation in Machine Learning. We note that
communication-efficient private aggregation is a core prim-
itive in federated learning (see Section 4 of Kairouz et al.
(2019) and the references therein). It is also naturally re-
lated to mean estimation in distributed models of DP (e.g.,
Gaboardi et al., 2019). Finally, we point out that commu-
nication efficiency is a common requirement in distributed
learning and optimization, and substantial effort is spent
on compression of the messages sent by users, through
multiple methods including hashing, pruning, and quanti-
zation (see, e.g., Zhang et al., 2013; Alistarh et al., 2017;
Suresh et al., 2017; Acharya et al., 2019; Chen et al., 2020).

1.3. Organization

We start with some background in Section 2. Our protocol
is presented in Section 3. Its privacy property is established
and the parameters are set in Section 4. Experimental re-
sults are given in Section 5. We discuss some interesting
future directions in Section 6. All missing proofs can be
found in the Supplementary Material (SM).
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2. Preliminaries and Notation
We use [m] to denote {1, . . . ,m}.

Probability. For any distribution D, we write z ⇠ D to
denote a random variable z that is distributed as D. For
two distributions D1,D2, let D1 + D2 (resp., D1 � D2)
denote the distribution of z1 + z2 (resp., z1 � z2) where
z1 ⇠ D1, z2 ⇠ D2 are independent. For k 2 R, we use
k +D to denote the distribution of k + z where z ⇠ D.

A distribution D over non-negative integers is said to be in-

finitely divisible if and only if, for every n 2 N, there exists
a distribution D/n such that D/n + · · · + D/n is identical
to D, where the sum is over n distributions.

The negative binomial distribution with parameters r >

0, p 2 [0, 1], denoted NB(r, p), has probability mass�k+r�1
k

�
(1 � p)rpk at all k 2 Z�0. NB(r, p) is infinitely

divisible; specifically, NB(r, p)/n = NB(r/n, p).

Differential Privacy. Two input datasets X =
(x1, . . . , xn) and X

0 = (x0
1, . . . , x

0
n) are said to be neigh-

boring if and only if they differ on at most a single user’s
input, i.e., xi = x

0
i for all but one i 2 [n].

Definition 4 (Differential Privacy (DP) Dwork et al.
(2006b;a)). Let ", � 2 R�0. A randomized algorithm A
taking as input a dataset is said to be (", �)-differentially
private ((", �)-DP) if for any two neighboring datasets X

and X
0
, and for any subset S of outputs of A, it holds that

Pr[A(X) 2 S]  e
" · Pr[A(X 0) 2 S] + �.

Shuffle DP Model. A protocol over n inputs in the shuffle
DP model (Bittau et al., 2017; Erlingsson et al., 2019; Cheu
et al., 2019) consists of three procedures. A local random-

izer takes an input xi and outputs a set of messages. The
shuffler takes the multisets output by the local randomizer
applied to each of x1, . . . , xn, and produces a random per-
mutation of the messages as output. Finally, the analyzer

takes the output of the shuffler and computes the output of
the protocol. Privacy in the shuffle model is enforced on
the output of the shuffler when a single input is changed.

3. Generic Protocol Description
Below we describe the protocol for �-summation that is
private in the shuffle DP model. In our protocol, the ran-
domizer will send messages, each of which is an integer in
{��, . . . ,+�}. The analyzer simply sums up all the in-
coming messages. The messages sent from the randomizer
can be categorized into three classes:

• Input: each user i will send xi if it is non-zero.
• Central Noise: This is the noise whose sum is equal

to the Discrete Laplace noise commonly used algo-
rithms in the central DP model. This noise is sent in
“unary” as +1 or �1 messages.

Algorithm 1 �-Summation Randomizer

1: procedure CORRNOISERANDOMIZERn(xi)
2: if xi 6= 0
3: Send xi

4: Sample z
+1
i , z

�1
i ⇠ Dcentral

/n

5: Send z
+1
i copies of +1, and z

�1
i copies of �1

6: for s 2 S
7: Sample z

s
i ⇠ Ds

/n
8: for m 2 s
9: Send z

s
i copies of m

Algorithm 2 �-Summation Analyzer

1: procedure CORRNOISEANALYZER
2: R multiset of messages received
3: return

P
y2R y

• Zero-Sum Noise: Finally, we “flood” the messages
with noise that cancels out. This noise comes from
a carefully chosen sub-collection S of the collection
of all multisets of {��, . . . ,+�} \ {0} whose sum
of elements is equal to zero (e.g., {�1,�1,+2} may
belong to S).7 For more details, see Theorem 12 and
the paragraph succeeding it. We will refer to each s 2
S as a noise atom.

Algorithms 1 and 6 show the generic form of our proto-
col, which we refer to as the Correlated Noise mechanism.
The protocol is specified by the following infinitely divisi-
ble distributions over Z�0: the “central” noise distribution
Dcentral, and for every s 2 S , the “flooding” noise distri-
bution Ds.

Note that since s is a multiset, Line 8 goes over each el-
ement the same number of times it appears in s; e.g., if
s = {�1,�1,+2}, the iteration m = �1 is executed
twice.

3.1. Error and Communication Complexity

We now state generic forms for the MSE and communica-
tion cost of the protocol:

Observation 5. MSE is 2Var(Dcentral).

We stress here that the distribution Dcentral itself is not the
Discrete Laplace distribution; we pick it so that Dcentral �
Dcentral is DLap. As a result, 2Var(Dcentral) is indeed
equal to the variance of the Discrete Laplace noise.

Observation 6. Each user sends at most 1+
1
n

�
2E[Dcentral] +

P
s2S |s| · E[Ds]

�
messages in ex-

pectation, each consisting of dlog�e+ 1 bits.

7Note that while S may be infinite, we will later set it to be
finite, resulting in an efficient protocol.
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4. Parameter Selection and Privacy Proof
The focus of this section is on selecting concrete distribu-
tions to initiate the protocol and formalize its privacy guar-
antees, ultimately proving Theorem 2. First, in Section 4.1,
we introduce additional notation and reduce our task to
proving a privacy guarantee for a protocol in the central

model. With these simplifications, we give a generic form
of privacy guarantees in Section 4.2. Section 4.3 and Sec-
tion 4.4 are devoted to a more concrete selection of param-
eters. Finally, Theorem 2 is proved in Section 4.5.

4.1. Additional Notation and Simplifications

Matrix-Vector Notation. We use boldface letters to de-
note vectors and matrices, and standard letters to refer to
their coordinates (e.g., if u is a vector, then ui refers to its
ith coordinate). For convenience, we allow general index
sets for vectors and matrices; e.g., for an index set I, we
write u 2 RI to denote the tuple (ui)i2I . Operations such
as addition, scalar-vector/matrix multiplication or matrix-
vector multiplication are defined naturally.

For i 2 I, we use 1i to denote the ith vector in the standard
basis; that is, its i-indexed coordinate is equal to 1 and each
of the other coordinates is equal to 0. Furthermore, we
use 0 to denote the all-zeros vector.

Let [��,�] denote {��, . . . ,+�} \ {0}, and v 2
Z[��,�] denote the vector vi := i. Recall that a noise atom
s is a multiset of elements from [��,�]. It is useful to
also think of s as a vector in Z[��,�]

�0 where its ith entry
denotes the number of times i appears in s. We overload
the notation and use s to both represent the multiset and its
corresponding vector.

Let A 2 Z[��,�]⇥S denote the matrix whose rows are
indexed by [��,�] and whose columns are indexed by
S where Ai,s = si. In other words, A is a concatenation
of column vectors s. Furthermore, let [��,�]�1 denote
[��,�] \ {1}, and Ã 2 Z[��,�]�1⇥S denote the matrix
A with row 1 removed.

Next, we think of each input dataset (x1, . . . , xn) as its his-
togram h 2 Z[�]

�0 where hj denotes the number of i 2 [n]
such that xi = j. Under this notation, two input datasets
h,h0 are neighbors iff kh�h0k1  1 and kh�h0k1  2.
For each histogram h 2 Z[�]

�0 , we write hext 2 Z[��,�]
�0 to

denote the vector resulting from appending � zeros to the
beginning of h; more formally, for every i 2 [��,�], we
let hext

i = hi if i > 0 and h
ext
i = 0 if i < 0.

An Equivalent Central DP Algorithm. A benefit of us-
ing infinitely divisible noise distributions is that they allow
us to translate our protocols to equivalent ones in the cen-

tral model, where the total sum of the noise terms has a

well-understood distribution. In particular, with the nota-
tion introduced above, Algorithm 1 corresponds to Algo-
rithm 3 in the central model:

Algorithm 3 Central Algorithm (Matrix-Vector Notation)

1: procedure CORRNOISECENTRAL(h)
2: Sample z

+1
, z

�1 ⇠ Dcentral

3: for s 2 S
4: Sample z

s ⇠ Ds

5: z (zs)s2S
6: return hext + z

+1 · 11 + z
�1 · 1�1 +Az.

Observation 7. CORRNOISERANDOMIZER is (", �)-DP

in the shuffle model if and only if CORRNOISECENTRAL
is (", �)-DP in the central model.

Given Observation 7, we can focus on proving the privacy
guarantee of CORRNOISECENTRAL in the central model,
which will be the majority of this section.

Noise Addition Mechanisms for Matrix-Based Lin-
ear Queries. The D-noise addition mechanism for �-
summation (as defined in Section 1) works by first comput-
ing the summation and adding to it a noise random variable
sampled from D, where D is a distribution over integers.
Note that under our vector notation above, the D-noise ad-
dition mechanism simply outputs hv,hi+ z where z ⇠ D.

It will be helpful to consider a generalization of the �-
summation problem, which allows v above to be changed
to any matrix (where the noise is now also a vector).

To define such a problem formally, let I be any index set.
Given a matrix Q 2 ZI⇥[�], the Q-linear query problem is
to compute, given an input histogram h 2 Z[�]

�0 , an estimate
of Qh 2 ZI . (Equivalently, one can think of each user as
holding a column vector of Q or the all-zeros vector 0, and
the goal is to compute the sum of these vectors.)

The noise addition algorithms for �-summation can be eas-
ily generalized to the Q-linear query case: for a collection
D = (Di)i2I of distributions, the D-noise addition mech-

anism samples8 z ⇠ D and then outputs Qh+ z.

4.2. Generic Privacy Guarantee

With all the necessary notation ready, we can now state our
main technical theorem, which gives a privacy guarantee in
terms of a right inverse of the matrix Ã:
Theorem 8. Let C 2 ZS⇥[��,�]�1 denote any right in-

verse of Ã (i.e., ÃC = I) whose entries are integers. Sup-

pose that the following holds:

• The D̂-noise addition mechanism is ("1, �1)-DP for

8Specifically, sample zi ⇠ Di independently for each i 2 I.
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�-summation.

• The (D̃s)s2S -noise addition mechanism is ("2, �2)-
DP for the [0 c2 · · · c�]-linear query problem, where

ci denotes the ith column of C.

Then, CORRNOISECENTRAL with the following param-

eter selections is ("⇤ + "1 + "2, �1 + �2)-DP for �-

summation:

• Dcentral = NB(1, e�"⇤/�).
• D{�1,+1} = D̃{�1,+1} + D̂.

• Ds = D̃s
for all s 2 S \ {{�1,+1}}.

The right inverse C indeed represents the “change of basis”
alluded to in the introduction. It will be specified in the next
subsections along with the noise distributions D̂, (D̃s)s2S .

As one might have noticed from Theorem 8, {�1,+1} is
somewhat different that other noise atoms, as its noise dis-
tribution D{�1,+1} is the sum of D̂ and D̃{�1,+1}. A high-
level explanation for this is that our central noise is sent as
�1,+1 messages and we would like to use the noise atom
{�1,+1} to “flood out” the correlations left in �1,+1
messages. A precise version of this statement is given be-
low in Lemma 9. We remark that the first output coordinate
z
+1� z

�1 + hv,hi alone has exactly the same distribution
as the DLap("⇤/�)-noise addition mechanism. The main
challenge in this analysis is that the two coordinates are
correlated through z

�1; indeed, this is where the z̃
�1,+1

random variable helps “flood out” the correlation.
Lemma 9. Let Mcor be a mechanism that, on input his-

togram h 2 Z[�]
�0 , works as follows:

• Sample z
+1

, z
�1

independently from NB(1, e�"⇤/�).
• Sample z̃

�1,+1
from D̂.

• Output
�
z
+1 � z

�1 + hv,hi , z�1 + z̃
�1,+1

�
.

If the D̂-noise addition mechanism is ("1, �1)-DP for �-

summation, then Mcor is ("⇤ + "1, �1)-DP.

Lemma 9 is a direct improvement over the main analysis
of Ghazi et al. (2020b), whose proof (which works only
for � = 1) requires the D̂-noise addition mechanism to
be ("1, �1)-DP for O(log(1/�)/")-summation; we remove
this log(1/�)/" factor. Our novel insight is that when con-
ditioned on z

+1 + z
�1 = c, rather than conditioned on

z
+1 + z

�1 = c�  for some c, 2 Z, the distributions of
z
�1 are quite similar, up to a “shift” of  and a multiplica-

tive factor of e�"⇤/�. This allows us to “match” the two
probability masses and achieve the improvement. The full
proof of Lemma 9 is deferred to SM.

Let us now show how Lemma 9 can be used to prove The-
orem 8. At a high-level, we run the mechanism Mcor from
Lemma 9 and the (D̃s)s2S -noise addition mechanism, and
argue that we can use their output to construct the output
for CORRNOISECENTRAL. The intuition behind this is

that the first coordinate of the output of Mcor gives the
weighted sum of the desired output, and the second coor-
dinate gives the number of �1 messages used to flood the
central noise. As for the (D̃s)s2S -noise addition mecha-
nism, since C is a right inverse of Ã, we can use them to re-
construct the number of messages ��, . . . ,�1, 2, . . . ,�.
The number of 1 messages can then be reconstructed from
the weighted sum and all the numbers of other messages.
These ideas are encapsulated in the proof below.

Proof of Theorem 8. Consider Msim defined as follows:

1. First, run Mcor from Lemma 9 on input histogram h
to arrive at an output (bsum, b{�1,+1})

2. Second, run (D̃s)s2S -mechanism for [0 c2 · · · c�]-
linear query on h to get an output y = (ys)s2S .

3. Output u = (u��, . . . , u�1, u1, . . . , u�) computed
by letting w = Ã(y + b{�1,1} · 1{�1,+1}) and then

ui =

(
wi if i 6= 1,

bsum �
P

i2[��,�]�1
i · wi if i = 1.

From Lemma 9 and our assumption on D̂, Mcor is ("⇤ +
"1, �1)-DP. By assumption that the (D̃s)s2S -noise addition
mechanism is ("2, �2)-DP for [0 c2 · · · c�]-linear query
and by the basic composition theorem, the first two steps
of Msim are ("⇤ + "1 + "2, �1 + �2)-DP. The last step of
Msim only uses the output from the first two steps; hence,
by the post-processing property of DP, we can conclude
that Msim is indeed ("⇤ + "1 + "2, �1 + �2).

Next, we claim that Msim(h) has the same distribution
as CORRNOISECENTRAL(h) with the specified parame-
ters. To see this, recall from Mcor that we have bsum =
hv,hi+z

+1�z�1, and b{�1,+1} = z
�1+z̃

{�1,+1}, where
z
+1

, z
�1 ⇠ NB(1, e�"⇤/�) and z̃

{�1,+1} ⇠ D̂ are inde-
pendent. Furthermore, from the definition of the (D̃s)s2S -
noise addition mechanism, we have

Y = [0 c2 · · · c�]h+ f = Ch̃ext + f ,

where fs ⇠ D̃s are independent, and h̃ext denotes hext

after replacing its first coordinate with zero.

Notice that Ã1{�1,+1} = 1�1. Using this and our assump-
tion that ÃC = I, we get

w = Ã
⇣
Ch̃ext + f + b{�1,1} · 1{�1,+1}

⌘

= h̃ext + z
�1 · 1�1 + Ã(f + z̃

{�1,+1} · 1{�1,+1}).

Let z = f+Z̃
{�1,+1} ·1{�1,+1}; we can see that each entry

zs is independently distributed as Ds. Finally, we have
u1 = hv,hi+ z

+1 � z
�1 �

X

i2[��,�]�1

i · wi

=

0

@
X

i2[�]

i · hi

1

A+ z
+1 � z

�1
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�
X

i2[��,�]�1

i ·
⇣
h̃ext + z

�1 · 1�1 + Ãz
⌘

i

=

0

@
X

i2[�]

i · hi

1

A+ z
+1 � z

�1 �

0

@
X

i2{2,...,�}

i · hi

1

A

+ z
�1 �

0

@
X

i2[��,�]�1

i ·
⇣
Ãz
⌘

i

1

A

= h1 + z
+1 �

0

@
X

i2[��,�]�1

i ·
⇣
Ãz
⌘

i

1

A

= h1 + z
+1 �

0

@
X

i2[��,�]�1

i ·
 
X

s2S
si · zs

!1

A

= h1 + z
+1 �

0

@
X

s2S
zs ·

0

@
X

i2[��,�]�1

i · si

1

A

1

A .

Recall that
P

i2[��,�] i ·si = 0 for all s 2 S; equivalently,P
i2[��,�]�1

i · si = �s1. Thus, we have

u1 = h1 + z
+1 +

 
X

s2S
zs · s1

!
= h1 + z

+1 + (Az)1.

Hence, we can conclude that u = hext + z
+1 · 11 + z

�1 ·
1�1 +Az; this implies that Msim(h) has the same distri-
bution as the mechanism CORRNOISECENTRAL(h).

4.3. Negative Binomial Mechanism

Having established a generic privacy guarantee of our algo-
rithm, we now have to specify the distributions D̂, D̃s that
satisfy the conditions in Theorem 8 while keeping the num-
ber of messages sent for the noise small. Similar to Ghazi
et al. (2020b), we use the negative binomial distribution.
Its privacy guarantee is summarized below.9

Theorem 10 (Ghazi et al. (2020b)). For any ", � 2 (0, 1)
and � 2 N, let p = e

�0.2"/�
and r = 3(1 + log(1/�)).

The NB(r, p)-additive noise mechanism is (", �)-DP for �-

summation.

We next extend Theorem 10 to the Q-linear query problem.
To state the formal guarantees, we say that a vector x 2 ZI

is dominated by vector y 2 NI iff
P

i2I |xi|/yi  1. (We
use the convention 0/0 = 0 and a/0 =1 for all a > 0.)

Corollary 11. Let ", � 2 (0, 1). Suppose that every col-

umn of Q 2 ZI⇥[�]
is dominated by t 2 NI

. For each

i 2 I, let pi = e
�0.2"/(2ti), ri = 3(1 + log(|I|/�)) and

Di = NB(ri, pi). Then, (Di)i2I-noise addition mecha-

nism is (", �)-DP for Q-linear query.

9For the exact statement we use here, please refer to Theorem
13 of Ghazi et al. (2021b), which contains a correction of calcu-
lation errors in Theorem 13 of Ghazi et al. (2020b).

4.4. Finding a Right Inverse

A final step before we can apply Theorem 8 is to specify
the noise atom collection S and the right inverse C of Ã.
Below we give such a right inverse where every column is
dominated by a vector t that is “small”. This allows us to
then use the negative binomial mechanism in the previous
section with a “small” amount of noise. How “small” t is
depends on the expected number of messages sent; this is
governed by ktkS :=

P
s2S ksk1 · |ts|. With this notation,

the guarantee of our right inverse can be stated as follows.
(We note that in our noise selection below, every s 2 S has
at most three elements. In other words, ktkS and ktk1 will
be within a factor of three of each other.)

Theorem 12. There exist S of size O(�), C 2
ZS⇥[��,�]�1 with ÃC = I and t 2 NS

such that ktkS 
O(� log2 �) and every column of C is dominated by t.

The full proof of Theorem 12 is deferred to SM. The main
idea is to essentially proceed via Gaussian elimination on
Ã. However, we have to be careful about our choice of
orders of rows/columns to run the elimination on, as oth-
erwise it might produce a non-integer matrix C or one
whose columns are not “small”. In our proof, we order
the rows based on their absolute values, and we set S to be
the collection of {�1,+1} and {i,�di/2e,�bi/2c} for all
i 2 {��, . . . ,�2, 2, . . . ,�}. In other words, these are the
noise atoms we send in our protocol.

4.5. Specific Parameter Selection: Proof of Theorem 2

Proof of Theorem 2. Let S,C, t be as in Theorem 12, "⇤ =
(1� �)", "1 = "2 = min{1, �"}/2, �1 = �2 = �/2, and,

• Dcentral = NB(1, e�"⇤/�),
• D̂ = NB(r̂, p̂) where p̂ = e

�0.2"1/� and r̂ = 3(1 +
log(1/�1)),

• D̃s = NB(rs, ps) where ps = e
�0.2"2/(2ts) and r

s =
3(1 + log(|S|/�2)) for all s 2 S .

From Theorem 10, the D̂-noise addition mechanism is
("1, �1)-DP for �-summation. Corollary 11 implies that
the (D̃s)s2S -noise addition mechanism is ("2, �2)-DP for
[0 c2 · · · c�]-linear query. As a result, since "⇤+"1+"2 
" and �1 + �2 = �, Theorem 8 ensures that CORRNOISE-
CENTRAL with parameters as specified in the theorem is
(", �)-DP.

The error claim follows immediately from Observa-
tion 5 together with the fact that NB(1, e�"⇤/�) �
NB(1, e�"⇤

/�) = DLap("⇤/�). Using Observation 6,
we can also bound the expected number of messages as

1 +
1

n

 
2E[Dcentral] +

X

s2S
|s| · E[Ds]

!
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(a) RMSEs for varying � (b) Expected bits sent for varying n (c) Expected bits sent for varying �

Figure 1: Error and communication complexity of our “correlated noise” �-summation protocol compared to other protocols.

 1 +O

✓
�

"⇤n

◆
+

1
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2r̂

1� p̂
+
X

s2S

|s|rs
1� ps

!

= 1 +O

✓
� log(1/�)

�"n

◆
+O

✓
ktkS · log(�/�)

"2n

◆

 1 +O

✓
� log(1/�)

�"n

◆
+O

✓
� log2 � · log(�/�)

�"n

◆
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where each message consists of dlog�e+ 1 bits.

5. Experimental Evaluation
We compare our “correlated noise” �-summation proto-
col (Algorithms 1, 6) against known algorithms in the lit-
erature, namely the IKOS “split-and-mix” protocol (Ishai
et al., 2006; Balle et al., 2020; Ghazi et al., 2020c) and
the fragmented10 version of RAPPOR (Erlingsson et al.,
2014; 2020). We also include the Discrete Laplace mech-
anism (Ghosh et al., 2012) in our plots for comparison, al-
though it is not directly implementable in the shuffle model.
We do not include the generalized (i.e., �-ary) Random-
ized Response algorithm (Warner, 1965) as it always incurs
at least as large error as RAPPOR.

For our protocol, we set "⇤ in Theorem 8 to 0.9", meaning
that its MSE is that of DLap(0.9"/�). While the param-
eters set in our proofs give a theoretically vanishing over-
head guarantee, they turn out to be rather impractical; in-
stead, we resort to a tighter numerical approach to find the
parameters. We discuss this, together with the setting of
parameters for the other alternatives, in the SM.

For all mechanisms the root mean square error (RMSE)
and the (expected) communication per user only depends

10The RAPPOR randomizer starts with a one-hot encoding of
the input (which is a �-bit string) and flips each bit with a cer-
tain probability. Fragmentation means that, instead of sending
the entire �-bit string, the randomizer only sends the coordinates
that are set to 1, each as a separate dlog�e-bit message. This
is known to reduce both the communication and the error in the
shuffle model (Cheu et al., 2019; Erlingsson et al., 2020).

on n, ", �,�, and is independent of the input data. We next
summarize our findings.

Error. The IKOS algorithm has the same error as the Dis-
crete Laplace mechanism (in the central model), whereas
our algorithm’s error is slightly larger due to "

⇤ being
slightly smaller than ". On the other hand, the RMSE for
RAPPOR grows as 1/� increases, but it seems to converge
as n becomes larger. (For � = 10�6 and n = 104, . . . , 107,
we found that RMSEs differ by less than 1%.)

However, the key takeaway here is that the RMSEs of
IKOS, Discrete Laplace, and our algorithm grow only lin-
early in �, but the RMSE of RAPPOR is proportional to
⇥(�3/2). This is illustrated in Figure 1a.

Communication. While the IKOS protocol achieves the
same accuracy as the Discrete Laplace mechanism, it in-
curs a large communication overhead, as each message sent
consists of dlog(n�)e bits and each user needs to send
multiple messages. By contrast, when fixing � and tak-
ing n ! 1, both RAPPOR and our algorithm only send
1+o(1) messages, each of length dlog�e and dlog�e+1
respectively. This is illustrated in Figure 1b. Note that the
number of bits sent for IKOS is indeed not a monotone
function since, as n increases, the number of messages re-
quired decreases but the length of each message increases.

Finally, we demonstrate the effect of varying � in Figure 1c
for a fixed value of n. Although Theorem 2 suggests that
the communication overhead should grow roughly linearly
with �, we have observed larger gaps in the experiments.
This seems to stem from the fact that, while the Õ(�)
growth would have been observed if we were using our an-
alytic formula, our tighter parameter computation (detailed
in Appendix H.1 of SM) finds a protocol with even smaller

communication, suggesting that the actual growth might be
less than Õ(�) though we do not know of a formal proof of
this. Unfortunately, for large �, the optimization problem
for the parameter search gets too demanding and our pro-
gram does not find a good solution, leading to the “larger
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gap” observed in the experiments.

6. Conclusions
In this work, we presented a DP protocol for real and 1-
sparse vector aggregation in the shuffle model with accu-
racy arbitrarily close to the best possible central accuracy,
and with relative communication overhead tending to 0
with increasing number of users. It would be very inter-
esting to generalize our protocol and obtain qualitatively
similar guarantees for dense vector summation.

We also point out that in the low privacy regime (" � 1),
the staircase mechanism is known to significantly improve
upon the Laplace mechanism (Geng & Viswanath, 2016;
Geng et al., 2015); the former achieves MSE that is expo-
nentially small in ⇥(") while the latter has MSE O(1/"2).
An interesting open question is to achieve such a gain in
the shuffle model.
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